Features

－Specified for $+3 \mathrm{~V},+5 \mathrm{~V}$ ，or $\pm 5 \mathrm{~V}$ applications
－Large input common mode range $0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{S}}-1.2 \mathrm{~V}$
－Output swings to ground without saturating
－-3 dB bandwidth $=125 \mathrm{MHz}$
－$\pm 0.1 \mathrm{~dB}$ bandwidth $=30 \mathrm{MHz}$
－Low supply current $=5 \mathrm{~mA}$（per amplifier）
－ Slew rate $=275 \mathrm{~V} / \mu \mathrm{s}$
－Low offset voltage $=4 \mathrm{mV}$ max
－Output current $= \pm 100 \mathrm{~mA}$
－High open loop gain $=80 \mathrm{~dB}$
－Differential gain $=0.05 \%$
－ Differential phase $=0.05^{\circ}$

Applications

－Video amplifiers
－PCMCIA applications
－A／D drivers
－Line drivers
－Portable computers
－High speed communications
－RGB printers，FAX，scanners
－Broadcast equipment
－Active filtering

Ordering Information

Part No	Package	Tape \＆Reel	Outline \＃
EL2250CN	8－Pin PDIP	-	MDP0031
EL2250CS	8－Pin SO	-	MDP0027
EL2250CS－T7	8－Pin SO	$7 "$	MDP0027
EL2250CS－T13	8－Pin SO	$13 "$	MDP0027
EL2450CN	14－Pin PDIP	-	MDP0031
EL2450CS	14－Pin SO	-	MDP0027
EL2450CS－T7	14－Pin SO	$7 "$	MDP0027
EL2450CS－T13	14－Pin SO	$13 "$	MDP0027

General Description

The EL2250C／EL2450C are part of a family of the electronics indus－ tries fastest single supply op amps available．Prior single supply op amps have generally been limited to bandwidths and slew rates to that of the EL2250C／EL2450C．The 125 MHz bandwidth， $275 \mathrm{~V} / \mu \mathrm{s}$ slew rate，and $0.05 \% / 0.05^{\circ}$ differential gain／differential phase makes this part ideal for single or dual supply video speed applications．With its voltage feedback architecture，this amplifier can accept reactive feed－ back networks，allowing them to be used in analog filtering applications．The inputs can sense signals below the bottom supply rail and as high as 1.2 V below the top rail．Connecting the load resistor to ground and operating from a single supply，the outputs swing com－ pletely to ground without saturating．The outputs can also drive to within 1.2 V of the top rail．The EL2250C／EL2450C will output $\pm 100 \mathrm{~mA}$ and will operate with single supply voltages as low as 2.7 V ， making them ideal for portable，low power applications．
The EL2250C／EL2450C are available in PDIP and SO packages in industry standard pin outs．Both parts operate over the industrial tem－ perature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ，and are part of a family of single supply op amps．For single amplifier applications，see the EL2150C／EL2157C．For dual and triple amplifiers with power down and output voltage clamps，see the EL2257C／EL2357C．

Connection Diagrams

Supply Voltage between V_{S} and GND Input Voltage（IN＋，IN－） Differential Input Voltage Maximum Output Current Output Short Circuit Duration

GND－0．3V， $\mathrm{V}_{\mathrm{S}}+0.3 \mathrm{~V}$
$\pm 6 \mathrm{~V}$
90 mA
（Note 1）

Power Dissipation
See Curves Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Operating Temperature Range $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Junction Temperature $150^{\circ} \mathrm{C}$

Important Note：
All parameters having Min／Max specifications are guaranteed．Typ values are for information purposes only．Unless otherwise noted，all tests are at the specified temperature and are pulsed tests，therefore： $\mathbf{T}_{J}=T_{C}=T_{A}$ ．

DC Electrical Characteristics

$V_{S}=+5 \mathrm{~V}, G \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V}$ ，unless otherwise specified．

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {OS }}$	Offset Voltage	EL2250C	－2		2	mV
		EL2450C	－4		4	mV
TCV ${ }_{\text {OS }}$	Offset Voltage Temperature Coefficient	Measured from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IB	Input Bias Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		－5．5	－10	$\mu \mathrm{A}$
IOS	Input Offset Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	－750	150	750	nA
TCIOS	Input Bias Current Temperature Coefficient	Measured from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		50		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=+2.7 \mathrm{~V}$ to +12 V	55	70		dB
CMRR	Common Mode Rejection Ratio	$\mathrm{VCM}=0 \mathrm{~V}$ to +3.8 V	55	65		dB
		$\mathrm{VCM}=0 \mathrm{~V}$ to +3.0 V	55	70		dB
CMIR	Common Mode Input Range		0		$\mathrm{V}_{\mathrm{S}}-1.2$	V
$\mathrm{R}_{\text {IN }}$	Input Resistance	Common Mode	1	2		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	SO Package		1		pF
		PDIP Package		1.5		pF
$\mathrm{R}_{\text {OUT }}$	Output Resistance	$\mathrm{A}_{\mathrm{V}}=+1$		40		$\mathrm{m} \Omega$
IS	Supply Current（per amplifier）	$\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V}$		5	6.5	mA
PSOR	Power Supply Operating Range		2.7	－	12.0	V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, G \mathrm{GD}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=+1.5 \mathrm{~V}$ ，unless otherwise specified．

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
AVOL	Open Loop Gain	$\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V}, \mathrm{~V}_{\text {OuT }}=+2 \mathrm{~V} \text { to }+9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	60	80		dB
		$\mathrm{V}_{\text {OUT }}=+1.5 \mathrm{~V}$ to $+3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND		70		dB
		$\mathrm{V}_{\text {OUT }}=+1.5 \mathrm{~V}$ to $+3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND		60		dB
V_{OP}	Positive Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to 0 V		10.8		V
		$\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to 0 V	9.6	10.0		V
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to 0 V		4.0		V
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to 0 V	3.4	3.8		V
		$\mathrm{V}_{\mathrm{S}}=+3 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to 0 V	1.8	1.95		V

EL2250C，EL2450C 125MHz Single Supply Dual／Quad Op Amps

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{S}}=+\mathbf{5 V}, \mathrm{GND}^{2}=\mathbf{0 V}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=+\mathbf{1 . 5} \mathrm{V}, \mathrm{V}_{\text {OUT }}=+\mathbf{1 . 5} \mathrm{V}$ ，unless otherwise specified．

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
V_{ON}	Negative Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to 0 V		5.5	8	mV
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to 0 V		－4．0		V
		$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to 0 V		－3．7	－3．4	V
IOUT	Output Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=10 \Omega$ to 0 V	± 75	± 100		mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to } 0 \mathrm{~V} \pm 60 \mathrm{~V} \\ & \mathrm{~mA} \end{aligned}$		\bigcirc		

1．Internal short circuit protection circuitry has been built into the EL2250C／EL2450C；see the Applications section

Closed Loop AC Electrical Characteristics
$V_{S}=+5 \mathrm{~V}, G \mathrm{GDD}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=+1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=+1.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND pin，unless otherwise specified．${ }^{[1]}$

Parameter	Description	Test Conditions	Min	Typ	Max	Unit
BW	－3dB Bandwidth $\left(\mathrm{V}_{\text {OUT }}=400 \mathrm{mVp}-\mathrm{p}\right)$	$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega$		125		MHz
		$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{F}}=500 \Omega$		60		MHz
		$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{AV}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=500 \Omega$		60		MHz
		$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+10, \mathrm{R}_{\mathrm{F}}=500 \Omega$		6		MHz
		$\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega$		150		MHz
		$\mathrm{V}_{\mathrm{S}}=+3 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega$		100		MHz
BW	$\pm 0.1 \mathrm{~dB}$ Bandwidth （VouT $=400 \mathrm{mVp}-\mathrm{p}$ ）	$\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega$		25		MHz
		$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega$		30		MHz
		$\mathrm{V}_{\mathrm{S}}=+3 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=0 \Omega$		20		MHz
GBWP	Gain Bandwidth Product	$\mathrm{V}_{\mathrm{S}}=+12 \mathrm{~V}, @ \mathrm{~A}_{\mathrm{V}}=+10$		60		MHz
PM	Phase Margin	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=6 \mathrm{pF}$		55		。
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ ， $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to +6 V	200	275		V／$/ \mathrm{s}$
		$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ to +3 V		300		V／$/ \mathrm{s}$
$\mathrm{t}_{\mathrm{R}, \mathrm{t}_{\mathrm{F}}}$	Rise Time，Fall Time	$\pm 0.1 \mathrm{~V}$ Step		2.8		ns
OS	Overshoot	$\pm 0.1 \mathrm{~V}$ Step		10		\％
tpd	Propagation Delay	$\pm 0.1 \mathrm{~V}$ Step		3.2		ns
t_{S}	0．1\％Settling Time	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{~V}_{\mathrm{OUT}}= \\ & \pm 3 \mathrm{~V} \end{aligned}$		40		ns
	0．01\％Settling Time	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{~V}_{\text {OUT }}= \\ & \pm 3 \mathrm{~V} \end{aligned}$		75		ns
dG	Differential Gain ${ }^{[2]}$	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega$		0.05		\％
dP	Differential Phase ${ }^{[2]}$	$\mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega$		0.05		－
e_{N}	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$		48		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{N}	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$		1.25		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

．All AC tests are performed on a＂warmed up＂part，except slew rate，which is pulse tested
．Standard NTSC signal $=286 \mathrm{mV} \mathrm{P}_{\mathrm{P}-\mathrm{P}}, \mathrm{f}=3.58 \mathrm{MHz}$ ，as V_{IN} is swept from 0.6 V to $1.314 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}$ is DC coupled

Typical Performance Curves

Non－Inverting Frequency Response
（Gain）

Inverting Frequency Response（Gain）

Frequency Response for Various \mathbf{R}_{L}

Inverting Frequency Response（Phase）

Frequency Response for Various C_{L}

3dB Bandwidth vs Temperature for Non－ Inverting Gains

Non－Inverting Frequency Response vs Common Mode Voltage

EL2250C，EL2450C 125MHz Single Supply Dual／Quad Op Amps

Open Loop Gain and Phase vs Frequency

Frequency Response for Various Supply Voltages， $\mathrm{Av}=+1$

Frequency Response for Various Supply Voltages，$A v=+2$

Open Loop Voltage Gain vs Die Temperature

PSSR and CMRR vs Frequency

PSRR and CMRR vs Die Temperature

Closed Loop Output Impedance vs Frequency

EL2250C，EL2450C 125MHz Single Supply Dual／Quad Op Amps

Output Voltage Swing vs Frequency for Unlimited Distortion

FREQUENCY（ Hz ）

EL2250C，EL2450C

125MHz Single Supply Dual／Quad Op Amps

Simplified Schematic


```
勝 特 力 材 料 886-3-5753170
胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
    Http://www. 100y. com. tw
```


Applications Information

Product Description

The EL2250C／EL2450C are part of a family of the industries fastest single supply operational amplifiers． Connected in voltage follower mode，their -3 dB band－ width is 125 MHz while maintaining a $275 \mathrm{~V} / \mu \mathrm{s}$ slew rate．With an input and output common mode range that includes ground，these amplifiers were optimized for single supply operation，but will also accept dual sup－ plies．They operate on a total supply voltage range as low as +2.7 V or up to +12 V ．This makes them ideal for +3 V applications，especially portable computers．
While many amplifiers claim to operate on a single sup－ ply，and some can sense ground at their inputs，most fail to truly drive their outputs to ground．If they do succeed in driving to ground，the amplifier often saturates，caus－ ing distortion and recovery delays．However，special circuitry built into the EL2250C／EL2450C allows the output to follow the input signal to ground without recovery delays．

Power Supply Bypassing And Printed Circuit Board Layout

As with any high－frequency device，good printed circuit board layout is necessary for optimum performance． Ground plane construction is highly recommended． Lead lengths should be as short as possible．The power supply pins must be well bypassed to reduce the risk of oscillation．The combination of a $4.7 \mu \mathrm{~F}$ tantalum capac－ itor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor has been shown to work well when placed at each supply pin．For single supply operation，where the GND pin is con－ nected to the ground plane，a single $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor across the $\mathrm{V}_{\mathrm{S}^{+}}$and GND pins will suffice．
For good AC performance，parasitic capacitance should be kept to a minimum．Ground plane construction should be used．Carbon or Metal－Film resistors are acceptable with the Metal－Film resistors giving slightly less peaking and bandwidth because of their additional series inductance．Use of sockets，particularly for the SO package should be avoided if possible．Sockets add par－ asitic inductance and capacitance which will result in some additional peaking and overshoot．

Supply Voltage Range and Single－Supply Operation

The EL2250C／EL2450C have been designed to operate with supply voltages having a span of greater than 2.7 V ， and less than 12 V ．In practical terms，this means that the EL2250C／EL2450C will operate on dual supplies rang－ ing from $\pm 1.35 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ ．With a single－supply，the EL2250C／EL2450C will operate from +2.7 V to +12 V ． Performance has been optimized for a single +5 V supply．
Pins 8 and 4 are the power supply pins on the EL2250C． The positive power supply is connected to pin 8 ．When used in single supply mode，pin 4 is connected to ground．When used in dual supply mode，the negative power supply is connected to pin 4.
Pins 4 and 11 are the power supply pins on the EL2450C．The positive power supply is connected to pin 4．When used in single supply mode，pin 11 is connected to ground．When used in dual supply mode，the negative power supply is connected to pin 11 ．
As supply voltages continue to decrease，it becomes nec－ essary to provide input and output voltage ranges that can get as close as possible to the supply voltages．The EL2250C／EL2450C have an input voltage range that includes the negative supply and extends to within 1.2 V of the positive supply．So，for example，on a single +5 V supply，the EL2250C／EL2450C have an input range which spans from 0 V to 3.8 V ．
The output range of the EL2250C／EL2450C is also quite large．It includes the negative rail，and extends to within 1 V of the top supply rail with a $1 \mathrm{k} \Omega$ load．On a +5 V sup－ ply，the output is therefore capable of swinging from 0 V to +4 V ．On split supplies，the output will swing $\pm 4 \mathrm{~V}$ ．If the load resistor is tied to the negative rail and split sup－ plies are used，the output range is extended to the negative rail．

Choice Of Feedback Resistor， $\mathbf{R}_{\mathbf{F}}$

The feedback resistor forms a pole with the input capac－ itance．As this pole becomes larger，phase margin is reduced．This increases ringing in the time domain and peaking in the frequency domain．Therefore， R_{F} has

EL2250C，EL2450C 125MHz Single Supply Dual／Quad Op Amps

some maximum value which should not be exceeded for optimum performance．If a large value of R_{F} must be used，a small capacitor in the few picofarad range in par－ allel with R_{F} can help to reduce this ringing and peaking at the expense of reducing the bandwidth．
As far as the output stage of the amplifier is concerned， $\mathrm{R}_{\mathrm{F}}+\mathrm{R}_{\mathrm{G}}$ appear in parallel with R_{L} for gains other than +1 ．As this combination gets smaller，the bandwidth falls off．Consequently， R_{F} has a minimum value that should not be exceeded for optimum performance．
For $A_{V}=+1, R_{F}=0 \Omega$ is optimum．For $A_{V}=-1$ or +2 （noise gain of 2），optimum response is obtained with R_{F} between 500Ω and $1 \mathrm{k} \Omega$ ．For $\mathrm{Av}=-4$ or +5 （noise gain of 5），keep R_{F} between $2 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ ．

Video Performance

For good video performance，an amplifier is required to maintain the same output impedance and the same fre－ quency response as DC levels are changed at the output． This can be difficult when driving a standard video load of 150Ω ，because of the change in output current with DC level．Differential Gain and Differential Phase for the EL2250C／EL2450C are specified with the black level of the output video signal set to +1.2 V ．This allows ample room for the sync pulse even in a gain of +2 con－ figuration．This results in dG and dP specifications of 0.05% and 0.05° while driving 150Ω at a gain of +2 ． Setting the black level to other values，although accept－ able，will compromise peak performance．For example， looking at the single supply dG and dP curves for $\mathrm{R}_{\mathrm{L}}=150 \Omega$ ，if the output black level clamp is reduced from 1.2 V to 0.6 V dG／dP will increase from $0.05 \% / 0.05^{\circ}$ to $0.08 \% / 0.25^{\circ}$ Note that in a gain of +2 configuration，this is the lowest black level allowed such that the sync tip doesn＇t go below 0 V ．
If your application requires that the output goes to ground，then the output stage of the EL2250C／EL2450C， like all other single supply op amps，requires an external pull down resistor tied to ground．As mentioned above， the current flowing through this resistor becomes the DC bias current for the output stage NPN transistor．As this
current approaches zero，the NPN turns off，and dG and dP will increase．This becomes more critical as the load resistor is increased in value．While driving a light load， such as $1 \mathrm{k} \Omega$ ，if the input black level is kept above 1.25 V ， dG and dP are a respectable 0.03% and 0.03° ．
For other biasing conditions see the Differential Gain and Differential Phase vs．Input Voltage curves．

Output Drive Capability

In spite of their moderately low 5 mA of supply current， the EL2250C／EL2450C are capable of providing $\pm 100 \mathrm{~mA}$ of output current into a 10Ω load，or $\pm 60 \mathrm{~mA}$ into 50Ω ．With this large output current capability，a 50Ω load can be driven to $\pm 3 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ ，making it an excellent choice for driving isolation transformers in telecommunications applications．

Driving Cables and Capacitive Loads

When used as a cable driver，double termination is always recommended for reflection－free performance． For those applications，the back－termination series resis－ tor will de－couple the EL2250C／EL2450C from the cable and allow extensive capacitive drive．However， other applications may have high capacitive loads with－ out a back－termination resistor．In these applications，a small series resistor（usually between 5Ω and 50Ω ）can be placed in series with the output to eliminate most peaking．The gain resistor $\left(\mathrm{R}_{\mathrm{G}}\right)$ can then be chosen to make up for any gain loss which may be created by this additional resistor at the output．

Video Sync Pulse Remover Application

All CMOS Analog to Digital Converters（A／Ds）have a parasitic latch－up problem when subjected to negative input voltage levels．Since the sync tip contains no use－ ful video information and it is a negative going pulse，we can chop it off．
Figure 1 shows a unity gain connected amplifier A of an EL2250C．Figure 2 shows the complete input video sig－ nal applied at the input，as well as the output signal with the negative going sync pulse removed．

EL2250C，EL2450C

125MHz Single Supply Dual／Quad Op Amps

Figure 1.

Figure 2.

Short Circuit Current Limit

The EL2250C／EL2450C have internal short circuit pro－ tection circuitry that protect it in the event of its output being shorted to either supply rail．This limit is set to around 100 mA nominally and reduces with increasing junction temperature．It is intended to handle temporary shorts．If an output is shorted indefinitely，the power dis－ sipation could easily increase such that the part will be destroyed．Maximum reliability is maintained if the out－ put current never exceeds $\pm 90 \mathrm{~mA}$ ．A heat sink may be required to keep the junction temperature below abso－ lute maximum when an output is shorted indefinitely．

Power Dissipation

With the high output drive capability of the EL2250C／EL2450C，it is possible to exceed the $150^{\circ} \mathrm{C}$ Absolute Maximum junction temperature under certain load current conditions．Therefore，it is important to cal－ culate the maximum junction temperature for the application to determine if power－supply voltages，load
conditions，or package type need to be modified for the EL2250C／EL2450C to remain in the safe operating area．
The maximum power dissipation allowed in a package is determined according to［1］：

$$
P D_{\mathrm{MAX}}=\frac{\mathrm{T}_{\mathrm{JMAX}}-\mathrm{T}_{\mathrm{AMAX}}}{\theta_{\mathrm{JA}}}
$$

where：

$$
\begin{aligned}
& \mathrm{T}_{\text {JMAX }}=\text { Maximum Junction Temperature } \\
& \mathrm{T}_{\text {AMAX }}=\text { Maximum Ambient Temperature } \\
& \theta_{\mathrm{JA}}=\text { Thermal Resistance of the Package } \\
& \text { PD }_{\mathrm{MAX}}=\text { Maximum Power Dissipation in the Package. }
\end{aligned}
$$

The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage，plus the power in the IC due to the load，or［2］

$$
\mathrm{PD}_{\mathrm{MAX}}=\mathrm{N} \times\left(\mathrm{V}_{\mathrm{s}} \times \mathrm{I}_{\mathrm{SMAX}}+\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{OUT}}\right) \times \frac{\mathrm{v}_{\mathrm{OUT}}}{\mathrm{R}_{\mathrm{L}}}\right)
$$

where：

$$
\begin{aligned}
& \mathrm{N}=\text { Number of amplifiers } \\
& \mathrm{V}_{\mathrm{S}}=\text { Total Supply Voltage } \\
& I_{\text {SMAX }} \text { = Maximum Supply Current per amplifier } \\
& \text { VOUT } ~=~ M a x i m u m ~ O u t p u t ~ V o l t a g e ~ o f ~ t h e ~ A p p l i c a t i o n ~ \\
& \mathrm{R}_{\mathrm{L}}=\text { Load Resistance tied to Ground }
\end{aligned}
$$

If we set the two $\mathrm{PD}_{\mathrm{MAX}}$ equations，［1］\＆［2］，equal to each other，and solve for V_{S} ，we can get a family of curves for various loads and output voltages according to［3］：

$$
\mathrm{V}_{\mathrm{S}}=\frac{\frac{\mathrm{R}_{\mathrm{L}} \times\left(\mathrm{T}_{\mathrm{JMAX}}-\mathrm{T}_{\mathrm{AMAX}}\right)}{\mathrm{N} \times \theta_{\mathrm{JA}}}+\left(\mathrm{V}_{\mathrm{OUT}}\right)}{\left(\mathrm{IS} \times \mathrm{R}_{\mathrm{L}}\right)+\mathrm{V}_{\mathrm{OUT}}}
$$

Figures 3 through 6 below show total single supply volt－ age V_{S} vs．R_{L} for various output voltage swings for the PDIP and SO packages．The curves assume WORST

$R_{\text {LOAD }}(\Omega)$
Figure 3.

$\mathrm{R}_{\text {LOAD }}(\Omega)$
Figure 4.

Figure 5.

EL2450CSingle Supply Voltage vs RLOAD for Various VOUT（SO Package）

$\mathrm{R}_{\text {LOAD }}(\Omega)$
Figure 6.

EL2250C／EL2450C Macromodel（one amplifier）

＊Revision A，April 1996
＊Pin numbers reflect a standard single op amp．
＊Connections：＋input
$*$
$*$
$*$
$*$
$*$

| ＊ | －input |
| :--- | :--- | :--- |
| $*$ | ＋Vsupply |

＊	\mid	－Vsupply
$*$		output

$\begin{array}{lllllll}\text { ．subckt EL2250／el } & 3 & 2 & 7 & 4 & 6\end{array}$
＊Input Stage
i1 $710250 \mu \mathrm{~A}$
i2 $711250 \mu \mathrm{~A}$
r1 10114 k
q1 12210 qp
q2 13311 qpa
r2 124100
r3 134100
＊Second Stage \＆Compensation
gm 15413124.6 m
r4 15415 Meg
c1 1540.36 pF
＊Poles
＊
e1 1741541.0
r6 1725400
c3 2541 pF
r7 2518500
c4 1841 pF
＊
＊Output Stage
i3 2041.0 mA
q3 72320 qn
q4 71819 qn
q5 71821 qn
q6 42022 qp
q7 72318 qn
d1 1920 da
r8 2162
r9 2262
r10 1821 10k
r11 723 100k
d2 2324 da
d3 244 da
d4 2318 da
＊
＊Power Supply Current
＊
ips 743.2 mA
＊
＊Models
．model qn $\mathrm{npn}(\mathrm{is}=800 \mathrm{e}-18 \mathrm{bf}=150 \mathrm{tf}=0.02 \mathrm{nS})$
．model qpa pnp（is $=810 \mathrm{e}-18 \mathrm{bf}=50 \mathrm{tf}=0.02 \mathrm{nS})$
model qp pnp（is $=800 \mathrm{e}-18 \mathrm{bf}=54 \mathrm{tf}=0.02 \mathrm{nS})$
model da $\mathrm{d}(\mathrm{tt}=0 \mathrm{nS})$
．ends

```
勝 特 力 材 料 886-3-5753170
胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
    Http://www. 100y. com. tw
```

DOStZTA＇POSZZTH
EL2250C，EL2450C 125MHz Single Supply Dual／Quad Op Amps

EL2250C／EL2450C Macromodel（one amplifier）

