DATA

For a complete data sheet，please also download：
－The IC04 LOCMOS HE4000B Logic Family Specifications HEF，HEC
－The IC04 LOCMOS HE4000B Logic Package Outlines／Information HEF，HEC

HEF4060B MSI

 14－stage ripple－carry binary counter／divider and oscillatorProduct specification
File under Integrated Circuits，IC04

PHILIPS

14－stage ripple－carry binary

 counter／divider and oscillator
DESCRIPTION

The HEF4060B is a 14 －stage ripple－carry binary counter／divider and oscillator with three oscillator terminals （RS， R_{TC} and C_{TC} ），ten buffered outputs（ O_{3} to O_{9} and O_{11} to O_{13} ）and an overriding asynchronous master reset input（MR）．The oscillator configuration allows design of either RC or crystal oscillator circuits．The oscillator may
be replaced by an external clock signal at input RS．The counter advances on the negative－going transition of RS． A HIGH level on MR resets the counter（ O_{3} to O_{9} and O_{11} to $\mathrm{O}_{13}=\mathrm{LOW}$ ），independent of other input conditions．

Schmitt－trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times．

Fig． 1 Functional diagram．

PINNING

$M R$	master reset
RS	clock input／oscillator pin
R_{TC}	oscillator pin
C_{TC}	external capacitor connection
O_{3} to O_{9}	counter outputs
O_{11} to O_{13}	

HEF4060BP（N）：16－lead DIL；plastic（SOT38－1）
HEF4060BD（F）：16－lead DIL；ceramic（cerdip）（SOT74）
HEF4060BT（D）：16－lead SO；plastic（SOT109－1）
（ ）：Package Designator North America

FAMILY DATA，IDD LIMITS category MSI

See Family Specifications

勝 特 力材 料 886－3－5753170
G661 Kıenue

14－stage ripple－carry binary counter／divider

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ ；input transition times $\leq 20 \mathrm{~ns}$

	V_{DD}	SYMBOL	MIN．TYP．	MAX．		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{RS} \rightarrow \mathrm{O}_{3}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 210 \\ 80 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 420 \\ & 160 \\ & 100 \\ & \hline \end{aligned}$	ns ns ns	$\begin{array}{r} 183 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 69 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 42 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{array}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} \hline 210 \\ 80 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & \hline 420 \\ & 160 \\ & 100 \end{aligned}$	ns ns ns	$\begin{array}{r} \hline 183 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 69 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 42 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{array}$
$\mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}+1}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	25 10 6	$\begin{aligned} & 50 \\ & 20 \\ & 12 \end{aligned}$	ns ns ns	
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} 25 \\ 10 \\ 6 \end{array}$	50 20 12	ns ns ns	
$\mathrm{MR} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} \hline 100 \\ 40 \\ 30 \end{array}$	$\begin{array}{r} 200 \\ 80 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & 73 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 60 40	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {tin }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 60 40	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Minimum clock pulse width input RS HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WRSH }}$	120 60 50 25 30 15		ns ns ns	
Minimum MR pulse width；HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twmrin	50 25 30 15 20 10		ns ns ns	
Recovery time for MR	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {RMR }}$	160 80 80 40 60 30		ns ns ns	
Maximum clock pulse frequency input RS	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	4 8 10 20 15 30		$\begin{gathered} \mathrm{MHz} \\ \mathrm{MHz} \\ \mathrm{MHz} \end{gathered}$	

14－stage ripple－carry binary counter／divider and oscillator

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ ；input transition times $\leq 20 \mathrm{~ns}$

Notes

1．where：
$\mathrm{f}_{\mathrm{i}}=$ input frequency (MHz)
$\mathrm{f}_{\mathrm{o}}=$ output frequency (MHz)
C_{L}＝load capacitance（ pF ）
$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)
$\mathrm{C}_{\mathrm{t}}=$ timing capacitance (pF)
$\mathrm{f}_{\text {osc }}=$ oscillator frequency (MHz)

RC oscillator

Typical formula for oscillator frequency：

$$
\mathrm{f}_{\mathrm{osc}}=\frac{1}{2,3 \times R_{\mathrm{t}} \times \mathrm{C}_{\mathrm{t}}}
$$

Fig． 4 External component connection for RC oscillator．

14－stage ripple－carry binary counter／divider and oscillator

Timing component limitations

The oscillator frequency is mainly determined by $R_{t} C_{t}$ ，provided $R_{t} \ll R 2$ and $R 2 C 2 \ll R_{t} C_{t}$ ．The function of R2 is to minimize the influence of the forward voltage across the input protection diodes on the frequency．The stray capacitance C 2 should be kept as small as possible． In consideration of accuracy， C_{t} must be larger than the inherent stray capacitance．R_{t} must be larger than the LOCMOS＇ON＇resistance in series with it，which typically is 500Ω at $V_{D D}=5 \mathrm{~V}, 300 \Omega$ at $V_{D D}=10 \mathrm{~V}$ and 200Ω at $V_{D D}=15 \mathrm{~V}$ ．

The recommended values for these components to maintain agreement with the typical oscillation formula are：
$C_{t} \geq 100 \mathrm{pF}$ ，up to any practical value，
$10 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{t}} \leq 1 \mathrm{M} \Omega$ ．

Typical crystal oscillator circuit

In Fig．5，R2 is the power limiting resistor．For starting and maintaining oscillation a minimum transconductance is necessary．

Fig． 5 External component connection for crystal oscillator．

Fig． 6 Test set－up for measuring forward transconductance $g_{f s}=d i_{o} / d v_{i}$ at v_{o} is constant（see also graph Fig．7）； MR＝LOW．

14－stage ripple－carry binary counter／divider and oscillator

Fig． 7 Typical forward transconductance $g_{f s}$ as a function of the supply voltage at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ ．

C_{t} curve at $R_{t}=100 \mathrm{k} \Omega ; R 2=470 \mathrm{k} \Omega$ ．
R_{t} curve at $\mathrm{C}_{\mathrm{t}}=1 \mathrm{nF} ; \mathrm{R} 2=5 \mathrm{R}_{\mathrm{t}}$ ．
Fig． $8 \quad \mathrm{RC}$ oscillator frequency as a function of R_{t} and C_{t} at $V_{D D}=5$ to $15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ ．

$\ldots \mathrm{R}_{\mathrm{t}}=100 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{t}}=1 \mathrm{nF} ; \mathrm{R} 2=0$ ．
$-R_{t}=100 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{t}}=1 \mathrm{nF} ; \mathrm{R} 2=300 \mathrm{k} \Omega$ ．
Fig． 9 Oscillator frequency deviation（ $\Delta f_{\text {osc }}$ ）as a function of ambient temperature；referenced at：$f_{\text {osc }}$ at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ ．

