General Description

This device contains two independent negative－edge－trig－ gered J－K flip－flops with complementary outputs．The J and K data is processed by the flip－flop on the falling edge of the clock pulse．The clock triggering occurs at a voltage level and is not directly related to the transition time of the falling edge of the clock pulse．Data on the J and K inputs may be changed while the clock is high or low without affecting the outputs as long as the setup and hold times are not
violated．A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs．

Features

－Alternate Military／Aerospace device（54LS112）is avail－ able．Contact a National Semiconductor Sales Office／ Distributor for specifications．

Function Table

Inputs						Outputs	
PR	CLR	CLK	J	K	Q	$\overline{\mathbf{Q}}$	
L	H	X	X	X	H	L	
H	L	X	X	X	L	H	
L	L	X	X	X	H^{*}	H^{*}	
H	H	\downarrow	L	L	Q_{0}	\bar{Q}_{0}	
H	H	\downarrow	H	L	H	L	
H	H	\downarrow	L	H	L	H	
H	H	\downarrow	H	H	Toggle		
H	H	H	X	X	Q_{0}	\bar{Q}_{0}	

$H=$ High Logic Level
L＝Low Logic Level
X $=$ Either Low or High Logic Level
$\downarrow=$ Negative Going Edge of Pulse
＊$=$ This configuration is nonstable；that is，it will not persist when preset and／or clear inputs return to their inactive（high）level．
$Q_{0}=$ The output logic level before the indicated input conditions were es－ tablished．
Toggle $=$ Each output changes to the complement of its previous level on each falling edge of the clock pulse．

Absolute Maximum Ratings（Note）
If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for availability and specifications．
Supply Voltage
7 V
Input Voltage
$7 V$
Operating Free Air Temperature Range

DM54LS and 54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＇Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter		DM54LS112A			DM74LS112A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2		U	2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current		v		－0．4			－0．4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency（Note 2）		0		30	0		30	MHz
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency（Note 3）		0		25	0		25	MHz
tw	Pulse Width （Note 2）	Clock High	20			20			ns
		Preset Low	25			25			
		Clear Low	25			25	1 V		
tw	Pulse Width （Note 3）	Clock High	25			25			
		Preset Low	30			30	－		ns
		Clear Low	30			30			
tsu	Setup Time（Notes 1 and 2）		$20 \downarrow$			$20 \downarrow$			ns
tsu	Setup Time（Notes 1 and 3）		25 \downarrow			25 \downarrow			ns
t_{H}	Hold Time（Notes 1 and 2）		0 \downarrow			0 \downarrow		－	ns
t_{H}	Hold Time（Notes 1 and 3）		5 \downarrow			5 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1：The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference
Note 2： $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．
Note 3： $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．

Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				－1．5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current＠Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	J，K			0.1	
			Clear			0.3	mA
			Preset			0.3	
			Clock			0.4	

Electrical Characteristics

over recommended operating free air temperature range（unless otherwise noted）（Continued）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	J，K			20	$\mu \mathrm{A}$
			Clear			60	
			Preset			60	
			Clock			80	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	J，K			－0．4	mA
			Clear			－0．8	
			Preset			－0．8	
			Clock			－0．8	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	－20		－100	mA
			DM74	－20		－100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$（Note 3）			4	6	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（See Section 1 for Test Waveforms and Output Load）

Symbol	Parameter	From（Input） To（Output）	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Preset } \\ & \text { to Q } \end{aligned}$		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Preset } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		20		28	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear $\text { to } Q$		20		28	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		20		24	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		20		28	ns

2．Not more than one output should be shorted at a time，and the duration should not exceed one second．For devices，with feedback from the outputs，where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM74 series，respectively，with the minimum and maximum limits reduced by one half from their stated values．This is very useful when using automatic test equipment．
Note 3：With all outputs open， I_{CC} is measured with the Q and $\overline{\mathrm{Q}}$ outputs high in turn．At the time of measurement the clock is grounded．

54LS112／DM54LS112A／DM74LS112A Dual Negative－Edge－Triggered Master－Slave

Physical Dimensions inches（millimeters）（Continued）

detail A

16－Lead Ceramic Flat Package（W）
Order Number 54LS112FMQB or DM54LS112AW
NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION．As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body，or（b）support or sustain life，and whose failure to perform，when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury to the user．

2．A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

