

Data Sheet May 2001 File Number 3403.4

Dual, Low Power CMOS Operational Amplifiers

The ICL761X/762X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents. They are an ideal design tool when ultra low input current and low power dissipation are desired.

The basic amplifier will operate at supply voltages ranging from $\pm 1V$ to $\pm 8V$, and may be operated from a single Lithium cell. The output swing ranges to within a few millivolts of the supply voltages.

The quiescent supply current of these amplifiers is set to $100\mu A$ at the factory. This results in power consumption as low as $200\mu W$ per amplifier.

Of particular significance is the extremely low (1pA) input current, input noise current of $0.01 pA/\sqrt{Hz}$, and $10^{12}\Omega$ input impedance. These features optimize performance in very high source impedance applications.

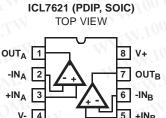
The inputs are internally protected. Outputs are fully protected against short circuits to ground or to either supply.

Because of the low power dissipation, junction temperature rise and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
ICL7621BCPA	0 to 70	8 Ld PDIP - B Grade - I _Q = 100μA	E8.3
ICL7621DCPA	0 to 70	8 Ld PDIP - D Grade - I _Q = 100μA	E8.3
ICL7621DCBA	0 to 70	8 Ld SOIC - D Grade - I _Q = 100μA	M8.15
ICL7621DCBA-T	0 to 70	8 Ld SOIC - D Grade - Tape and Reel - $I_Q = 100\mu A$	M8.15

Features


•	Wide Operating Voltage Range $\pm 1V$ to $\pm 8V$
	High Input Impedance $10^{12}\Omega$
•	Input Current Lower Than BIFETs 1pA (Typ)
•	Output Voltage SwingV+ and V-
•	Available as Duals (Refer to ICL7611 for Singles)

Low Power Replacement for Many Standard Op Amps

Applications

- Portable Instruments
- · Telephone Headsets
- · Hearing Aid/Microphone Amplifiers
- Meter Amplifiers
- Medical Instruments
- High Impedance Buffers

Pinouts

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ICL7621

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

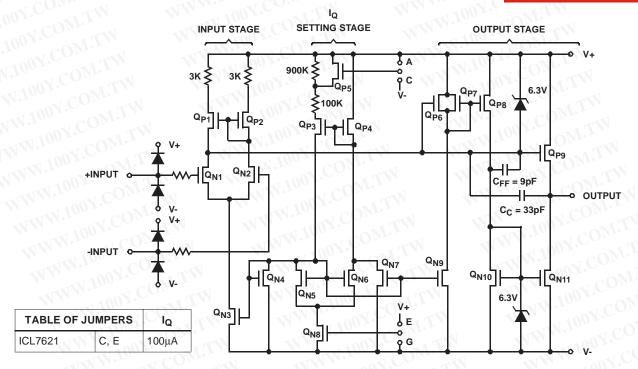
Absolute Maximum Ratings

Operating Conditions

Temperature Range	
ICL7621C	0°C to 70°C

Thermal Information

Thermal Resistance (Typical, Note 3)	θ_{JA} (oC/W)	θ_{JC} (oC/W)
PDIP Package	120	N/A
SOIC Package		N/A
Maximum Junction Temperature (Plastic F		
Maximum Storage Temperature Range	65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 1	0s)	300°C
(SOIC - Lead Tips Only)		


CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
- 2. The outputs may be shorted to ground or to either supply, for V_{SUPPLY} ≤10V. Care must be taken to insure that the dissipation rating is not exceeded.
- 3. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications	V _{SUPPLY} = :	±5V, Unless Otherwise Specified	WIL		WW	1 1	1007		117	N.
WW.100 TCON	CO CO	Mi	ICL7621B			ICL7621D			TW	
PARAMETER	SYMBOL	SYMBOL TEST CONDITIONS	TEMP. (°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	nput Offset Voltage V_{OS} $R_S \le 100$ kΩ	$R_S \le 100 k\Omega$	25	-	- V	5	N.10	O.F.	15	mV
MMM.T. CON.COM. TW	MMM. TOOX.	Full	-	- "	7	- 1	00-7	20	mV	
Temperature Coefficient of VOS	ΔV _{OS} /ΔT	$R_S \le 100 k\Omega$	COB	W-	15	-	(J.i.,	25	C	μV/ ^o C
Input Offset Current	los	TINN.IO	25	- XV	0.5	30	W-W	0.5	30	pA
WW 1007	·Mon	M. M. 100	0 to 70	1	-	300		1.70	300	рА
	A.Co.	LA MALL	-55 to 125	TW		800	1	xi.10	800	pA
Input Bias Current	I _{BIAS}	TW WWW.	25	177	1.0	50	W-W	1.0	50	рА
	T COI	I.I. MAN.	0 to 70	- 1	W-	400	17/	Mi	400	pA
	$\theta_{0,1,2}$	W.I.	-55 to 125	M.	- 1	4000	-	W-V	4000	pA
Common Mode Voltage Range	V _{CMR}	$I_Q = 100\mu A$	25	±4.2	11.	-	±4.2	-311	1.10	V
Output Voltage Swing	Vout	TO THE STATE OF TH	25	±4.9	EW	-	±4.9	N.J.	-st-1	V
VWW	To of		0 to 70	±4.8	- 707	N -	±4.8	W.W	-	V
W.	W.100 2		-55 to 125	±4.5	Mr.	αÑ	±4.5	-TX	M.	V
Large Signal	Avol	$V_{O} = \pm 4.0 V, R_{L} = 100 k\Omega$	25	80	102		80	102	- 1 T	dB
Voltage Gain	100	$I_Q = 100\mu A$	0 to 70	75	Mo	23	75	- 1	-	dB
	MM.	M. COM TW	-55 to 125	68	- 1	TV	68	- 1	Win	dB
Unity Gain Bandwidth	GBW	I _Q = 100μA	25	V700	0.48	-	N -	0.48		MHz
Input Resistance	R _{IN}	DA COM:	25	WU-3	10 ¹²	Mr.,	- XX	10 ¹²	-31	Ω
Common Mode Rejection Ratio	CMRR	$R_S \le 100 k\Omega$, $I_Q = 100 \mu A$	25	70	91	M.	70	91	- 7	dB
Power Supply Rejection Ratio (V _{SUPPLY} = ±8V to ±2V)	PSRR	$R_S \le 100 k\Omega$, $I_Q = 100 \mu A$	25	80	86	OM	80	86	-	dB
Input Referred Noise Voltage	e _N	$R_S = 100\Omega$, $f = 1kHz$	25	1.1	100	-	-	100	-	nV/√Hz
Input Referred Noise Current	i _N	$R_S = 100\Omega$, $f = 1kHz$	25	-	0.01	-	-	0.01	-	pA/√Hz
Supply Current (Per Amplifier)	I _{SUPPLY}	No Signal, No Load, I _Q = 100μA	25	-	0.1	0.25	-	0.1	0.25	mA
Channel Separation	V _{O1} /V _{O2}	A _V = 100	25	-	120	-	-	120	-	dB
Slew Rate	SR	$A_V = 1$, $C_L = 100 pF$, $V_{IN} = 8 V_{P-P}$, $I_Q = 100 \mu A$, $R_L = 100 k \Omega$	25	-	0.16	-	-	0.16	-	V/µs
Rise Time	t _R	$V_{IN} = 50 \text{mV}, C_L = 100 \text{pF}, \\ I_Q = 100 \mu A, R_L = 100 \text{k} \Omega$	25	-	2	-	-	2	-	μs
Overshoot Factor	OS	$V_{IN} = 50 \text{mV}, C_L = 100 \text{pF},$ $I_O = 100 \mu A, R_L = 100 k \Omega$	25	-	10	-	-	10	-	%

Schematic Diagram

Application Information

Static Protection

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (PNPN) structure. The 4-layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3V beyond the supply rails may be applied to any pin. In general, the op amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2mA to prevent latchup.

Choosing the Proper IQ

Each device in the ICL76XX family has a similar I_Q setup scheme, which allows the amplifier to be set to nominal quiescent currents of $10\mu A$, $100\mu A$ or 1mA. These current settings change only very slightly over the entire supply voltage range. The ICL7611/12 have an external I_Q control terminal, permitting user selection of each amplifiers' quiescent current. The ICL7621 has a fixed I_Q setting of $100\mu A$.

Output Stage and Load Driving Considerations

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the I_Q settings. This allows output swings to almost the supply rails for output loads of $1M\Omega,\,100k\Omega,\,$ and $10k\Omega,\,$ using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB for higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is nonlinear and the voltage gain decreases.

Frequency Compensation

The ICL76XX are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100pF.

Typical Applications

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction,

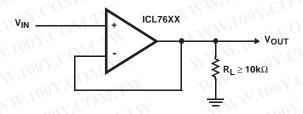
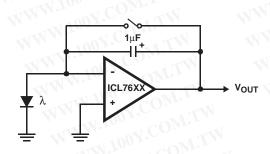



FIGURE 1. SIMPLE FOLLOWER

NOTE: Low leakage currents allow integration times up to several hours.

FIGURE 3. PHOTOCURRENT INTEGRATOR

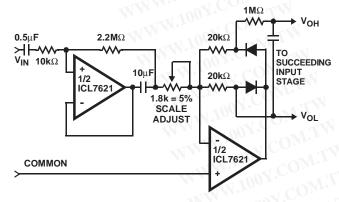


FIGURE 5. AVERAGING AC TO DC CONVERTER FOR A/D CONVERTERS SUCH AS ICL7106, ICL7107, ICL7109, ICL7116, ICL7117

board cleanliness, and supply filtering to avoid hum and noise pickup.

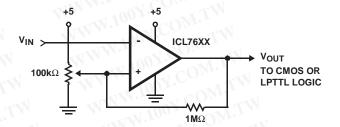
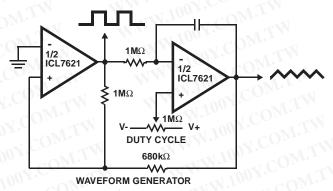



FIGURE 2. LEVEL DETECTOR

NOTE: Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations.

FIGURE 4. TRIANGLE/SQUARE WAVE GENERATOR

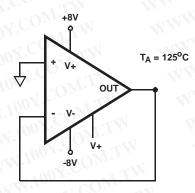
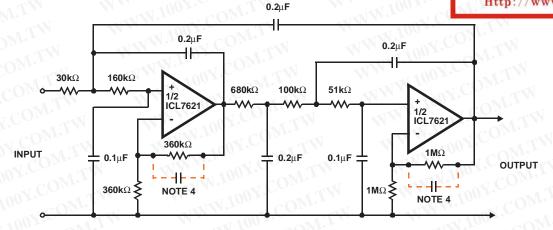



FIGURE 6. BURN-IN AND LIFE TEST CIRCUIT

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

NOTES:

- 4. Small capacitors (25 50pF) may be needed for stability in some cases.
- The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. f_C = 10Hz, AV_{CL} = 4, Passband ripple = 0.1dB.

FIGURE 7. FIFTH ORDER CHEBYCHEV MULTIPLE FEEDBACK LOW PASS FILTER

Typical Performance Curves

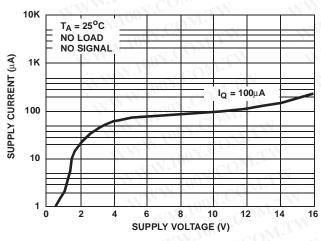


FIGURE 8. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY VOLTAGE

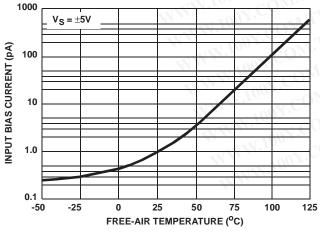


FIGURE 10. INPUT BIAS CURRENT vs TEMPERATURE

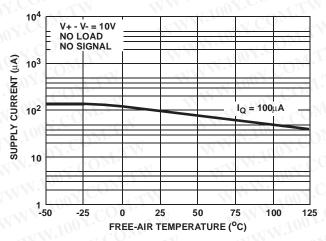


FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs FREE-AIR TEMPERATURE

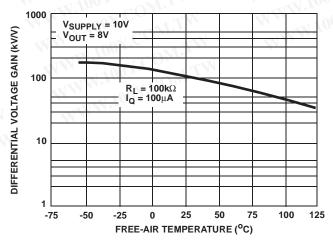


FIGURE 11. LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN VS FREE-AIR TEMPERATURE

Typical Performance Curves (Continued)

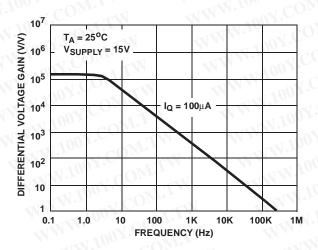


FIGURE 12. LARGE SIGNAL FREQUENCY RESPONSE

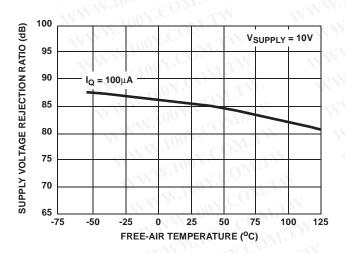


FIGURE 14. POWER SUPPLY REJECTION RATIO vs FREE-AIR TEMPERATURE

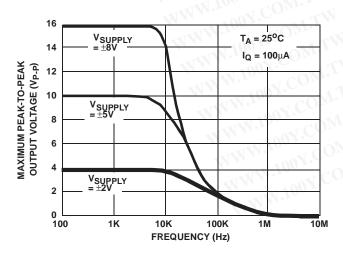


FIGURE 16. OUTPUT VOLTAGE vs FREQUENCY

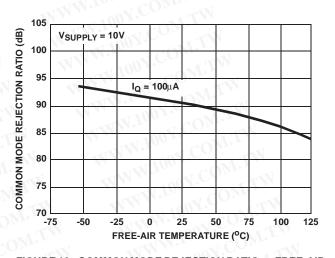


FIGURE 13. COMMON MODE REJECTION RATIO vs FREE-AIR TEMPERATURE

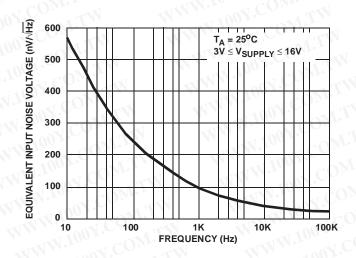


FIGURE 15. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

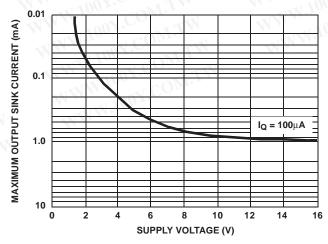
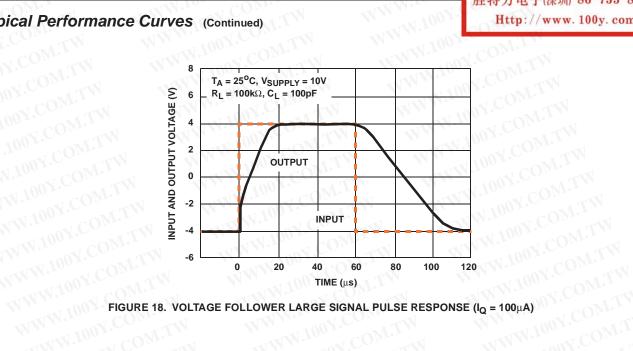


FIGURE 17. OUTPUT SINK CURRENT vs SUPPLY VOLTAGE

MNM

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

<u>w.1</u>007.COM.TW


MMM:100

WW.100V.COM.TW Typical Performance Curves (Continued) WWW.100Y.C

WWW.100Y.COM.TW

Y.COM.TW

WW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.CO WWW.100Y.COM.TW

EW.100Y.COM.TW

WW.100Y.COM:

WWW.100Y.COM.TW

WWW.100Y.COM.

WWW.100X-

<u>co</u>M.TW