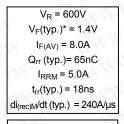
International TOR Rectifier

Bulletin PD -2.341 rev. A 11/00

HFA08TB60

HEXFRED™


Ultrafast, Soft Recovery Diode

Features

- · Ultrafast Recovery
- Ultrasoft Recovery
- Very Low I_{RRM}
- Very Low Q_{rr}
- · Specified at Operating Conditions

Benefits

- · Reduced RFI and EMI
- Reduced Power Loss in Diode and Switching Transistor
- · Higher Frequency Operation
- · Reduced Snubbing
- · Reduced Parts Count

Description

International Rectifier's HFA08TB60 is a state of the art ultra fast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 volts and 8 amps continuous current, the HFA08TB60 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the HEXFRED product line features extremely low values of peak recovery current (IRRM) and does not exhibit any tendency to "snap-off" during the th portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA08TB60 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

Absolute Maximum Ratings

*XI	Parameter	Max	Units			
V _R	Cathode-to-Anode Voltage	600	V			
I _F @ T _C = 100°C	Continuous Forward Current	8.0				
I _{FSM}	Single Pulse Forward Current	60	A			
I _{FRM}	Maximum Repetitive Forward Current	24				
P _D @ T _C = 25°C	Maximum Power Dissipation	36	w			
P _D @ T _C = 100°C	Maximum Power Dissipation	14	vv			
TJ	Operating Junction and	- 55 to +150	С			
T _{STG}	Storage Temperature Range	- 55 to +150				

^{* 125°}C

HFA08TB60

Bulletin PD-2.341 rev. A 10/00

International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

		Parameter	Min	Тур	Max	Units	Test Conditi	ons
	V _{BR}	Cathode Anode Breakdown Voltage	600	N.	\sim	V	I _R = 100μA	
	V _{FM}		10	1.4	1.7	100	I _F = 8.0A	See Fig. 1
		Max Forward Voltage		1.7	2.1	V	I _F = 16A	
		W.J.M.	- 51 1	1.4	1.7		I _F = 8.0A, T _J = 125°C	
	I _{RM}	Max Reverse Leakage Current	1140	0.3	5.0	μА	V _R = V _R Rated	See Fig. 2 V _R Rated See Fig. 3
		Wax Neverse Leakage Current	1	100	500	μΑ	$T_J = 125$ °C, $V_R = 0.8 \times V$	
	C _T	Junction Capacitance	V AA	10	25	pF	V _R = 200V	See Fig. 3
Ls	Ls	Series Inductance		8.0	OF	nH	Measured lead to lead 5r package body	nm from

Dynamic Recovery Characteristics @ T_J = 25°C (unless otherwise specified)

xxi 104	Parameter	Min	Тур	Max	Units	Test Conditions		
t _{rr}	Reverse Recovery Time	1	18		. 00	I _F = 1.0A, di _f /dt = 200	A/μs, V _R = 30V	
t _{rr1}	See Fig. 5, 6 & 16		37	55	ns	T _J = 25°C		
t _{rr2}	COM	-	55	90	- 0(T _J = 125°C	I _F = 8.0A	
I _{RRM1}	Peak Recovery Current		3.5	5.0	A	T _J = 25°C		
I _{RRM2}	See Fig. 7& 8		4.5	8.0	- A	T _J = 125°C	V _R = 200V	
Q _{rr1}	Reverse Recovery Charge See Fig. 9 & 10		65	138	nC	T _J = 25°C		
Q _{rr2}			124	360		T _J = 125°C	$di_f/dt = 200A/\mu s$	
di _{(rec)M} /dt1	Peak Rate of Fall of Recovery Current		240		A/µs	T _J = 25°C	. 7	
di _{(rec)M} /dt2	During t _b See Fig. 11 & 12		210	X1V	Α/µS	T _J = 125°C		

Thermal - Mechanical Characteristics

	Parameter	Min	Тур	Max	Units
T _{lead} ①	Lead Temperature		100	300	°C
R _{thJC}	Thermal Resistance, Junction to Case		111.10	3.5	1.0
R _{thJA} @	Thermal Resistance, Junction to Ambient		1	80	K/W
R _{thCS} ®	Thermal Resistance, Case to Heat Sink		0.5		Mr
Wt N	Weight	11	2.0		g
	Weight		0.07	00	(oz)
	Mounting Torque	6.0	ON TO	12	Kg-cm
	Wounting Torque	5.0		10	lbf•in

- ① 0.063 in. from Case (1.6mm) for 10 sec
- ② Typical Socket Mount
- 3 Mounting Surface, Flat, Smooth and Greased

International

TOR Rectifier

HFA08TB60

Bulletin PD-2.341 rev. A 10/00

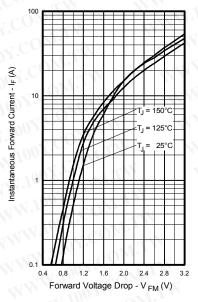


Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

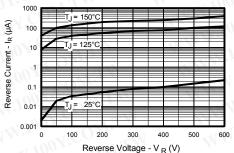
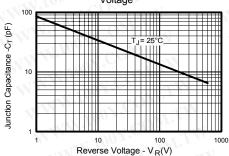



Fig. 2 - Typical Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

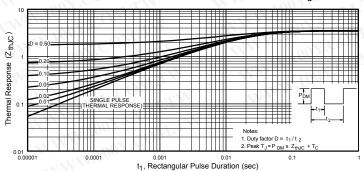


Fig. 4 - Maximum Thermal Impedance Zthic Characteristics

HFA08TB60

Bulletin PD-2.341 rev. A 10/00

International

TOR Rectifier

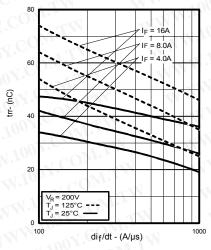


Fig. 5 - Typical Reverse Recovery vs. dif/dt

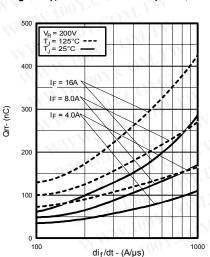


Fig. 7 - Typical Stored Charge vs. dif/dt

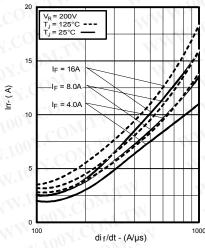


Fig. 6 - Typical Recovery Current vs. dif/dt

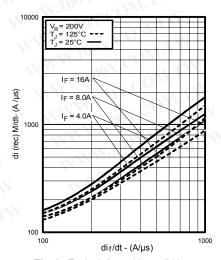
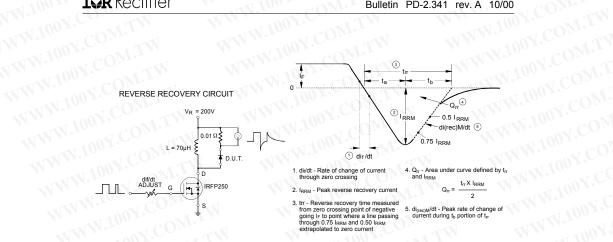



Fig. 8 - Typical di_{(rec)M}/dt vs. di_f/dt

International
Rectifier

HFA08TB60
Bulletin PD-2.341 rev. A 10/00

COM.TW

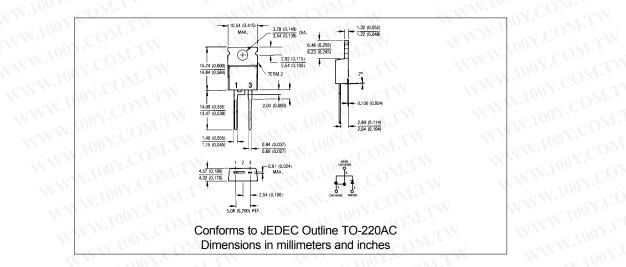

Fig. 9 - Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions

HFA08TB60

Bulletin PD-2.341 rev. A 10/00

International
TOR Rectifier

International

TOR Rectifier