勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

INA125

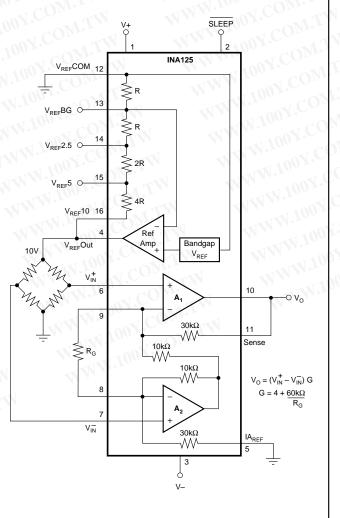
INSTRUMENTATION AMPLIFIER With Precision Voltage Reference

FEATURES

- LOW QUIESCENT CURRENT: 460μA
- PRECISION VOLTAGE REFERENCE: 1.24V, 2.5V, 5V or 10V
- SLEEP MODE
- LOW OFFSET VOLTAGE: 250µV max
- LOW OFFSET DRIFT: 2µV/°C max
- LOW INPUT BIAS CURRENT: 20nA max
- HIGH CMR: 100dB min
- LOW NOISE: 38nV/√Hz at f = 1kHz
- INPUT PROTECTION TO ±40V
- WIDE SUPPLY RANGE Single Supply: 2.7V to 36V Dual Supply: ±1.35V to ±18V
- 16-PIN DIP AND SO-16 SOIC PACKAGES

DESCRIPTION

The INA125 is a low power, high accuracy instrumentation amplifier with a precision voltage reference. It provides complete bridge excitation and precision differential-input amplification on a single integrated circuit.


A single external resistor sets any gain from 4 to 10,000. The INA125 is laser-trimmed for low offset voltage (250μ V), low offset drift (2μ V/°C), and high common-mode rejection (100dB at G = 100). It operates on single (+2.7V to +36V) or dual (±1.35V to ±18V) supplies.

The voltage reference is externally adjustable with pinselectable voltages of 2.5V, 5V, or 10V, allowing use with a variety of transducers. The reference voltage is accurate to $\pm 0.5\%$ (max) with ± 35 ppm/°C drift (max). Sleep mode allows shutdown and duty cycle operation to save power.

The INA125 is available in 16-pin plastic DIP and SO-16 surface-mount packages and is specified for the -40° C to $+85^{\circ}$ C industrial temperature range.

APPLICATIONS

- PRESSURE AND TEMPERATURE BRIDGE AMPLIFIERS
- INDUSTRIAL PROCESS CONTROL
- FACTORY AUTOMATION
- MULTI-CHANNEL DATA ACQUISITION
- BATTERY OPERATED SYSTEMS
- GENERAL PURPOSE INSTRUMENTATION

©1997 Burr-Brown Corporation

SPECIFICATIONS: $V_s = \pm 15V$

At $T_A = +25^{\circ}C$, $V_S = \pm 15V$, IA common = 0V, V_{REF} common = 0V, and $R_L = 10k\Omega$, unless otherwise noted.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

	WW LINDY.CO	INA125P, U		INA125PA, UA				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
INPUT	W 1. 1001.	M			.W.10		M.	-1
Offset Voltage, RTI	NYON WWW.	Un	N .				T.	N
Initial	100 -	-Mo	±50	±250	. NI	*	±500	μV
vs Temperature	Voc WW	COR	±0.25	±2		*	±5	μV/°C
vs Power Supply	$V_S = \pm 1.35V$ to $\pm 18V$, G = 4	AON	±3	±20	- TN	*	±50	μV/V
Long-Term Stability	WWW.		±0.2			*		μV/mo
Impedance, Differential	N 100		10 ¹¹ 2			*	CON	Ω pF
Common-Mode	WWW.	1.00	10 ¹¹ 9			*		Ω pF
Safe Input Voltage	10		· - ·	±40		N.100	*	V
Input Voltage Range	V _{CM} = -10.7V to +10.2V	N.C.	See Text		NN	*	NY.	WT .
Common-Mode Rejection	$V_{CM} = -10.7V \text{ to } +10.2V$ G = 4	78	84		72	*		dB
	G = 4 G = 10	86	94		80	*	NY.C	dВ
	G = 100	100	114		90	*		dB
	G = 500	100	114		90	*	1001.0	dB
BIAS CURRENT	$V_{CM} = 0V$		10	25		*	50	nA
vs Temperature	V _{CM} = 0V		±60	25	1	*	50	pA/°C
Offset Current	· · · · · · · · · · · · · · · · · · ·	N.IVV	±0.5	±2.5		*	±5	nA
vs Temperature	WW WT	100	±0.5	<u></u> .		*	- Ť	pA/°C
NOISE, RTI	P 00	W.LUU	-0.0	N			N	Prv U
Voltage Noise, f = 10Hz	$R_{S} = 0\Omega$	1	40			*	1100	nV/√Hz
f = 100Hz	M.	NW.L	38		≪ 1	*	W.L	nV/√Hz
f = 1kHz	W WT		38		N.N.	*	10	nV/√Hz
f = 0.1Hz to 10Hz	ONL	WIN.	0.8			*	NN.	μVp-p
Current Noise, f = 10Hz	V WT		170			*	1	fA/√Hz
f = 1 kHz	CONT	WAR	56			*	NN.	fA/√Hz
f = 0.1Hz to $10Hz$	TTW .	N	5		TY	*		pAp-p
GAIN	CONTRACT		1	CON			N WIN	- AN
Gain Equation	WT I	AN	$4 + 60 k\Omega/R_{G}$		A.1. Y.	*		V/V
Range of Gain	CONT.	4	S S	10,000	*		*	V/V
Gain Error	$V_0 = -14V$ to +13.3V		104	1				x1.100
	G = 4		±0.01	±0.075		*	±0.1	%
	G = 10		±0.03	±0.3	M.L	*	±0.5	%
	G = 100		±0.05	±0.5	Un-	*	±1	%
	G = 500		±0.1		-M.	*		%
Gain vs Temperature	CONTRACTION IN	-				IV		
	G = 4 $G > 4^{(1)}$		±1	±15	- M	*	*	ppm/°C
Nanlinanity			±25	±100	COF	*	*	ppm/°C
Nonlinearity	$V_0 = -14V$ to +13.3V G = 4		±0.0004	±0.002		*	±0.004	% of FS
	G = 4 G = 10		±0.0004 ±0.0004	±0.002 ±0.002	V.CO.	*	±0.004 ±0.004	% of FS
	G = 10 G = 100		±0.0004 ±0.001	±0.002		*	±0.004 *	% of FS
	G = 500	N	±0.002	20.01	N.CO	*		% of FS
OUTPUT	TALLOU LONI			.W.L		N.	a 1	
Voltage: Positive	N TO AND A T	(V+)-1.7	(V+)-0.9		*	*		V
Negative	-W.100 - COM.	(V–)+1	(V-)+0.4		*	*		V.
Load Capacitance Stability	W The and the		1000		.001.	*		pF
Short-Circuit Current	W.100 COM		-9/+12		100	*		mA
VOLTAGE REFERENCE	V _{REF} = +2.5V, +5V, +10V	NT N		N	11001		TN	N
Accuracy	$I_{L} = 0$	1.1	±0.15	±0.5	1.10	*	±1	%
vs Temperature	$I_1 = 0$	NT N	±18	±35	-100	*	±100	ppm/°C
vs Power Supply, V+	$V + = (V_{REF} + 1.25V)$ to +36V	Nr	±20	±50	N.10	*	±100	ppm/V
vs Load	$I_{L} = 0$ to 5mA	1	3	75	-110	*	*	ppm/mA
	Ref Load = $2k\Omega$	1.25	1		*	*	TATE	V
Dropout Voltage, (V+) – V _{REF} ⁽²⁾	WWW LOOY.C	11	1.24		10	*		V
Dropout Voltage, (V+) – V _{REF} ⁽²⁾ Bandgap Voltage Reference			±0.5		XIN.1	*		%
	$I_{L} = 0$ $I_{L} = 0$					*		ppm/°C

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS: $V_S = \pm 15V$ (cont)

At $T_A = +25^{\circ}C$, $V_S = \pm 15V$, IA common = 0V, V_{REF} common = 0V, and $R_L = 10k\Omega$, unless otherwise noted.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

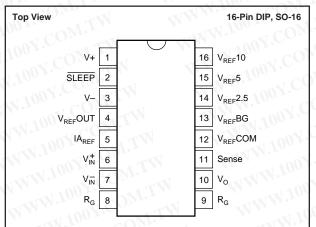
With the second	N. COM		INA125P, U			INA125PA, UA			
PARAMETER CONDITIONS	W.100 1. COM. 1		ТҮР	MAX	MIN	ТҮР	MAX	UNITS	
FREQUENCY RESPONSE	1001.	N.4	1		10 1	M.F			
Bandwidth, –3dB	G = 4		150		J.V	*	N	kHz	
V NT	G = 10		45		00	*		kHz	
	G = 100		4.5	NNN.		*	N .	kHz	
	G = 500	3.1	0.9		100 .	*		kHz	
Slew Rate	G = 4, 10V Step	- T	0.2	AT WY		*	W.	V/µs	
Settling Time, 0.01%	G = 4, 10V Step	AT Y	60		sī 100 ^y	*		μs	
	G = 10, 10V Step		83	- ALAN		*	W.	μs	
	G = 100, 10V Step	AL Y	375		AN 10 0	*	1.1	μs	
	G = 500, 10V Step) TATE	1700	VII.		*	AV.	μs	
Overload Recovery	50% Overdrive	ALT	5			*	M	μs	
POWER SUPPLY	TANN ST C	UN	N/		N	N.C.			
Specified Operating Voltage	N 1001.	. An	±15			*	M.L	V	
Specified Voltage Range	WWW.	±1.35	N.	±18	*	N.V.	*	V V	
Quiescent Current, Positive	$I_0 = I_{REF} = 0mA$	Mo	460	525	A.	*	*	μA	
Negative	$I_0 = I_{REF} = 0 mA$	COM	-280	-325	N WW	*	*	μA	
Reference Ground Current ⁽³⁾	N 1 100 1		180			*	Mos	μA	
Sleep Current (V _{SLEEP} ≤ 100mV)	$R_L = 10k\Omega$, Ref Load = $2k\Omega$	of COP	±1	±25	ANN Y	*	*	μA	
SLEEP MODE PIN ⁽⁴⁾	N 100		N			N.100	100	1.1	
V _{IH} (Logic high input voltage)	N WWW.	+2.7		V+	*		*	V	
V _{IL} (Logic low input voltage)	10	0	M.L	+0.1	*	N.10	*	v	
IIH (Logic high input current)	NIN WIN	J.C	15	N		*	N.CO	μA	
IIL (Logic low input current)		00 r.	0			*		μΑ	
Wake-up Time ⁽⁵⁾	WWW.		150	N/	N	*	N.V.	μs	
TEMPERATURE RANGE		100 -	-01.			N.	100	OVICE	
Specification Range	WWW W	-40		+85	*		*	°C	
Operation Range		-55		+125	*		*	− °C	
Storage Range	WW W	-55	1.COM	+125	*	NVV V	*	°C	
Thermal Resistance, θ_{JA}		sti 100	0	1.1			N.100	CON	
16-Pin DIP	WWW WWW	N	80	I'm N		*	1.00	°C/W	
SO-16 Surface-Mount		10	100	M. 1		*	N.100	°C/W	

* Specification same as INA125P, U.

NOTES: (1) Temperature coefficient of the "Internal Resistor" in the gain equation. Does not include TCR of gain-setting resistor, R_G . (2) Dropout voltage is the positive supply voltage minus the reference voltage that produces a 1% decrease in reference voltage. (3) V_{REF} COM pin. (4) Voltage measured with respect to Reference Common. Logic low input selects Sleep mode. (5) IA and Reference, see Typical Performance Curves.

SPECIFICATIONS: V_S = +5V

At $T_A = +25^{\circ}$ C, $V_S = +5$ V, IA common at $V_S/2$, V_{REF} common = $V_S/2$, $V_{CM} = V_S/2$, and $R_L = 10k\Omega$ to $V_S/2$, unless otherwise noted.


I.WW.IU	COMPT	INA125P, U			INA125PA, UA			IN.
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	МАХ	UNITS
INPUT	WT . U.Y.			1001.		CN .	N	1
Offset Voltage, RTI	Too		NIN.		CONT			WW.
Initial	TW. CONTRACT		±75	±500		*	±750	μV
vs Temperature	1.10° CONT		±0.25		7 CON	*		μV/°C
vs Power Supply	$V_{\rm S} = +2.7V$ to $+36V$		3	20	1.0	*	50	μV/V
Input Voltage Range	N. W. COM.	c1	See Text			*		
Common-Mode Rejection	$V_{CM} = +1.1V$ to +3.6V					NT.Y		
	G = 4 G = 10	78	84 94		72 80	*		dB dB
	G = 10 G = 100		94 114		90	*		dB dB
	G = 100 G = 500	100	114		90	*		dB
GAIN	N.100 COM							
Gain Error	$V_{O} = +0.3V$ to +3.8V G = 4	WT.	±0.01			*		%
OUTPUT	ANN W. CO.							
Voltage, Positive	100 ·	(V+)-1.2	(V+)-0.8		*	*		V
Negative	WW	(V–)+0.3	(V–)+0.15		*	*		V
POWER SUPPLY								
Specified Operating Voltage			+5			*		V
Operating Voltage Range		+2.7		+36	*		*	V
Quiescent Current	$I_0 = I_{REF} = 0mA$		460	525		*	*	μΑ
Sleep Current ($V_{SLEEP} \le 100 \text{mV}$)	$R_L = 10k\Omega$, Ref Load = $2k\Omega$		±1	±25		*	*	μΑ

* Specification same as INA125P, U.

3

PIN CONFIGURATION

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

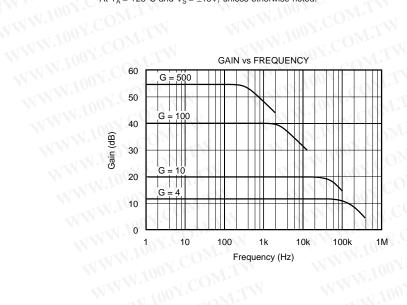
ABSOLUTE MAXIMUM RATINGS⁽¹⁾

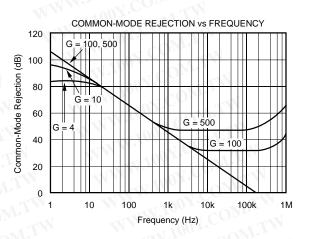
±40V
Continuous
55°C to +125°C
55°C to +125°C
+300°C

NOTE: Stresses above these ratings may cause permanent damage.

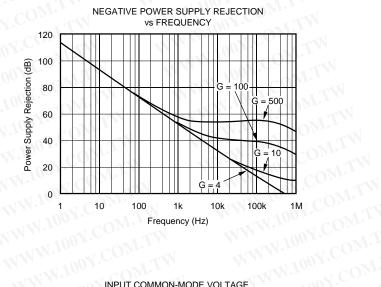
PACKAGE INFORMATION

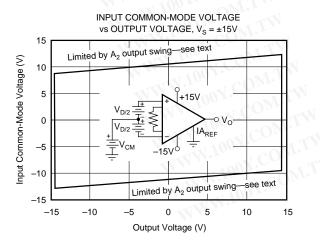
PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾				
INA125PA	16-Pin Plastic DIP	180				
INA125P	16-Pin Plastic DIP	180				
INA125UA	SO-16 Surface-Mount	265				
INA125U	SO-16 Surface-Mount	265				

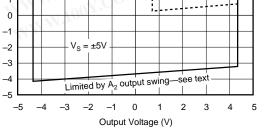

NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.


勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TYPICAL PERFORMANCE CURVES


At T_A = +25°C and V_S = ±15V, unless otherwise noted.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



WWW.100Y.COM POSITIVE POWER SUPPLY REJECTION vs FREQUENCY 140 120 (g B G = 500 Power Supply Rejection 100 G = 100 ∡ | | | . 80 G 60 G 10 40 20 100k 10 100 10k 1M 1 1k Frequency (Hz)

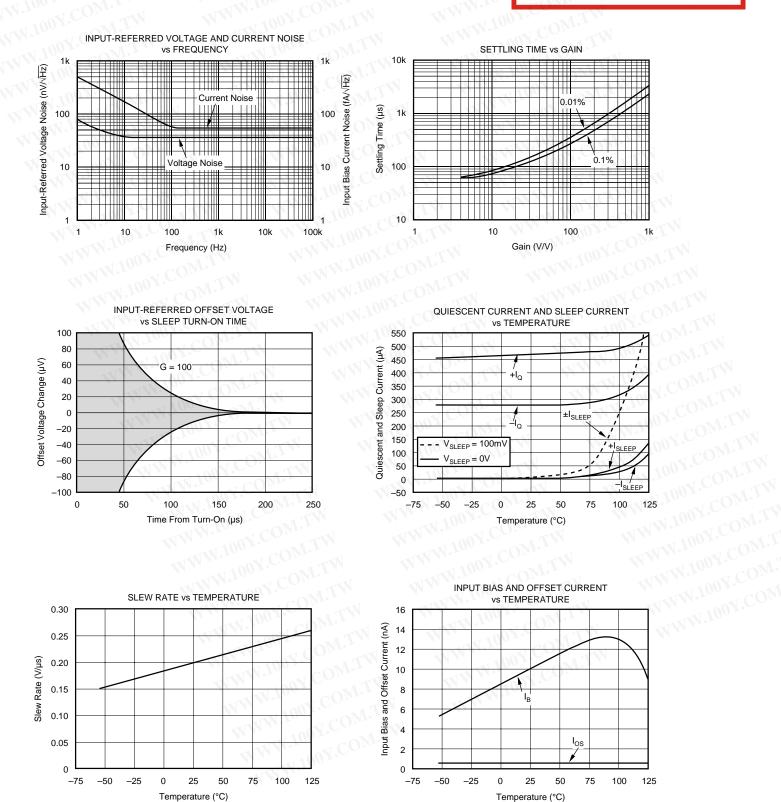
INPUT COMMON-MODE VOLTAGE vs OUTPUT VOLTAGE, V_S = \pm 5V IA_{REF} = 0V Limited by A₂ output swing—see text V_S = \pm 5V

5

4

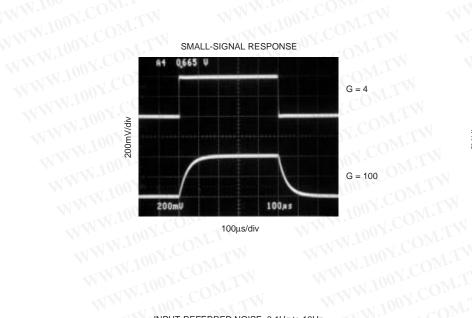
3

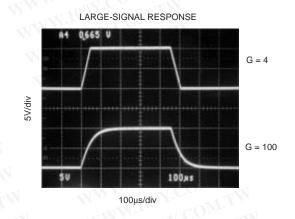
2

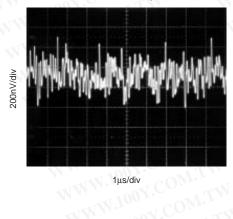

1

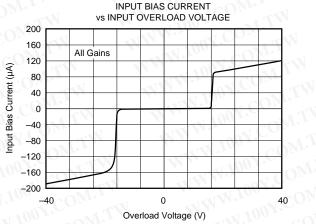
Input Common-Mode Voltage (V)

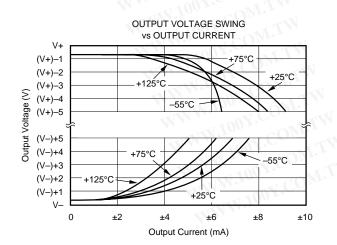
At T_A = +25°C and V_S = ±15V, unless otherwise noted.

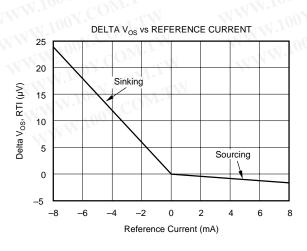

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787


Http://www. 100y. com. tw

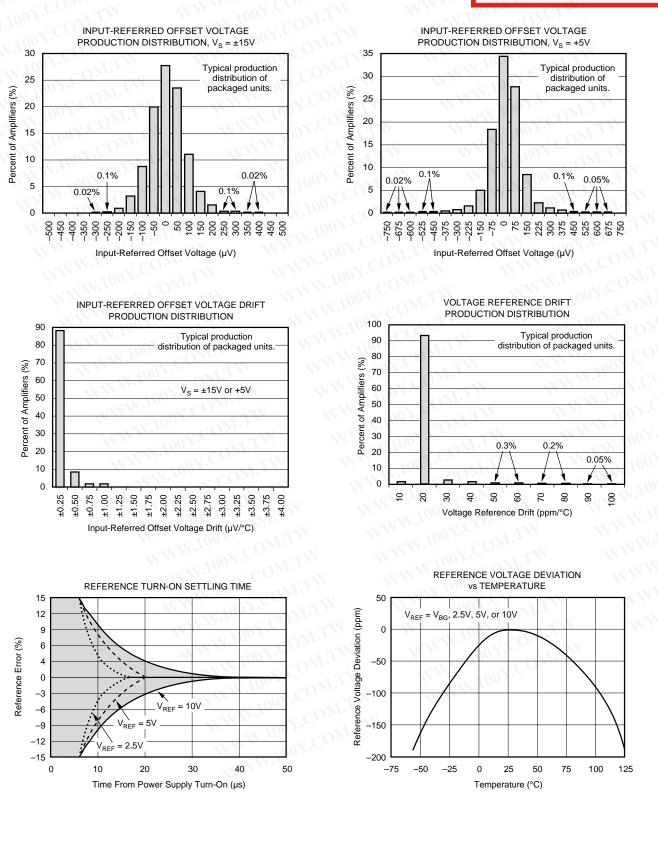

At T_A = +25°C and V_S = ±15V, unless otherwise noted.

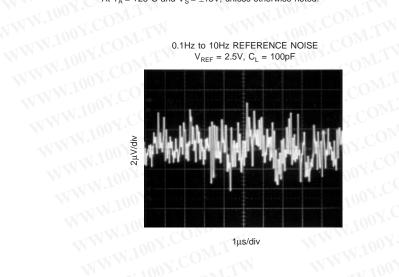

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

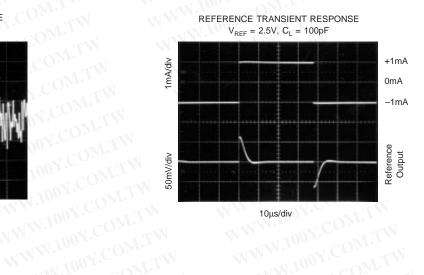


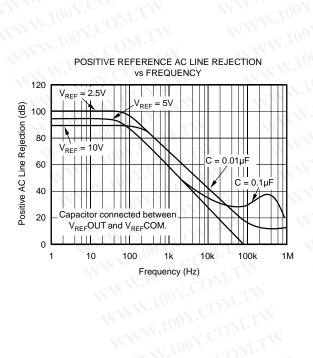


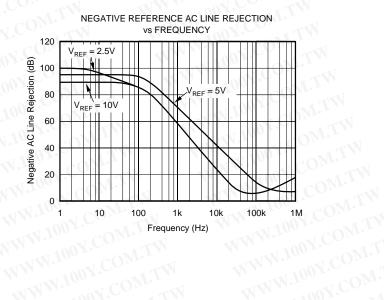
INPUT-REFERRED NOISE, 0.1Hz to 10Hz




At $T_A = +25^{\circ}C$ and $V_S = \pm 15V$, unless otherwise noted.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw




At $T_A = +25^{\circ}C$ and $V_S = \pm 15V$, unless otherwise noted.

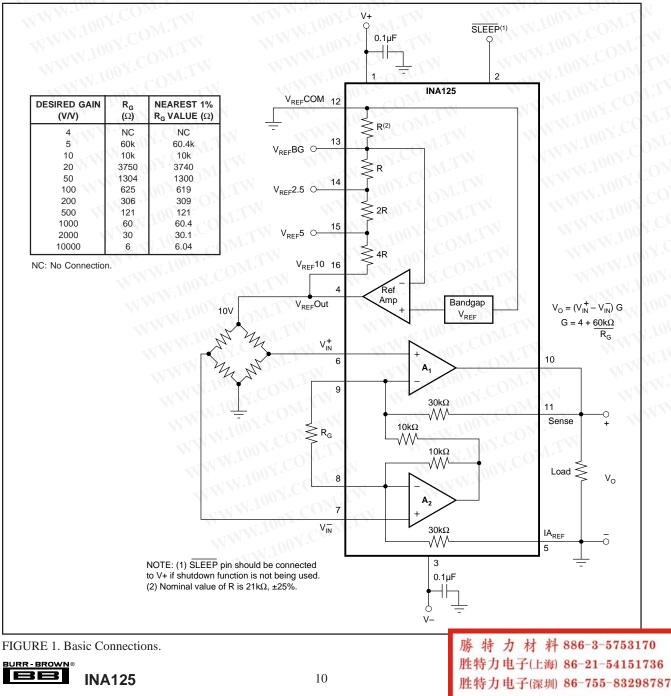
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA125. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the instrumentation amplifier reference (IA_{REF}) terminal which is normally grounded. This must be a low impedance connection to assure good common-mode rejection. A resistance of 12 Ω in series with the IA_{REF} pin will cause a typical device to degrade to approximately 80dB CMR (G = 4).

Connecting V_{REF} OUT (pin 4) to one of the four available reference voltage pins (V_{REF} BG, V_{REF} 2.5, V_{REF} 5, or V_{REF} 10) provides an accurate voltage source for bridge applications.


For example, in Figure 1 $V_{REF}OUT$ is connected to $V_{REF}10$ thus supplying 10V to the bridge. It is recommended that $V_{REF}OUT$ be connected to one of the reference voltage pins even when the reference is not being utilized to avoid saturating the reference amplifier. Driving the SLEEP pin LOW puts the INA125 in a shutdown mode.

SETTING THE GAIN

Gain of the INA125 is set by connecting a single external resistor, R_G , between pins 8 and 9:

$$G = 4 + \frac{60k\Omega}{R_G}$$
(1)

Commonly used gains and R_G resistor values are shown in Figure 1.

Http://www. 100y. com. tw

The $60k\Omega$ term in equation 1 comes from the internal metal film resistors which are laser trimmed to accurate absolute values. The accuracy and temperature coefficient of these resistors are included in the gain accuracy and drift specifications of the INA125.

The stability and temperature drift of the external gain setting resistor, R_G , also affects gain. R_G 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance, which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

OFFSET TRIMMING

The INA125 is laser trimmed for low offset voltage and offset voltage drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to the IA_{REF} terminal is added to the output signal. The op amp buffer is used to provide low impedance at the IA_{REF} terminal to preserve good common-mode rejection.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN

The input impedance of the INA125 is extremely high approximately $10^{11}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current flows out of the device and is approximately 10nA. High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the commonmode range, and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high frequency common-mode rejection.

INPUT COMMON-MODE RANGE

The input common-mode range of the INA125 is shown in the typical performance curves. The common-mode range is limited on the negative side by the output voltage swing of A_2 , an internal circuit node that cannot be measured on an external pin. The output voltage of A2 can be expressed as:

$$V_{02} = 1.3V_{IN}^{-} - (V_{IN}^{+} - V_{IN}^{-}) (10k\Omega/R_{G})$$

(voltages referred to IA_{REF} terminal, pin 5)

The internal op amp A_2 is identical to A_1 . Its output swing is limited to approximately 0.8V from the positive supply and 0.25V from the negative supply. When the input common-mode range is exceeded (A_2 's output is saturated), A_1 can still be in linear operation, responding to changes in the non-inverting input voltage. The output voltage, however, will be invalid.

PRECISION VOLTAGE REFERENCE

The on-board precision voltage reference provides an accurate voltage source for bridge and other transducer applications or ratiometric conversion with analog-to-digital converters. A reference output of 2.5V, 5V or 10V is available by connecting V_{REF}OUT (pin 4) to one of the V_{REF} pins (V_{REF}2.5, V_{REF}5, or V_{REF}10). Reference voltages are laser-trimmed for low initial error and low temperature drift. Connecting V_{REF}OUT to V_{REF}BG (pin 13) produces the bandgap reference voltage (1.24V ±0.5%) at the reference output.

Positive supply voltage must be 1.25V above the desired reference voltage. For example, with V+ = 2.7V, only the 1.24V reference ($V_{REF}BG$) can be used. If using dual supplies $V_{REF}COM$ can be connected to V-, increasing the

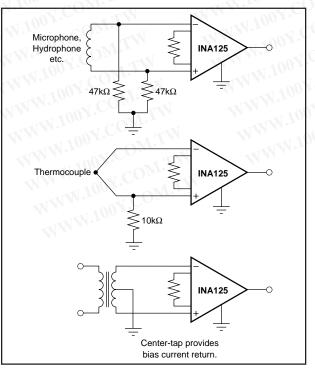


FIGURE 3. Providing an Input Common-Mode Current Path.

amount of supply voltage headroom available to the reference. Approximately 180 μ A flows out of the V_{REF}COM terminal, therefore, it is recommended that it be connected through a low impedance path to sensor common to avoid possible ground loop problems.

Reference noise is proportional to the reference voltage selected. With $V_{REF} = 2.5V$, 0.1Hz to 10Hz peak-to-peak noise is approximately 9µVp-p. Noise increases to 36µVp-p for the 10V reference. Output drive capability of the voltage reference is improved by connecting a transistor as shown in Figure 4. The external transistor also serves to remove power from the INA125.

Internal resistors that set the voltage reference output are ratio-trimmed for accurate output voltages ($\pm 0.5\%$ max). The absolute resistance values, however, may vary $\pm 25\%$. Adjustment of the reference output voltage with an external resistor is not recommended because the required resistor value is uncertain.

FIGURE 4. Reference Current Boost.

SHUTDOWN

The INA125 has a shutdown option. When the SLEEP pin is LOW (100mV or less), the supply current drops to approximately 1µA and output impedance becomes approximately 80k Ω . Best performance is achieved with CMOS logic. To maintain low sleep current at high temperatures, V_{SLEEP} should be as close to 0V as possible. This should not be a problem if using CMOS logic unless the CMOS gate is driving other currents. Refer to the typical performance curve, "Sleep Current vs Temperature." A transition region exists when V_{SLEEP} is between 400mV and 2.7V (with respect to $V_{REF}COM$) where the output is unpredictable. Operation in this region is not recommended. The INA125 achieves high accuracy quickly following wakeup ($V_{SLEEP} \ge 2.7V$). See the typical performance curve "Input-Referred Offset Voltage vs Sleep <u>Turn-on Time.</u>" If shutdown is not being used, connect the <u>SLEEP</u> pin to V+.

LOW VOLTAGE OPERATION

The INA125 can be operated on power supplies as low as ± 1.35 V. Performance remains excellent with power supplies ranging from ± 1.35 V to ± 18 V. Most parameters vary only slightly throughout this supply voltage range—see typical performance curves. Operation at very low supply voltage requires careful attention to ensure that the common-mode voltage remains within its linear range. See "Input Common-Mode Voltage Range." As previously mentioned, when using the on-board reference with low supply voltages, it may be necessary to connect V_{REF}COM to V– to ensure V_S – V_{REF} ≥ 1.25 V.

SINGLE SUPPLY OPERATION

The INA125 can be used on single power supplies of +2.7V to +36V. Figure 5 shows a basic single supply circuit. The IA_{REF}, V_{REF}COM, and V– terminals are connected to ground. Zero differential input voltage will demand an output voltage of 0V (ground). When the load is referred to ground as shown, actual output voltage swing is limited to approximately 150mV above ground. The typical performance curve "Output Voltage Swing vs Output Current" shows how the output swing varies with output current.

With single supply operation, careful attention should be paid to input common-mode range, output voltage swing of both op amps, and the voltage applied to the IA_{REF} terminal. V_{IN+} and V_{IN-} must both be 1V above ground for linear operation. You cannot, for instance, connect the inverting input to ground and measure a voltage connected to the non-inverting input.

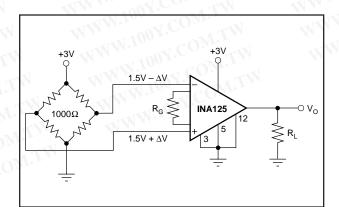


FIGURE 5. Single Supply Bridge Amplifier.

INPUT PROTECTION

The inputs of the INA125 are individually protected for voltage up to ± 40 V. For example, a condition of -40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute

excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value of approximately $120\mu A$ to $190\mu A$. The typical performance curve "Input Bias Current vs Input Overload Voltage" shows this input current limit behavior. The inputs are protected even if the power supplies are disconnected or turned off.

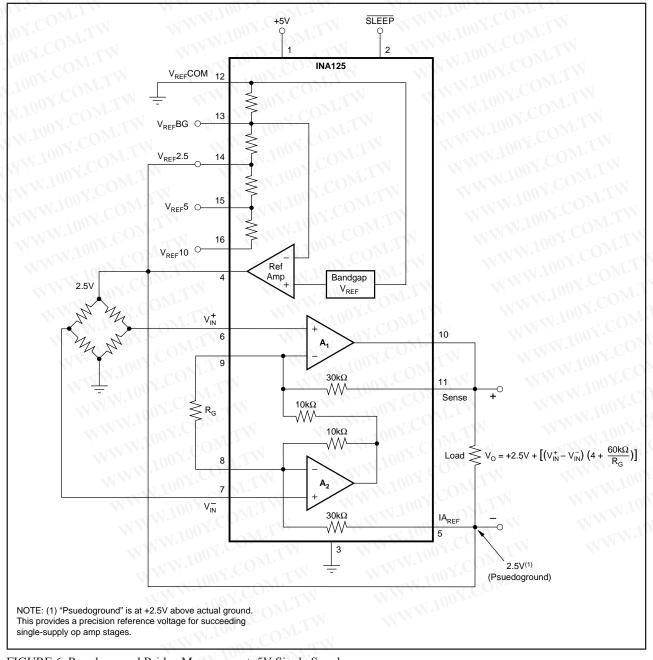


FIGURE 6. Psuedoground Bridge Measurement, 5V Single Supply.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

