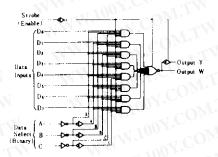

This data selector/multiplexer contains full on-chip binary decoding to select one-of-eight data sources and features a strobe-controlled 3-state output.

The strobe must be at a low logic level to enable this device. The 3-state outputs permit a number of outputs to be connected to a common bus.

When the strobe input is high, both outputs are in a highimpedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totempole outputs.


To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time.

#### **PIN ARRANGEMENT**



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

#### **■BLOCK DIAGRAM**



# **MABSOLUTE MAXIMUM RATINGS**

| Item                        | Symbol          | Ratings  | Unit |
|-----------------------------|-----------------|----------|------|
| Supply voltage              | Vcc             | 7.0      | v    |
| Input voltage               | V <sub>IN</sub> | 7.0      | v    |
| Output voltage (off-state)  | Vowff           | 5.5      | V    |
| Operating temperature range | Tope            | -20~+75  | ŗ    |
| Storage temperature range   | Tug             | -65~+150 | 00°C |

#### **EFUNCTION TABLE**

| Inputs |          |                         |        | Outputs          |                             |  |
|--------|----------|-------------------------|--------|------------------|-----------------------------|--|
| . 0    | SELECT   |                         | STROBE | v                | W                           |  |
| C      | В        | A                       | S      |                  | ATW.Y                       |  |
| ×      | ×        | ×                       | Н      | Z                | Z                           |  |
| L      | L        | L                       | L      | Do               | Do                          |  |
| L      | OL.      | Н                       | L      | Dı               | Dı                          |  |
| L      | Н        | $C(\mathbf{L}_{X_{2}})$ | L      | D <sub>2</sub>   | $\overline{D}_2$            |  |
| L      | 1 4 HU 7 | Н                       | L      | $D_3$            | D <sub>3</sub>              |  |
| Н      | L        | / L                     | L      | D <sub>4</sub>   | $\overline{D}_4$            |  |
| Н      | LOU      | Н                       | L      | Ds               | $\overline{\mathbf{D}}_{5}$ |  |
| Н      | Н        | L                       | L      | $D_6$            | $\overline{\mathrm{D}}_{6}$ |  |
| Н      | H        | Н                       | L.L    | $\mathbf{D}_{7}$ | $\overline{\mathbf{D}}_{7}$ |  |

Notes) 1. H; high level, L; low level, X; irrelevant

2. Z; high impedance (off-state)

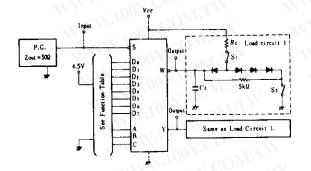
3. Do through D; the level of the respective D input.

#### **ELECTRICAL CHARACTERISTICS** ( $T_a = -20 \sim +75^{\circ}C$ )

| Item                         | Symbol     | Test Condition                                                                | min          | typ*  | max                  | Unit  |     |
|------------------------------|------------|-------------------------------------------------------------------------------|--------------|-------|----------------------|-------|-----|
|                              | VIH        | V. C.                                                                         | 41/1/        | 2.0   |                      |       | v   |
| Input voltage                | VIL        |                                                                               | -33          | √\.±° | -1 ( <del>-</del> 0) | 0.8   | V   |
|                              | Von        | $V_{CC} = 4.75V$ , $V_{IH} = 2V$ , $V_{IL} = 0.8V$ ,                          | 2.4          | 7 - " |                      | V     |     |
| Output voltage               | -XXIXV.    |                                                                               | IoL = 4mA    | ( NP3 |                      | 0.4   | v   |
|                              | Voi.       | $V_{OL}$ $V_{CC} = 4.75 \text{V}, V_{IR} = 2 \text{V}, V_{IL} = 0.8 \text{V}$ | Io L = 8m A  | _     | _                    | 0.5   |     |
| Input current                | IIн        | $V_{CC} = 5.25 \text{V},  V_I = 2.7 \text{V}$                                 | _            | _     | 20                   | μΑ    |     |
|                              | In.        | $V_{CC} = 5.25 \text{V},  V_{I} = 0.4 \text{V}$                               |              | _     | -0.4                 | mΑ    |     |
|                              | - Ii       | $V_{CC} = 5.25 \text{V}, V_I = 7 \text{V}$                                    | _            |       | 0.1                  | mА    |     |
| Output current               |            | 11100                                                                         | $V_0 = 2.7V$ | _     | _                    | 20    | μA  |
|                              | loz        | $V_{CC}=5.25$ V, $V_{IH}=2$ V                                                 | $V_0 = 0.4V$ | _     | _                    | - 20  |     |
| Short-circuit output current | los        | $V_{CC} = 5.25V$                                                              | - 30         |       | -130                 | mA    |     |
| Supply current**             |            |                                                                               | ConditionA   |       | 6.1                  | 10    | m.A |
|                              | <i>Icc</i> | $V_{CC} = 5.25 \text{V}$                                                      | ConditionB   |       | 7.1                  | 12    | ША  |
| Input clamp voltage          | Vik        | $V_{CC} = 4.75 \text{V}$ , $I_{IN} = -18 \text{mA}$                           |              | -     |                      | - 1.5 | V   |

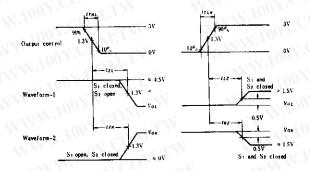
<sup>\*</sup> VCC=5V, Ta=25°C

<sup>\*\*</sup> I<sub>CC</sub> is measured with the outputs open and all data and select inputs at 4.5V under the following conditions:

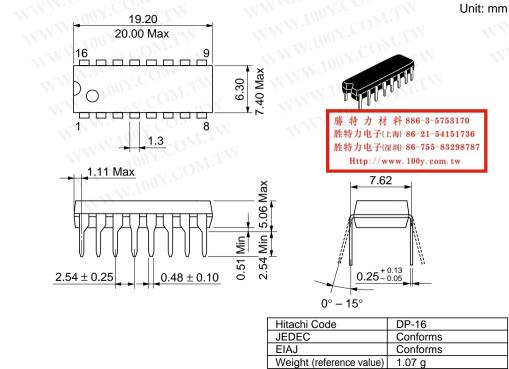

A. Strobe grounded, B. Strobe at 4.5V

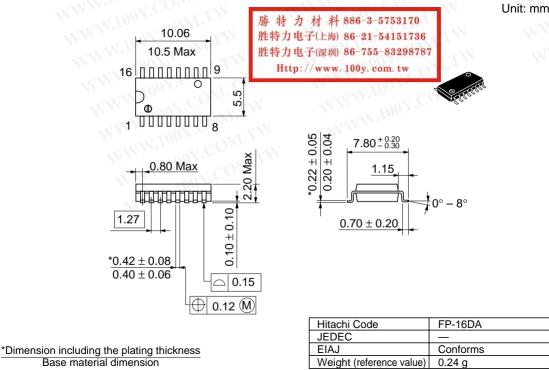
# **EXECUTE:** SWITCHING CHARACTERISTICS ( $V_{CC}=5V$ , $T_a=25^{\circ}C$ )

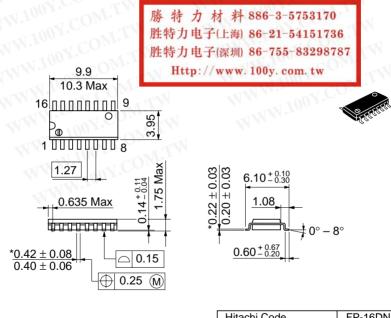
| Item                   | Inputs    | Outputs  | Symbol          | Test Conditions                                | min     | typ | max | Unit       |
|------------------------|-----------|----------|-----------------|------------------------------------------------|---------|-----|-----|------------|
| Propagation delay time | A, B, C   | 100 -    | <b>t</b> PLH    | $RL$ $LH$ $RL$ $RL = 2k \Omega$ $RL$           | -1. V   | 29  | 45  | N<br>T Ins |
|                        | (4 level) | Y        | <b>LPHL</b>     |                                                |         | 28  | 45  |            |
|                        | A, B, C   | WOY      | <b>t</b> PLH    |                                                | 11/1/11 | 20  | 33  |            |
|                        | (3 level) |          | tphi            |                                                |         | 21  | 33  |            |
|                        | 3/1/3/    | -400     | <b>t</b> PLH    |                                                | 1/17    | 17  | 28  |            |
|                        | Data      | Y        | tphl.           |                                                | 4       | 18  | 28  |            |
|                        |           | W        | tPLH            |                                                |         | 10  | 15  |            |
|                        | Data      |          | tphl.           |                                                | 7//     | 9   | 15  |            |
| Output enable time     | V <       |          | tzn             |                                                | -4/     | 30  | 45  | ns         |
|                        | Strobe    | Y        | tz <sub>L</sub> |                                                | _       | 26  | 40  |            |
|                        |           | M. T.    | tzn             |                                                | _       | 17  | 27  |            |
|                        | Strobe    | W        | İZL             |                                                | _       | 24  | 40  |            |
| Output disable time    | CONF      |          | tHZ             | COM                                            | _       | 30  | 45  | $CO_{2i}$  |
|                        | Strobe    | Y        | tız             | $C_L = 5 \text{pF}$ $R_L = 2 \text{k } \Omega$ |         | 15  | 25  | ns         |
|                        |           |          | tHZ             |                                                | N -     | 37  | 55  |            |
|                        | Strobe    | Strobe W | LLZ             |                                                | - I     | 15  | 25  |            |


## **TESTING METHOD**

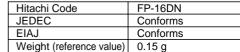
### 1) Test Circuit





勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


#### Waveform




- Notes) 1. Input pulse:  $t_{TLH} \le 15$ ns,  $t_{THL} \le 6$ ns, PRR = 1MHz, duty cycle = 50%.
  - 2. CL includes probe and jig capacitance.
  - 3. All diodes are 1S2074 (B).
  - Waveform-1 is for an output with internal conditions such that the output is low except when disabled by the output control.
  - Waveform-2 is for an output with internal conditions such that the output is high except when disabled by the output control.







| Dimension in | cluding th | he plating | thickness |
|--------------|------------|------------|-----------|
| Base         | material   | dimensio   | n         |



Unit: mm

# Cautions

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

# HITACHI