勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

November 2004

FDS6680A

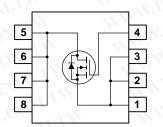
FDS6680A

FAIRCHILD SEMICONDUCTOR

WW.100Y.COM.

Single N-Channel, Logic Level, PowerTrench[®] MOSFET

General Description


This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced Power Trench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

- 12.5 A, 30 V $R_{DS(ON)} = 9.5 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 13 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Ultra-low gate charge
- + High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter	WWW	Ratings	Units	
V _{DSS}	Drain-Source Voltage		30	V	
V _{GSS}	Gate-Source Voltage		±20		
I _D	Drain Current – Continuous	(Note 1a)	12.5	А	
	– Pulsed	W	50	WW	
P _D	Power Dissipation for Single Operation	(Note 1a)	2.5	W	
	WWW 100Y.COM.TW	(Note 1b)	1.2		
	WWW. OOY.COM TW	(Note 1c)	1.0	V	
T _J , T _{STG}	Operating and Storage Junction Temperat	ure Range	-55 to +150	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	Note 1a)	50	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Ambient	(Note 1)	25	
<u> </u>	NN NT OUT	N.	ANN .	

Package Marking and Ordering Information

Device	Reel Size	Tape width	Quantity
FDS6680A	13"	12mm	2500 units
WWW.IO	0		•

©2004 Fairchild Semiconductor Corporation

Electric	cal Characteristics	胜特力电子(深圳) 86-7 Http://www.100y T ₄ = 25°C unless otherwise noted			in WT		
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Char	acteristics	CONT.		J.COL		N	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30	-100	Nr.,	V	
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	W.10	25	OW.I	mV/°C	
IDSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$	1.1	JO 2-	1	μA	
	ATW WATS	$V_{DS} = 24 V$, $V_{GS} = 0 V$, $T_J = 55^{\circ}C$		1001.	10	μA	
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	NN.	Yoo.	±100	nA	
On Char	acteristics (Note 2)	CONT.	VIA	1.700	0.01	Nr.	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	2	3	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C	111	-4.9	7.0	mV/°C	
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = 10 \; V, \qquad I_D = 12.5 \; A \\ V_{GS} = 4.5 \; V, \qquad I_D = 10.5 \; A \\ V_{GS} = 10 \; V, I_D = 12.5 \; A, \; T_J \!=\! 125^\circ \! C \end{array} $	A.	7.8 9.9 11.0	9.5 13 15	mΩ	
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	25		100	Α	
g _{FS}	Forward Transconductance	$V_{DS} = 15 \text{ V}, I_D = 12.5 \text{ A}$		64		S	
Dynamic	Characteristics	N.100 COM.			1.10		
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,	1	1620		pF	
Coss	Output Capacitance	f = 1.0 MHz		380		pF	
C _{rss}	Reverse Transfer Capacitance		41	160	NN.	pF	
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz	1	1.3		Ω	
Switching Characteristics (Note 2)							
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 15 V$, $I_D = 1 A$,		10	19	ns	
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		5	10	ns	
t _{d(off)}	Turn-Off Delay Time	WW 100Y.C	1.1	27	43	ns	
t _f	Turn–Off Fall Time	WWW. OOY.COM	VT.	15	27	ns	
Qg	Total Gate Charge	$V_{DS} = 15 V$, $I_D = 12.5 A$,		16	23	nC	
Q _{gs}	Gate–Source Charge	$V_{GS} = 5 V$	M.r	5		nC	
Q _{gd}	Gate–Drain Charge	WWW 100Y.C	- 14	5.8		nC	
Drain–Source Diode Characteristics and Maximum Ratings							
	Maximum Continuous Drain–Source Diode Forward Current					Α	
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 2.1 A$ (Note 2)	CO	0.73	2.1 1.2	V	
t _{rr}	Diode Reverse Recovery Time	$I_F = 12.5 \text{ A}, d_{iF}/d_t = 100 \text{ A}/\mu \text{s}$	100	28	1	ns	
Q _{rr}	Diode Reverse Recovery Charge	NTW WT	1.	18	NN I	nC	

WWW.100Y.COM.TW

FDS6680A

oy.com 00X.COM .100Y.COM.TV

W.100Y.

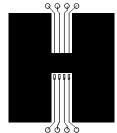
V.100Y.COM.T

NW.100Y.COM

WW.100X.COM.TW

W.100Y.C OM.TW the drain pins. $\rm R_{\theta JC}$ is guaranteed by design while $\rm R_{\theta CA}$ is determined by the user's board design.

b) 105°C/W when


mounted on a .04 in²

pad of 2 oz copper

9990

opper 0000

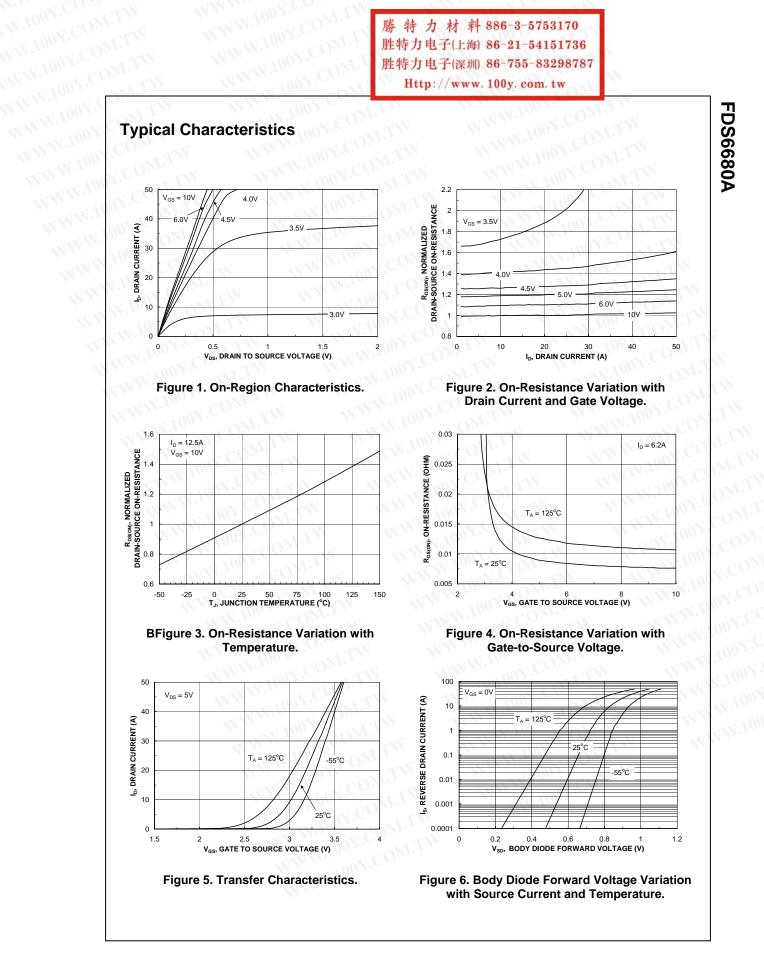
WWW.100Y.C

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

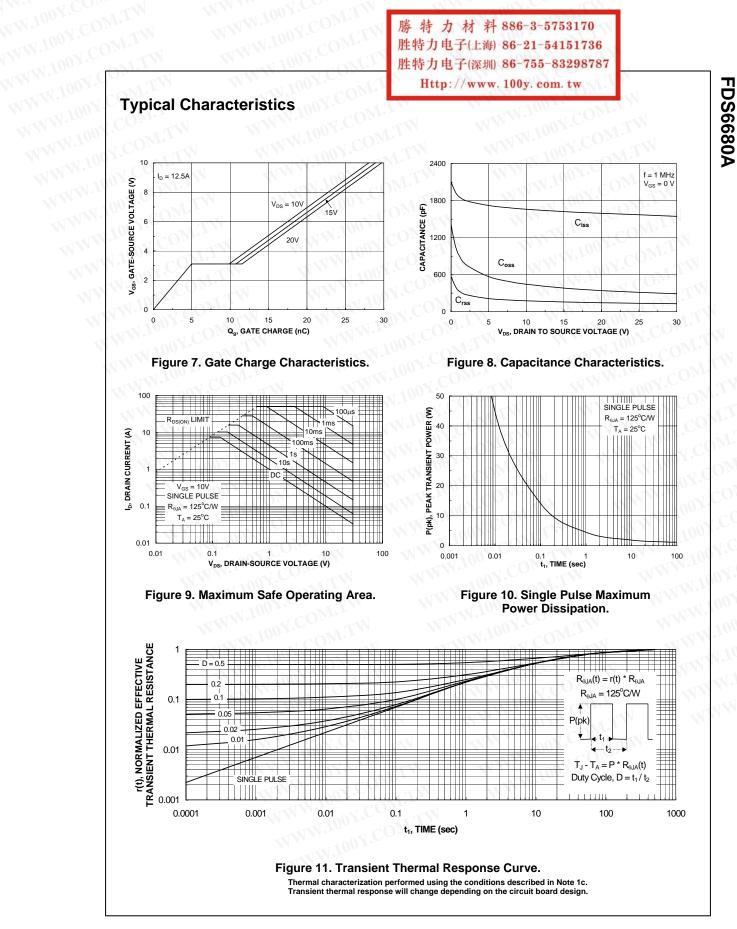
a) 50°C/W when

mounted on a 1in²

pad of 2 oz copper


FDS6680A Rev F1(W)

c) 125°C/W when mounted


on a minimum pad.

0000

0000

FDS6680A Rev F1(W)

FDS6680A Rev F1(W)

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.T TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench [®]	SuperSOT [™] -6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT [™] -8
DOME™	GTO™່	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	HiSeC™	MSX™	QT Optoelectronics [™]	TinyLogic®
E ² CMOS [™]	I ² C™	MSXPro™	Quiet Series [™]	TINYOPTO™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect [™]	OCXPro™	RapidConnect™	UHC™
FACT Quiet Serie		OPTOLOGIC [®]	μSerDes™	UltraFET®
Across the board	d. Around the world.™	OPTOPLANAR™	SILENT SWITCHER [®]	VCX™
The Power France		PACMAN™	SMART START™	
Programmable A		POP™	SPM™	
eg. a. minabion				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.	
No Identification Needed Full Production		This datasheet contains final specifications. Fairchil Semiconductor reserves the right to make changes a any time without notice in order to improve design.	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconducto The datasheet is printed for reference information onl	