INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

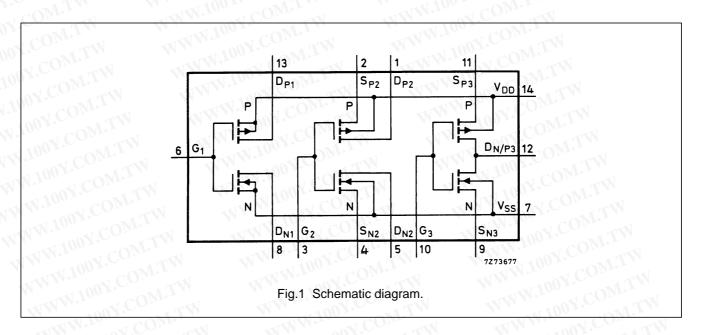
- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

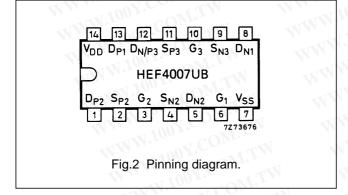
HEF4007UB gates Dual complementary pair and inverter

Product specification
File under Integrated Circuits, IC04

January 1995

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw





HEF4007UB gates

DESCRIPTION

The HEF4007UB is a dual complementary pair and an inverter with access to each device. It has three n-channel and three p-channel enhancement mode MOS transistors.

WWW. COX.CO.

(SOT27-1)

14-lead DIL; plastic

HEF4007UBD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4007UBT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

PINNING

S_{P2}, S_{P3} source connections to 2nd and 3rd

p-channel transistors

 D_{P1} , D_{P2} drain connections from the 1st and 2nd

p-channel transistors

 $D_{N1},\,D_{N2}-$ drain connections from the 1st and 2nd

n-channel transistors

n-channel transistors

D_{N/P3} common connection to the 3rd p-channel

and n-channel transistor drains

G₁ to G₃ gate connections to n-channel and

p-channel of the three transistor pairs

FAMILY DATA, IDD LIMITS category GATES

See Family Specifications for V_{IH}/V_{IL} unbuffered stages

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

HEF4007UBP(N):

HEF4007UB gates

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays	W.1003	COMIT	ī	WW	700.	COMP
$G_n \to D_N ; D_P$	5.00	T.M.T	40	80	ns	13 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	20	40	ns	9 ns + (0,23 ns/pF) C _L
	15	MY.COM	15	30	ns	7 ns + (0,16 ns/pF) C _L
COM.	5	CON	40	75	ns	13 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40	ns	9 ns + (0,23 ns/pF) C _L
	15	1.100 1. CO	15	30	ns	7 ns + (0,16 ns/pF) C _L
Output transition times	5	N 100 Y	60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15	M. TOOX.C	20	40	ns	6 ns + (0,28 ns/pF) C _L
M. Ind COM.	5	WW. FOOT	60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15	N 1 100	20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD}	TYPICAL FORMULA FOR P (μ W)	WWW.100Y.COM.TW
Dynamic power	5	4500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	20 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	50 000 $f_i + \sum (f_0 C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
	JAN		C _L = load capacitance (pF)
	OM		$\Sigma(f_0C_L)$ = sum of outputs
	$CO_{M',T}$		V _{DD} = supply voltage (V)

N.100Y.COM.TW

HEF4007UB gates

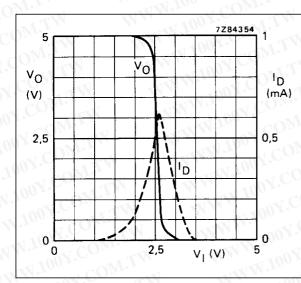
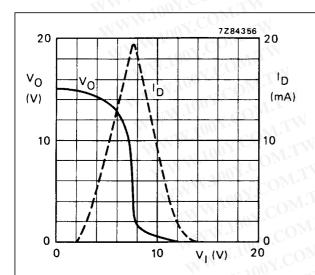
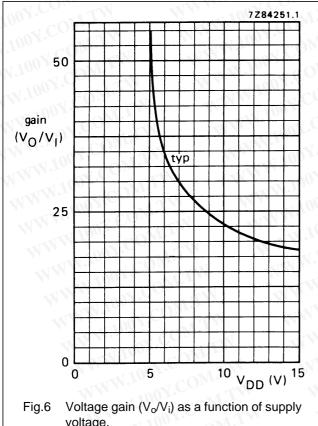



Fig.3 Typical drain current I_D and output voltage V_O as functions of input voltage; $V_{DD} = 5 \text{ V}$; $T_{amb} = 25 \text{ °C}$.

Fig.4 Typical drain current I_D and output voltage V_O as functions of input voltage; $V_{DD} = 10 \text{ V}$; $T_{amb} = 25 ^{\circ}\text{C}$.

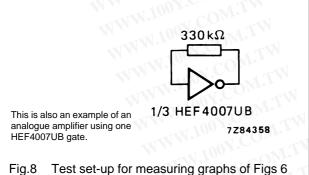
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


Fig.5 Typical drain current I_D and output voltage V_O as functions of input voltage; V_{DD} = 15 V; T_{amb} = 25 °C.

HEF4007UB gates

APPLICATION INFORMATION

Some examples of applications for the HEF4007UB are:


- · High input impedance amplifiers
- Linear amplifiers
- · (Crystal) oscillators
- · High-current sink and source drivers
- · High impedance buffers.

voltage.

Supply current as a function of supply voltage.

and 7.

HEF4007UB gates

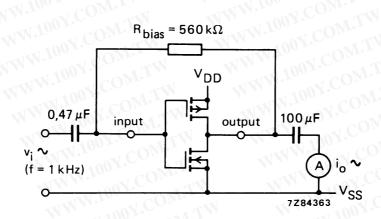
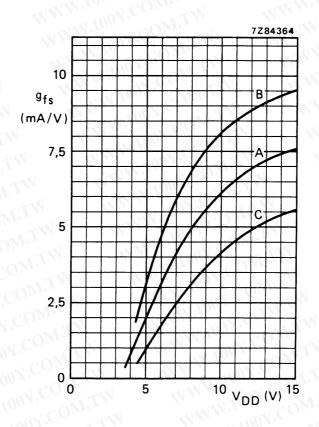
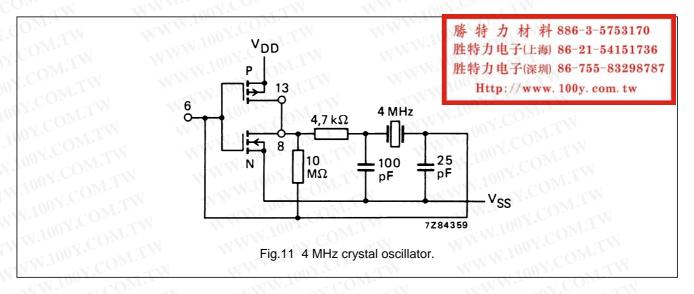
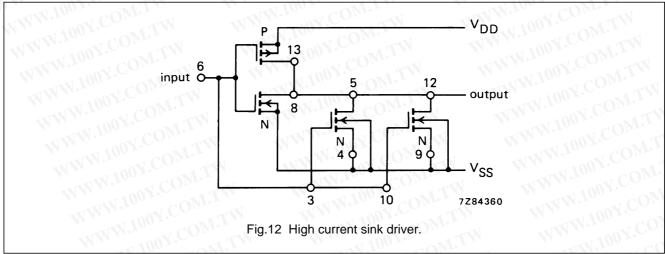
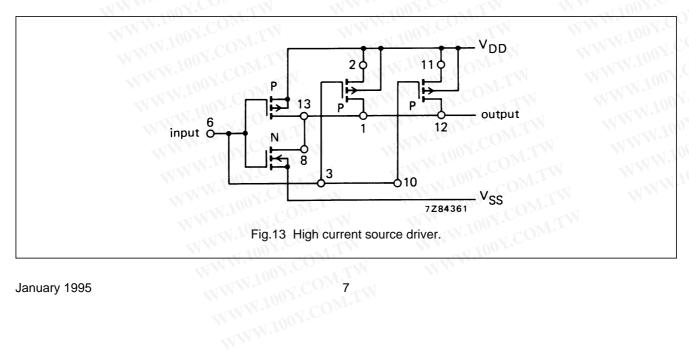



Fig.9 Test set-up for measuring forward transconductance $g_{fs} = di_0/dv_i$ at v_0 is constant (see also graph Fig.10).

- A: average,
- B: average + 2 s,
- C: average 2 s, in where 's' is the observed standard deviation.


Fig.10 Typical forward transconductance g_{fs} as a function of the supply voltage at T_{amb} = 25 °C.


Philips Semiconductors Product specification


Dual complementary pair and inverter

HEF4007UB gates

Figures 11 to 14 show some applications in which the HEF4007UB is used.

HEF4007UB gates

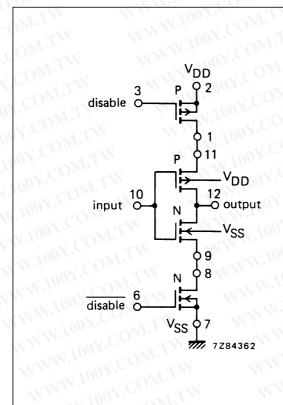


Fig.14 High impedance buffer.

FUNCTION TABLE for Fig.14.

INPUT	INPUT DISABLE	
H 100	CONLTW	L
WYL 100	Y.CO. L.TW	Н
X	V.CO'H	open

Notes

- H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)
 - X = state is immaterial

NOTE

Rules for maintaining electrical isolation between transistors and monolithic substrate:

- Pin number 14 must be maintained at the most positive (or equally positive) potential with respect to any other pin of the HEF4007UB.
- Pin number 7 must be maintained at the most negative (or equally negative) potential with respect to any other pin of the HEF4007UB.

Violation of these rules will result in improper transistor operation and/or possible permanent damage to the HEF4007UB.

WWW.100Y.CON