ELZ07ZC

EL2072C 730 MHz Closed Loop Buffer

Features

- 730 MHz -3 dB bandwidth (0.5 V_{PP})
- 5 ns settling to 0.2%
- $V_S = \pm 5V @ 15 mA$
- Low distortion: HD2, HD3 of
 -65 dBc at 20 MHz
- Overload/short-circuit protected
- Closed-loop, unity gain
- Low cost
- Direct replacement for CLC110

Applications

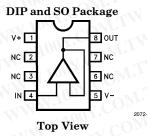
- Video buffer
- Video distribution
- HDTV buffer
- High-speed A/D buffer
- Photodiode, CCD preamps
- IF processors
- High-speed communications

Ordering Information

Part No.	Temp. Range	Package	Outline #
EL2072CN	-40°C to +85°C	8-Pin P-DIP	MDP0031
EL2072CS	-40°C to +85°C	8-Pin SO	MDP0027

General Description

The EL2072 is a wide bandwidth, fast settling monolithic buffer built using an advanced complementary bipolar process. This buffer is closed loop to achieve lower output impedance and higher gain accuracy. Designed for closed-loop unity gain, the EL2072 has a 730 MHz -3 dB bandwidth and 5 ns settling to 0.2% while consuming only 15 mA of supply current.


The EL2072 is an obvious high-performance solution for video distribution and line-driving applications. With low 15 mA supply current and a 70 mA output drive, performance in these areas is assured.

The EL2072's settling to 0.2% in 5 ns, low distortion, and ability to drive capacitive loads make it an ideal flash A/D driver. The wide 730 MHz bandwidth and extremely linear phase allow unmatched signal fidelity.

The EL2072 can be used inside an amplifier loop or PLL as its wide bandwidth and fast rise time have minimal effect on loop dynamics.

Elantec products and facilities comply with MIL-I-45028A, and other applicable quality specifications. For information on Elantec's processing, see Elantec document *QRA-1: Elantec's Processing, Monolithic Integrated Circuits*.

Connection Diagram

Manufactured under U.S. Patent No. 4,893,091

December 1995 Rev

WWW.100Y.COM.TW WWW.100Y.COM.TW EL2072C 730 MHz Closed Loop Buffer

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

Supply Voltage (V_S) **Output Current**

Output is short-circuit protected to ground, however, maxi-

mum reliability is obtained if IOUT does not exceed 70 mA.

Operating Temperature Junction Temperature Storage Temperature

-40°C to +85°C 175°C

-60°C to +150°C

Thermal Resistance

 $\theta_{\rm JA} = 95^{\circ} \text{C/W r}$ $\theta_{\rm JA} = 175^{\circ} \text{C/W SO}$

Input Voltage

Note: See EL2071/EL2171 for Thermal Impedance curves.

Important Note:

All parameters having Min/Max specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality inspection. Elantec performs most electrical tests using modern high-speed automatic test equipment, specifically the LTX77 Series system. Unless otherwise noted, all tests are pulsed tests, therefore $T_J = T_C = T_A$.

Test Level	Test Procedure
	100% production tested and QA sample tested per QA test plan QCX0002.
II	100% production tested at $T_A = 25^{\circ}$ C and QA sample tested at $T_A = 25^{\circ}$ C,
	T _{MAX} and T _{MIN} per QA test plan QCX0002.
III	QA sample tested per QA test plan QCX0002.
IV	Parameter is guaranteed (but not tested) by Design and Characterization Data
V	Parameter is typical value at $T_A = 25$ °C for information purposes only.

DC Electrical Characteristics

 $V_S=\pm 5V,$ $R_L=100\Omega,$ $R_S=50\Omega$ unless otherwise specified

Parameter	Description	Test Conditions	Temp	Min	Тур	Max	Test Level	Units
V _{OS}	Output Offset Voltage	- N	25°C		2.0	8.0	I	mV
WW	W. T. COM.	V <	T _{MIN}	Y.Co	111	16.0	v	mV
	M.Ing. COM.	cN.	T_{MAX}	V.C	Diar.	13.0	v	mV
TCVOS	Average Offset	7	$25^{\circ}\text{C} - \text{T}_{\text{MAX}}$	0 2	20.0	50.0	IV	μV/°C
W	Voltage Drift	TW	$25^{\circ}\text{C} - \text{T}_{\text{MIN}}$	00 x.	20.0	100.0		
I _B	Input Bias Current	TW	25°C, T _{MAX}	You.	10.0	50.0	II	μΑ
	WW.100 CON	-31	T _{MIN}	In	1 CO	100.0	υ V	μΑ
TCIB	Average Input Bias Current Drift	W.T.W	$25^{\circ}\mathrm{C}-\mathrm{T_{MAX}}$	1.100	200.0	300.0	IV	nA/°C
			$25^{\circ}\text{C} - \text{T}_{\text{MIN}}$	-110	200.0	700.0		
A _V	Small Signal Gain	$R_{L} = 100\Omega$	25°C	0.96	0.98	On	I	V/V
			T _{MIN} , T _{MAX}	0.95	JU -	COM	v	V/V
ILIN	Integral End Point linearity	± 2V F.S.	25°C	· XXI	0.2	0.4	IV	%F.S.
			T _{MIN}	11	1005	0.8	IV	% F.S.
			T _{MAX}	WW	1.10	0.3	IV	%F.S.
PSRR	Power Supply Rejection Ratio	V.COM.	A11	45.0	65.0	oy.C	II	dB
I _S	Supply Current—Quiescent	No Load	All		15.0	20.0	OII	mA

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

EL2072C 730 MHz Closed Loop Buffer

DC Electrical Characteristics

 $V_S = \pm 5V$, $R_L = 100\Omega$, $R_S = 50\Omega$ unless otherwise specified — Contd.

Parameter	Description	Test Conditions	Temp	Min	Тур	Max	Test Level	Units
R _{IN} I	Input Resistance	1.100	25°C	100.0	160.0	1700.	IO)	$\mathbf{k}\Omega$
			$ au_{ ext{MIN}}$	50.0		N.100	v	$\mathbf{k}\Omega$
	WW WY	M. TOOX.C	T_{MAX}	200.0	WW	110	v	kΩ
C _{IN}	Input Capacitance		25°C		1.6	2.2	iv	pF
		W.100	T_{MIN}, T_{MAX}	6 T		2.5	IV	pF
R _{OUT}	Output Impedance (DC)	100	25°C		2.0	3.0	IV	Ω
		100	T _{MIN} , T _{MAX}			3.5	IV	Ω
I _{OUT}	Output Current	WWW	25°C, T _{MAX}	50.0	70.0	WW	II	mA
		1.1	$ au_{ ext{MIN}}$	45.0			v	mA
V _{OUT}	Output Voltage Swing	$R_{\rm L}=100\Omega$	25°C, T _{MAX}	±3.2	±4.0		II	v
	COLLAN		T _{MIN}	±3.0		11/1	V	v

AC Electrical Characteristics $V_S = \pm 5V$, $R_L = 100\Omega$, $R_S = 50\Omega$ unless otherwise specified

730.0	Ñ	v	MHz
MIT	Ñ	TAIN T	MHz
00.0	N	7///	
00.0		IV	MHz
00.0	W	IV	MHz
90.0	-XXI	IV	MHz
Mo	1	IV	MHz
	TI		111.
0.0	0.5	v	dB
J CO	0.6	IV	dB
).	0.8	IV	dB
0.0	0.8	v	dB
nay.C	1.0	IV	dB
-01	1.2	IV	dB
0.75	1.0	IV	ns
100	1.2	IV	ns
0.7	1.5	IV	۰
11.70	2.0	IV	۰
	0.0	0.6 0.8 0.0 0.8 1.0 1.2 0.75 1.0 1.2 0.7 1.5	0.6 IV 0.8 IV 0.0 0.8 V 1.0 IV 1.2 IV 0.75 1.0 IV 1.2 IV 0.7 1.5 IV

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

LTW

.com.TW V.COM.TW M.COM.TW boY.COM.TW

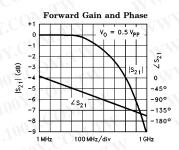
100Y.COM.TW

WWW.100Y.COM.T

TD is 5.1in

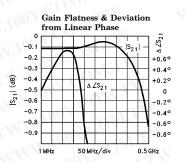
WWW.100

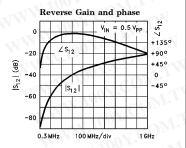
WWW.100Y.COM.TW VWW.100Y.COM.TW 100Y.COM.TW WWW.100Y.COM.TW EL2072C730 MHz Closed Loop Buffer

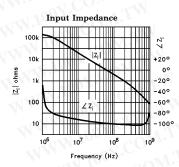

AC Electrical	Characteristics - Contd.
AC DIECUTICAL	Characteristics — Conto.

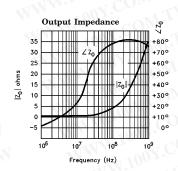
Parameter	Description	Test Conditions	Temp	Min	Тур	Max	Test Level	Units
TIME-DOMA	AIN RESPONSE	N.100 .	OM.I.	7	77	WW.	100	COM.
TR1, TF1	Rise Time, Fall Time	0.5V Step	25°C, T _{MIN}		0.4	1.0	IV	ns
Input Signal Rise/Fall = 300 ps	W. LOON	T _{MAX}	N	4	1.4	IV	ns	
TR2, TF2	Rise Time, Fall Time	5.0V Step	25°C		4.5	7.5	IV	ns
	Input Signal Rise/Fall ≤ 1 ns	W.100	T_{MIN}, T_{MAX}	L \		8.5	IV	ns
TS1	Settling Time to 0.2% Input Signal Rise/Fall ≤ 1 ns	2.0V Step	All	IN	5.0	10.0	IV	ns
os o	Overshoot	0.5V Step	25°C	1.	0.0	10.0	IV	%
W 1 10	Input Signal Rise/Fall = 300 ps	N V	T _{MIN} , T _{MAX}	T.IM	77	15.0	IV	%
SR	Slew Rate	MAN	25°C	500.0	800.0	4	IV	V/µs
	COM	WWW	T _{MIN} , T _{MAX}	450.0	TW		IV	V/µs
DISTORTIO	N	TXV	W.100	COM			-11	Mila
HD2 2nd Harmonic Distortion at 20 MHz	2nd Harmonic Distortion	2 V _{PP}	25°C		-55.0	-50.0	v	dBc
	at 20 MHz		$T_{ m MIN}$		TI	-48.0	IV	dBc
	N.In. COM.		T _{MAX}	V.CL	1	-55.0	IV	dBc
HD2A 2nd	2nd Harmonic Distortion	2 V _{PP}	25°C, T _{MAX}	47 C	-50.0	-45.0	IV	dBc
	at 50 MHz		T _{MIN}	01.	Mos	-40.0	IV	dBc
HD3	3rd Harmonic Distortion at 20 MHz	2 V _{PP}	25°C	001	-65.0	-55.0	v	dBc
*1		N)	T _{MIN} , T _{MAX}	. 005	('Cor	-55.0	IV	dBc
	3rd Harmonic Distortion at 50 MHz	2 V _{PP}	25°C, T _{MIN}	Too	-60.0	-50.0	IV	dBc
			$T_{ ext{MAX}}$	1.10	1.	-45.0	IV	dBc
EQUIVALEN	NT INPUT NOISE		MM.	- XI 10	01.	~~1.J		
NF	Noise Floor >100 kHz	M.TW	25°C, T _{MIN}		-158.0	-155.0	IV	dBm (1 Hz)
			T _{MAX}	W.	~~7	-154.0	IV	dBm (1 Hz)
INV	Integrated Noise 100 kHz to 200 MHz	OM.TW	25°C, T _{MIN}	-11/	40.0	57.0	IV	μV
			T _{MAX}	<i>M</i> .	1100	63.0	IV	μV

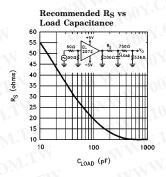
WWW.100Y.COM.TW

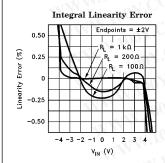

EL2072C 730 MHz Closed Loop Buffer

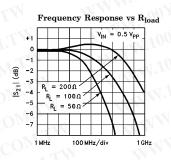

Typical Performance Curves $(V_S = \pm 5V, R_L = 100\Omega, R_S = 50\Omega)$

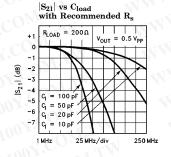


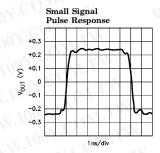

VWW.100Y.COM.TW

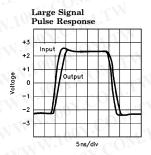

WWW.100Y.COM.TW

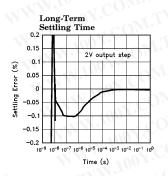


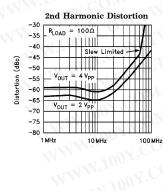


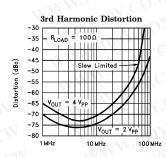


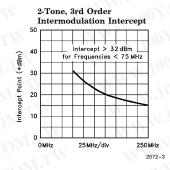


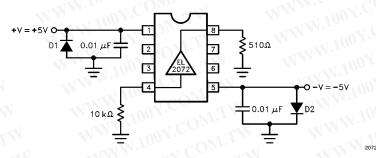

WWW.100Y.COM.TV


WWW.100Y.COM.TW EL2072C 730 MHz Closed Loop Buffer


Typical Performance Curves $(V_S = \pm 5V, R_L = 100\Omega, R_S = 50\Omega)$ — Contd.




VWW.100Y.COM.TW


100Y.COM.TW

WWW.100Y.COM.TV

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

EL2072C 730 MHz Closed Loop Buffer

Burn-In Circuit

Printed Circuit Layout

As with any high-frequency device, good PCB layout is necessary for optimum performance. This is especially important for the EL2072, which has a typical bandwidth of 730 MHz. Ground plane construction is a requirement, as is good power-supply bypassing close to the package. A closely-placed 0.01 μ F ceramic capacitor between each supply pin and the ground plane is usually sufficient decoupling.

Pins 2, 3, 6, and 7 should be connected to the ground-plane to minimize capacitive feed-through, and all input and output traces should be laid out as transmission lines and terminated as close to the EL2072 package as possible.

Increasing capacitance on the output of the EL2072 will add phase shift, decreasing phase margin and increasing frequency-response peaking. A small series resistor before the capacitance decouples this effect, and should be used for large capacitance values. Please refer to the graphs for the appropriate resistor value to be used.

100X.COM