

August 1993 Revised February 2005

74VHC125 **Quad Buffer with 3-STATE Outputs**

General Description

The VHC125 contains four independent non-inverting buffers with 3-STATE outputs. It is an advanced high-speed CMOS device fabricated with silicon gate CMOS technology and achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

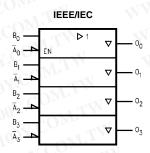
Features

- High Speed: t_{PD} = 3.8 ns (typ) at V_{CC} = 5V
- Lower power dissipation: $I_{CC} = 4 \mu A \text{ (max)}$ at $T_A = 25 \text{°C}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Power down protection is provided on all inputs
- Low noise: V_{OLP} = 0.8V (max)
- Pin and function compatible with 74HC125

Ordering Code:

Order Number	Package Number	Package Description					
74VHC125M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow					
74VHC125MX_NL (Note 1)	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow					
74VHC125SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74VHC125MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					
74VHC125MTCX_NL (Note 1)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					
74VHC125N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide					

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

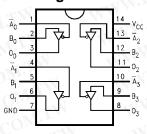

Pb-Free package per JEDED J-STD-020B.

Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Logic Symbol

M.COM.TW



Pin Descriptions

Pin Names	Description
Ā _n , B _n	Inputs
O_n	Outputs

LOON.TW **Connection Diagram**

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.CO

100Y.COM.TW

Function Table

Tab	uts	Output
Ā _n	B _n	O _n
LV.	OL	CVI L
L	H	Н
Н	X	Z

- H = HIGH Voltage Level
- W.100Y.COM. L = LOW Voltage Level
- WWW.100Y.COM.TW 7 = HIGH Impedance
- X = Immaterial

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.

WWW.100Y.COM.T Absolute Maximum Ratings(Note 2)

-0.5V to +7.0VSupply Voltage (V_{CC}) DC Input Voltage (V_{IN}) -0.5V to +7.0VDC Output Voltage (V_{OUT}) -0.5V to $V_{CC} + 0.5V$

Input Diode Current (I_{IK}) -20 mA Output Diode Current (I_{OK}) ±20 mA DC Output Current (I_{OUT}) ±25 mA ±50 mA DC V_{CC}/GND Current (I_{CC})

Storage Temperature (T_{STG}) -65°C to +150°C

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 3)

 $V_{CC} = 5.0V \pm 0.5V$

Supply Voltage (V_{CC}) 2.0V to +5.5V 0V to +5.5V Input Voltage (V_{IN}) Output Voltage (V_{OUT}) 0V to V_{CC}

Operating Temperature (T_{OPR}) -40°C to +85°C

Input Rise and Fall Time (t_r, t_f) $V_{CC} = 3.3V \pm 0.3V$ 0 ~ 100 ns/V 0 ~ 20 ns/V

Note 2: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifica-

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = 25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Symbol		(v)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level Input Voltage	2.0 3.0 – 5.5	1.50 0.7 V _{CC}	W	V	1.50 0.7 V _{CC}	100X	Cv	WILL	
V _{IL}	LOW Level Input Voltage	2.0 3.0 – 5.5	OM.	TW	0.50 0.3 V _{CC}	MAIN	0.50 0.3 V _{CC}	v	M.TV	
V _{OH}	HIGH Level Output Voltage	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4	W.100	٧	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -50 μA
	WWV	3.0 4.5	2.58 3.94	M. T	W	2.48 3.80	MMI	V	COM	$I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level Output Voltage	2.0 3.0 4.5	10Y.C	0.0 0.0 0.0	0.1 0.1 0.1	V	0.1 0.1 0.1	1v0	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 50 \mu A$
	W.	3.0 4.5	100 1.	CO_{M}	0.36 0.36		0.44 0.44	V	ov.C	$I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$
I _{OZ}	3-STATE Output Off-State Current	5.5	700	1.CO	±0.25		±2.5	μА	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND	
I _{IN}	Input Leakage Current	0 – 5.5	N.Tan	V.CC	±0.1	N	±1.0	μА	V _{IN} = 5.5V or GND	
I _{CC}	Quiescent Supply Current	5.5	W.10	10Y.C	4.0	W	40.0	μА	V _{IN} = V _{CC} or GND	

Noise Characteristics \(\bar{\pi}\)

Symbol	Parameter	V _{cc}	T _A =	25°C	Units	Conditions	
	i arameter	(V)	Тур	Limits		TAI V	Conditions
V _{OLP}	Quiet Output Maximum	5.0	0.5	0.8	V	C _L = 50 pF	-TXV 100
(Note 4)	Dynamic V _{OL}	TIN W			N.	W	
V _{OLV}	Quiet Output Minimum	5.0	-0.5	-0.8	V	C _L = 50 pF	T. WITE
(Note 4)	Dynamic V _{OL}		.005		W		
V_{IHD}	Minimum HIGH Level	5.0	1.700	3.5	V	C _L = 50 pF	-TANVIO
(Note 4)	Dynamic Input Voltage	MAN	- 100				
V _{ILD}	Maximum HIGH Level	5.0	M.r.	1.5	V	C _L = 50 pF	
(Note 4)	Dynamic Input Voltage		- 10		-1T		

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

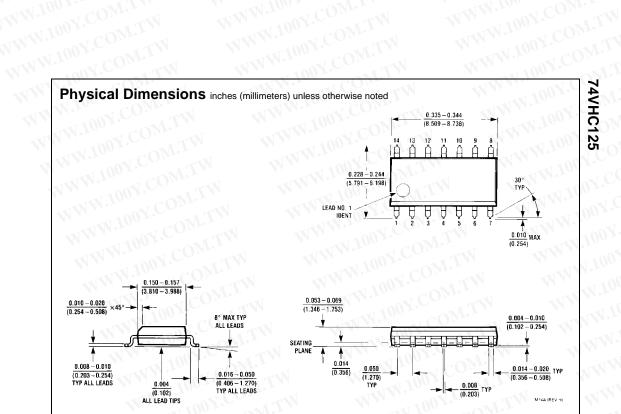
AC Electrical Characteristics

M.COM.TW

Symbol t _{PLH}	Parameter Propagation Delay	V _{CC}	$T_A = 25^{\circ}C$			T _A = −40°C	to +85°C	Units	Conditions	
		(V)	Min	Тур	Max	Min	Max	Units	Conc	aitions
		3.3 ± 0.3		5.6	8.0	1.0	9.5	-44	- TXN .	C _L = 15 pF
t _{PHL}	Time		TATAN Y	8.1	11.5	1.0	13.0	ns	M. A.	C _L = 50 pF
	Dr. OW.I.M.	5.0 ± 0.5	77	3.8	5.5	1.0	6.5	no	-111	C _L = 15 pF
	ON COM		WW	5.3	7.5	1.0	8.5	ns	MM	C _L = 50 pF
t _{PZL}	3-STATE Output	3.3 ± 0.3		5.4	8.0	1.0	9.5	ns	$R_L = 1 k\Omega$	C _L = 15 pF
t _{PZH} Enable	Enable Time	VI -	41/4	7.9	11.5	1.0	13.0		11 11	C _L = 50 pF
	· Ino Y. COM.	5.0 ± 0.5		3.6	5.1	1.0	6.0	ns	WW	C _L = 15 pF
			M	5.1	7.1	1.0	8.0			C _L = 50 pF
t _{PLZ}	3-STATE Output	3.3 ± 0.3		9.5	13.2	1.0	15.0		$R_L = 1 k\Omega$	C _L = 50 pF
t _{PHZ}	Disable Time	5.0 ± 0.5		6.1	8.8	1.0	10.0	ns		$C_L = 50 pF$
toslh	Output to Output Skew	3.3 ± 0.3		TIN I	1.5	M.Co.	1.5	V	(Note 5)	$C_L = 50 pF$
toshl	1001.	5.0 ± 0.5		4	1.0	- CC	1.0	ns		C _L = 50 pF
C _{IN}	Input Capacitance			4	10	MY.V	10	pF	V _{CC} = Open	
C _{OUT}	Output Capacitance	14.7.	. +	6		-10	$O_{\bar{M}^{p_{*}}}$	pF	V _{CC} = 5.0V	
C _{PD}	Power Dissipation Capacitance	OM.T	×1	14	WW	1001	co_{M}	pF	(Note 6)	AA A

WWW.100Y.COM.TW

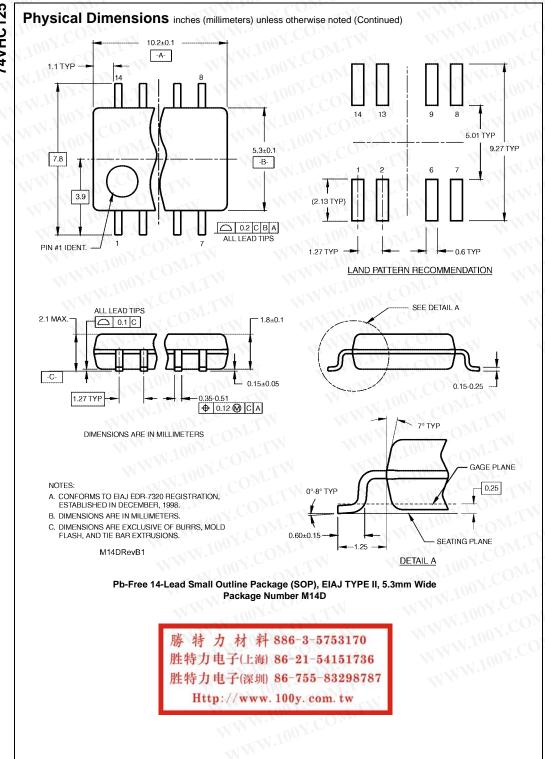
WWW.100Y.COM.TW

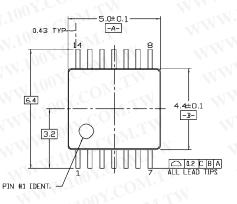

100Y.COM.TW

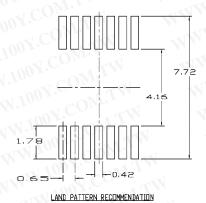
Note 5: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|$; $t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|$.

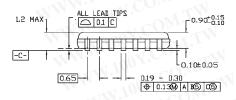
WWW.100

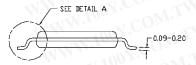
Note 6: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = $C_{PD} * V_{CC} * f_{IN} + I_{CC}/4$ (per bit). WWW.100Y.CO' WWW.100Y.COM.TW


EW.100Y.COM.TW WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw WWW.100Y.COM.TV

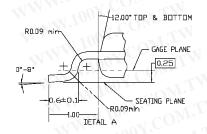

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


WWW.10



Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


NOTES:

WWW.100Y.COM.

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB-REF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH,
- AND TIE BAR EXTRUSIONS

 D. DIMENSIONING AND TOLERANCES PER ANSI
 Y14.5M, 1982

MTC14revD

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.

WWW.100Y.COM.TW

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770(18.80 - 19.56)0.090 (2.286) 14 13 12 11 10 9 8 14 13 12 INDEX AREA 0.250 ± 0.010 PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 0.030 MAX (0.762) DEPTH DIA (2.337) **OPTION 1** OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320(7.620 - 8.128)0.060 (1.524) 0.145 - 0.2004° TYP TYP (1.651) (3.683 - 5.080)OPTIONAL ¥ 95°±5° $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508) 0.125 - 0.150 0.075 ± 0.015 $\overline{(3.175 - 3.810)}$ 0.280 (1.905 ± 0.381) (7.112) MIN 0.014 - 0.0230.100 ± 0.010 TYP TYP (0.356 - 0.584)(2.540 ± 0.254) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)} \text{ TYP}$ 0.325 +0.040 -0.015

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

> 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

特力材料886-3-5753170

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

8.255 +1.016 -0.381

www.fairchildsemi.com