INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

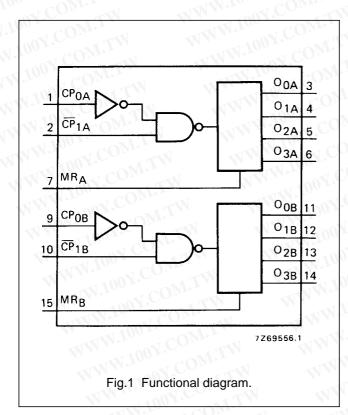
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

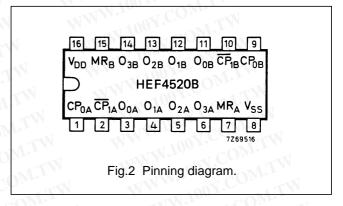
HEF4520B MSI Dual binary counter

Product specification
File under Integrated Circuits, IC04

January 1995

Dual binary counter


HEF4520B MSI


DESCRIPTION

The HEF4520B is a dual 4-bit internally synchronous binary counter. The counter has an active HIGH clock input (CP₀) and an active LOW clock input (\overline{CP}_1), buffered outputs from all four bit positions (O₀ to O₃) and an active HIGH overriding asynchronous master reset input (MR). The counter advances on either the LOW to HIGH transition of the CP₀ input if \overline{CP}_1 is HIGH or the HIGH to

LOW transition of the \overline{CP}_1 input if CP_0 is low. Either CP_0 or \overline{CP}_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on MR resets the counter (O_0 to O_3 = LOW) independent of CP_0 , \overline{CP}_1 .

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

HEF4520BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4520BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4520BT(D): 16-lead SO; plastic (SOT109-1)

(SOT109-1)

(): Package Designator North America

PINNING

 CP_{0A} , CP_{0B} clock inputs (L to H triggered) \overline{CP}_{1A} , \overline{CP}_{1B} clock inputs (H to L triggered)

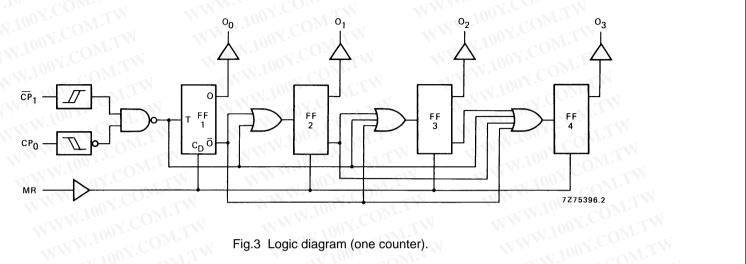
MR_A, MR_B master reset inputs

 O_{0A} to O_{3A} outputs O_{0B} to O_{3B} outputs

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications


ယ

Dual binary counter

WWW.100Y.COM.TW

WWW.100Y.COM

FUNCTION TABLE

CP ₀	CP ₁	MR	MODE
	Н	L	counter advances
L	\ \	L	counter advances
\	X	L	no change
X		L	no change
<i></i>	L	L	no change
Н	\	L	no change
X	X	Н	O_0 to $O_3 = LOW$

H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage)
 X = state

X = state is immaterial

¬ = negative-going transition

力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

> HEF4520B NSI WWW.100Y.COM.T\

Product specification

Product specification

HEF4520B MSI

Dual binary counter

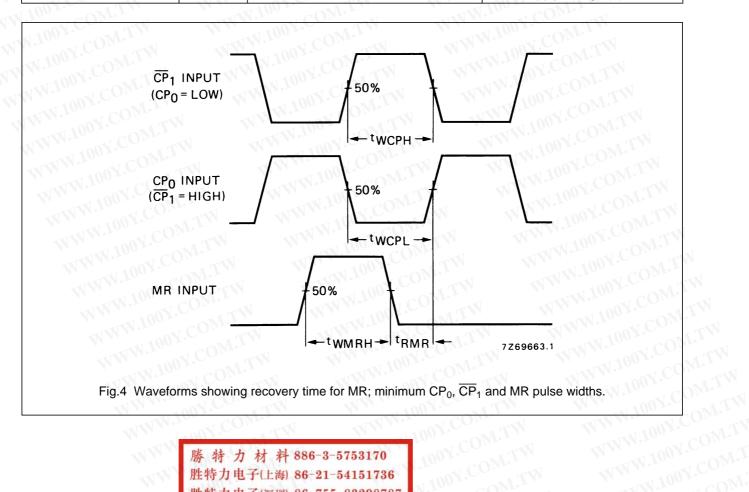
AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN. 7	ГҮР.	MAX.	V.100	TYPICAL EXTRAPOLATION FORMULA
Propagation delays	WW.10	COM	. 1		TAT W	11.100	COM.
CP_0 , $\overline{CP}_1 o O_n$	5	007.	LTW	110	220	ns	83 ns $+$ (0,55 ns/pF) C_L
HIGH to LOW	10	t _{PHL}	WIIN	50	100	ns	39 ns + (0,23 ns/pF) C _L
	15	I 100 Y.CC	VTI	40	80	ns	32 ns $+$ (0,16 ns/pF) C_L
	5	N. LOOV.C	O_{Mr}	110	220	ns	83 ns $+$ (0,55 ns/pF) C_L
LOW to HIGH	10	t _{PLH}	co_{M} .	50	100	ns	39 ns $+$ (0,23 ns/pF) C_L
	15	M.100 1.	COM.	40	80	ns	32 ns $+$ (0,16 ns/pF) C_L
$MR \to O_n$	5	1007	MOD	75	150	ns	48 ns $+$ (0,55 ns/pF) C_L
HIGH to LOW	10	t _{PHL}	Y.Co.	35	70	ns	24 ns $+$ (0,23 ns/pF) C_L
W. T. COM. TW	15	MAN.	V.Co.	25	√ 50	ns	17 ns + $(0,16 \text{ ns/pF}) C_L$
Output transition		WWW.I	CC.) Live	TW		NWW. TOOY.COM. TW
times	5	WW.	. √ C	60	120	ns	10 ns $+$ (1,0 ns/pF) C_L
HIGH to LOW	10	t _{THL}	7001.	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15	MM	100X.	20	40	ns	6 ns + (0,28 ns/pF) C _L
	TW 5	MM	- 100 Y	60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	W.70	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15	***	M. 100	20	40	ns	6 ns + (0,28 ns/pF) C _L
Minimum CP ₀	5		60	30	COM.	ns	TIMM TOO COM.
pulse width; LOW	10	t _{WCPL}	30	15		ns	
WWW.	15	1	20	10		ns	
Minimum \overline{CP}_1	5	N N	60	30	V.CO	ns	
pulse width; HIGH	10	t _{WCPH}	30	15		ns	
W 100	15	() () () () () () () () () ()	20	10		ns	
Minimum MR	5	1.11	30	15	100 2.	ns	
pulse width; HIGH	10	t _{WMRH}	20	10		ns	
MMM.	15	WILL	16	8		ns	see also waveforms
Recovery time	5		50	25	W-1-00	ns	Figs 4 and 5
for MR	10	t _{RMR}	30	15		ns	
	15	COM	20	10		ns	
Set-up times	105	TOME	50	25		ns	
$CP_0 \rightarrow \overline{CP}_1$	10	t _{su}	30	15		ns	
W.	15	Y.CO.	20	10		ns	
	5	V.COM	50	25	WW	ns	
$\overline{CP}_1 \to CP_0$	10	t _{su} CON	30	15		ns	
	15	100,3	20	10		ns	
Maximum clock	5	1007.	8	16	1	MHz	TOOX. COM. FM.
pulse frequency	10	f _{max}	15	30		MHz	
	15	-max	20	40		MHz	

WWW.100Y.CC

W.100Y.COM.TW

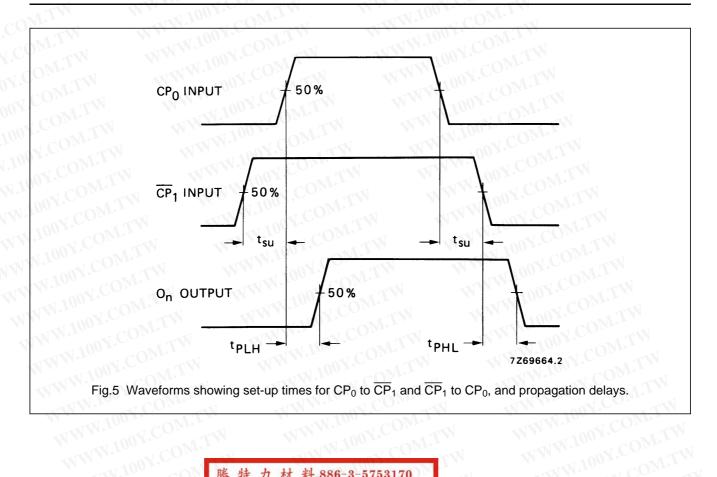

Dual binary counter

HEF4520B MSI

AC CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \,^{\circ}\text{C}$; input transition times $\leq 20 \, \text{ns}$

AC CHARACTERISTICS V _{SS} = 0 V; T _{amb} = 25 °C; input transition times ≤ 20 ns							
OM.TW W	V _{DD}	TYPICAL FORMULA FOR P (μW)	COM.TW				
Dynamic power	5	850 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where				
dissipation per	10 00	$3~800~f_i + \Sigma~(f_oC_L) \times V_{DD}^2$	f_i = input freq. (MHz)				
package (P)	15	10 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)				
	MMM.T		C _L = load capacitance (pF)				
	WWW.1		$\Sigma(f_0C_L)$ = sum of outputs				
	WWW		V _{DD} = supply voltage (V)				


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 WWW.100Y.COM.TW 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100Y.CC

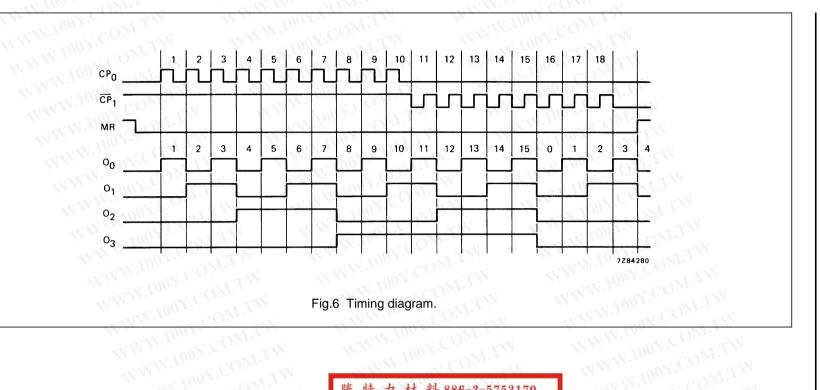
WWW.100Y.COM.TW

Dual binary counter

HEF4520B MSI

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM


7

Product specification

WWW.100Y.COM.TW

WWW.100Y.COM

WWW.100Y.CON

料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw