24A，600V，UFS Series N－Channel IGBT with Anti－Parallel Hyperfast Diode

The HGTG12N60C3D is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors．The device has the high input impedance of a MOSFET and the low on－state conduction loss of a bipolar transistor．The much lower on－state voltage drop varies only moderately between $25^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ ．The IGBT used is the development type TA49123．The diode used in anti parallel with the IGBT is the development type TA49061．

The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential．

Formerly Developmental Type TA49117．

Ordering Information

PART NUMBER	PACKAGE	BRAND
HGTG12N60C3D	TO－247	G12N60C3D

NOTE：When ordering，use the entire part number．

Features

－24A， 600 V at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

> 勝 特 力 材 料 886-3-5753170

胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y ．com．tw
－Typical Fall Time
210 ns at $T_{J}=150^{\circ} \mathrm{C}$
－Short Circuit Rating
－Low Conduction Loss
－Hyperfast Anti－Parallel Diode

Packaging

JEDEC STYLE TO－247

Symbol

INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U．S．PATENTS

$4,364,073$	$4,417,385$	$4,430,792$	$4,443,931$	$4,466,176$	$4,516,143$	$4,532,534$	$4,587,713$
$4,598,461$	$4,605,948$	$4,620,211$	$4,631,564$	$4,639,754$	$4,639,762$	$4,641,162$	$4,644,637$
$4,682,195$	$4,684,413$	$4,694,313$	$4,717,679$	$4,743,952$	$4,783,690$	$4,794,432$	$4,801,986$
$4,803,533$	$4,809,045$	$4,809,047$	$4,810,665$	$4,823,176$	$4,837,606$	$4,860,080$	$4,883,767$
$4,888,627$	$4,890,143$	$4,901,127$	$4,904,609$	$4,933,740$	$4,963,951$	$4,969,027$	

> 勝 特 力 材 料 $886-3-5753170$胜特力电子(上海) $86-21-54151736$胜特力电子(深圳) $86^{-755-83298787}$
> Http: $/ /$ www. 100 y. com. tw

HGTG12N60C3D

600

24
12
15
96
± 20
± 30

24 A at 600 V	
104	W
0.83	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
-40 to 150	${ }^{\circ} \mathrm{C}$
260	${ }^{\circ} \mathrm{C}$
4	$\mu \mathrm{~s}$
13	$\mu \mathrm{~s}$

CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

NOTES：

1．Repetitive Rating：Pulse width limited by maximum junction temperature．
2． $\mathrm{V}_{\mathrm{CE}(\mathrm{PK})}=360 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=25 \Omega$ ．
Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ ，Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Collector to Emitter Breakdown Voltage	$\mathrm{BV}_{\text {CES }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		600	－	－	V
Emitter to Collector Breakdown Voltage	BVECS	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		15	25	－	V
Collector to Emitter Leakage Current	ICES	$\mathrm{V}_{\text {CE }}=B \mathrm{~V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	－	－	250	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CE }}=\mathrm{BV}_{\text {CES }}$	$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	－	－	2.0	mA
Collector to Emitter Saturation Voltage	$\mathrm{V}_{\text {CE（SAT }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	－	1.65	2.0	V
			$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	－	1.85	2.2	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	－	1.80	2.2	V
			$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	－	2.0	2.4	V
Gate to Emitter Threshold Voltage	$\mathrm{V}_{\mathrm{GE} \text {（TH）}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	3.0	5.0	6.0	V
Gate to Emitter Leakage Current	IGES	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$		－	－	± 100	nA
Switching SOA	SSOA	$\begin{aligned} & \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=25 \Omega, \\ & \mathrm{~L}=100 \mu \mathrm{H} \end{aligned}$	$\mathrm{V}_{\mathrm{CE}(\mathrm{PK})}=480 \mathrm{~V}$	80	－	－	A
			$\mathrm{V}_{\mathrm{CE}(\mathrm{PK})}=600 \mathrm{~V}$	24	－		A
Gate to Emitter Plateau Voltage	$\mathrm{V}_{\text {GEP }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \mathrm{~V}_{\text {CE }}=0.5 \mathrm{BV}$ CES		－	7.6	－	V
On－State Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{ON})}$	$\begin{aligned} & I_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \\ & \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{BV} \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$		48	55	nC
			$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}$	－	62	71	nC
Current Turn－On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$ ）	$\begin{aligned} & \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{CE}}=\mathrm{I}_{\mathrm{C} 110,} \\ & \mathrm{~V}_{\mathrm{CE}}(\mathrm{PK})=0.8 \mathrm{BV} \mathrm{CES}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=25 \Omega, \\ & \mathrm{~L}=100 \mu \mathrm{H} \end{aligned}$		－	14	－	ns
Current Rise Time	$\mathrm{trl}_{\mathrm{r}}$			－	16	－	ns
Current Turn－Off Delay Time	$\mathrm{t}_{\mathrm{d} \text {（OFF）}}$			－	270	400	ns
Current Fall Time	t_{fl}			－	210	275	ns
Turn－On Energy	E_{ON}			－	380	－	$\mu \mathrm{J}$
Turn－Off Energy（Note 3）	EOFF			－	900	－	$\mu \mathrm{J}$
Diode Forward Voltage	V_{EC}	${ }^{1} \mathrm{EC}=12 \mathrm{~A}$		－	1.7	2.0	V

Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Diode Reverse Recovery Time	$t_{\text {rr }}$	$\mathrm{I}_{\mathrm{EC}}=12 \mathrm{~A}, \mathrm{dl}_{\mathrm{EC}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	34	42	ns
		$\mathrm{I}_{\mathrm{EC}}=1.0 \mathrm{~A}, \mathrm{dl}_{\mathrm{EC}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	30	37	ns
Thermal Resistance	$\mathrm{R}_{\theta \mathrm{JC}}$	IGBT	-	-	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Diode	-	-	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:
3. Turn-Off Energy Loss ($\mathrm{E}_{\mathrm{OFF}}$) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse, and ending at the point where the collector current equals zero (ICE = OA). The HGTG12N60C3D was tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include diode losses.

Typical Performance Curves

FIGURE 1. TRANSFER CHARACTERISTICS

FIGURE 3. COLLECTOR TO EMITTER ON-STATE VOLTAGE

FIGURE 2. SATURATION CHARACTERISTICS

FIGURE 4. COLLECTOR TO EMITTER ON-STATE VOLTAGE

Typical Performance Curves（Continued）

FIGURE 5．MAXIMUM DC COLLECTOR CURRENT vs CASE TEMPERATURE

FIGURE 7．TURN－ON DELAY TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 9．TURN－ON RISE TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 6．SHORT CIRCUIT WITHSTAND TIME

FIGURE 8．TURN－OFF DELAY TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 10．TURN－OFF FALL TIME vs COLLECTOR TO EMITTER CURRENT

Typical Performance Curves（Continued）

FIGURE 11．TURN－ON ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

FIGURE 13．OPERATING FREQUENCY vs COLLECTOR TO EMITTER CURRENT

FIGURE 15．CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE

FIGURE 12．TURN－OFF ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

FIGURE 14．SWITCHING SAFE OPERATING AREA

FIGURE 16．GATE CHARGE WAVEFORMS

Typical Performance Curves（Continued）

FIGURE 17．IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE，JUNCTION TO CASE

FIGURE 18．DIODE FORWARD CURRENT vs FORWARD VOLTAGE DROP

Test Circuit and Waveform

FIGURE 20．INDUCTIVE SWITCHING TEST CIRCUIT

FIGURE 19．RECOVERY TIMES vs FORWARD CURRENT

FIGURE 21．SWITCHING TEST WAVEFORMS

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gate－insulation damage by the electrostatic discharge of energy through the devices．When handling these devices， care should be exercised to assure that the static charge built in the handler＇s body capacitance is not discharged through the device．With proper handling and application procedures，however，IGBTs are currently being extensively used in production by numerous equipment manufacturers in military，industrial and consumer applications，with virtually no damage problems due to electrostatic discharge．IGBTs can be handled safely if the following basic precautions are taken：

1．Prior to assembly into a circuit，all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as＂ECCOSORBDTM LD26＂or equivalent．
2．When devices are removed by hand from their carriers， the hand being used should be grounded by any suitable means，for example，with a metallic wristband．
3．Tips of soldering irons should be grounded．
4．Devices should never be inserted into or removed from circuits with power on．
5．Gate Voltage Rating－Never exceed the gate－voltage rating of $\mathrm{V}_{\mathrm{GEM}}$ ．Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region．
6．Gate Termination－The gates of these devices are essentially capacitors．Circuits that leave the gate open－ circuited or floating should be avoided．These conditions can result in turn－on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup．
7．Gate Protection－These devices do not have an internal monolithic Zener Diode from gate to emitter．If gate protection is required an external Zener is recommended．

Operating Frequency Information

Operating frequency information for a typical device（Figure 13） is presented as a guide for estimating device performance for a specific application．Other typical frequency vs collector current（lCE）plots are possible using the information shown for a typical unit in Figures 4，7，8， 11 and 12．The operating frequency plot（Figure 13）of a typical device shows $\mathrm{f}_{\mathrm{MAX}}$ or $f_{\text {MAX2 }}$ whichever is smaller at each point．The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature．
$f_{M A X 1}$ is defined by $f_{M A X 1}=0.05 /\left(t_{D(O F F) I}+t_{D(O N) I}\right)$ ． Deadtime（the denominator）has been arbitrarily held to 10\％ of the on－state time for a 50% duty factor．Other definitions are possible．$t_{D(O F F)!}$ and $t_{D(O N) I}$ are defined in Figure 21.
Device turn－off delay can establish an additional frequency limiting condition for an application other than $T_{J M} \cdot t_{D(O F F)}$ is important when controlling output ripple under a lightly loaded condition．
$f_{\text {MAX2 }}$ is defined by $f_{\text {MAX2 }}=\left(P_{D}-P_{C}\right) /\left(E_{\text {OFF }}+E_{\text {ON }}\right)$. The allowable dissipation $\left(P_{D}\right)$ is defined by $P_{D}=\left(T_{J M}-T_{C}\right) / R_{\theta J C}$ ． The sum of device switching and conduction losses must not exceed P_{D} ．A 50\％duty factor was used（Figure 13）and the conduction losses $\left(\mathrm{P}_{\mathrm{C}}\right)$ are approximated by
$P_{C}=\left(V_{C E} \times I_{C E}\right) / 2$.
E_{ON} and $\mathrm{E}_{\text {OFF }}$ are defined in the switching waveforms shown in Figure 21． E_{ON} is the integral of the instantaneous power loss（ $\mathrm{I}_{\mathrm{CE}} \times \mathrm{V}_{\mathrm{CE}}$ ）during turn－on and $\mathrm{E}_{\mathrm{OFF}}$ is the integral of the instantaneous power loss during turn－off．All tail losses are included in the calculation for $\mathrm{E}_{\mathrm{OFF}}$ ；i．e．the collector current equals zero（ $\mathrm{I}_{\mathrm{CE}}=0$ ）．

All Intersil semiconductor products are manufactured，assembled and tested under ISO9000 quality systems certification．

