P8748H／P8749H
 8048AH／8035AHL／8049AH／8039AHL／8050AH／8040AHL HMOS SINGLE－COMPONENT 8－BIT MICROCONTROLLER

－High Performance HMOS II
－Interval Time／Event Counter
－Two Single Level Interrupts
－Single 5－Volt Supply

－Programmable ROMs Using 21V
 －Easily Expandable Memory and I／O
 －Up to $1.36 \mu \mathrm{~s}$ Instruction Cycle All Instructions 1 or 2 Cycles

－Over 96 Instructions；90\％Single Byte
The Intel MCS ${ }^{0}-48$ family are totally self－sufficient，8－bit parallel computers fabricated on single silicon chips using Intel＇s advanced N －channel silicon gate HMOS process．
The family contains 27 I／O lines，an B－bit timer／counter，and on－board oscillator／clock circuits．For systems that require extra capability，the family can be expanded using MCS ${ }^{\oplus}-80 /$ MCS ${ }^{\oplus}-85$ peripherals．
These microcontrollers are available in both masked ROM and ROMless versions as well as a new version， The Programmable ROM．The Programmable ROM provides the user with the capability of a masked ROM while providing the flexibility of a device that can be programmed at the time of requirement and to the desired data．Programmable ROM＇s allow the user to lower inventory levels while at the same time decreasing delay times and code risks．

These microcomputers are designed to be efficient controllers as well as arithmetic processors．They have extensive bit handling capability as well as facilities for both binary and BCD arithmetic．Efficient use of tions over 2 bytes in length．

Device	Internal	Memory	RAM STANDBY
8050 AH	$4 \mathrm{~K} \times 8 \mathrm{ROM}$	$256 \times 8 \mathrm{RAM}$	yes
8049 AH	$2 \mathrm{~K} \times 8 \mathrm{ROM}$	$128 \times 8 \mathrm{RAM}$	yes
8048 AH	$1 \mathrm{~K} \times 8 \mathrm{ROM}$	$64 \times 8 \mathrm{RAM}$	yes
8040 AHL	None	$256 \times 8 \mathrm{RAM}$	yes
8039 AHL	None	$128 \times 8 \mathrm{RAM}$	yes
8035 AHL	None	$64 \times 8 \mathrm{RAM}$	yes
P8749H	$2 \mathrm{~K} \times 8$ Programmable ROM	$128 \times 8 \mathrm{RAM}$	no
P8748H	$1 \mathrm{~K} \times 8$ Programmable ROM	$64 \times 8 \mathrm{RAM}$	no

Figure 1．Block Diagram

270053－2
Figure 2．Logic Symbol

August 1989

Order Number：270053－003

勝特力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y．com．tw

270053－3

Figure 3．Pin Configuration

Figure 4．Pad Configuration

Table 1．Pin Description

Symbol	$\begin{aligned} & \hline \text { Pln } \\ & \text { No. } \end{aligned}$	Function	Device
$V_{S S}$	20	Circuit GND potential．	All
$V_{D D}$	26	+5 V during normal operation．	All
		勝 特 力 材 料 886－3－5753170 胜特力电子（上海）86－21－54151736 胜特力电子（深圳）86－755－83298787 Http：／／www．100y．com．tw	8048AH 8035AHL 8049AH 8039AHL 8050AH 8040AHL
		Programming power supply（ +21 V ）．	$\begin{aligned} & \mathrm{P} 8748 \mathrm{H} \\ & \mathrm{P} 8749 \mathrm{H} \\ & \hline \end{aligned}$
$V_{C C}$	40	Main power supply；+5 V during operation and programming．	All
PROG	25	Output strobe for $8243 \mathrm{I} / \mathrm{O}$ expander．	All
		Program pulse（ +18 V ）input pin During Programming．	$\begin{aligned} & \mathrm{P8748H} \\ & \mathrm{P} 8749 \mathrm{H} \end{aligned}$
$\begin{aligned} & \text { P10-P17 } \\ & \text { Port } 1 \end{aligned}$	27－34	8－bit quasi－bidirectional port．	All
$\begin{aligned} & \text { P20-P23 } \\ & \text { P24-P27 } \\ & \text { Port } 2 \end{aligned}$	$\begin{aligned} & 21-24 \\ & 35-38 \end{aligned}$	8－bit quasi－bidirectional port．P20－P23 contain the four high order program counter bits during an external program memory fetch and serve as a 4－bit l／O expander bus for 8243.	All
$\begin{aligned} & \text { DBO-DB7 } \\ & \text { BUS } \end{aligned}$	12－19	True bidirectional port which can be written or read synchronously using the $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ strobes．The port can also be statically latched． Contains the 8 low order program counter bits during an external program memory fetch，and receives the addressed instruction under the control of $\overline{\text { PSENN }}$ ．Also contains the address and data during an external RAM data store instruction，under control of ALE，$\overline{\text { RD }}$ ，and WR．	All
T0	1	Input pin testable using the conditional transfer instruction JTO and JNTO．TO can be designated as a clock output using ENTO CLK instruction．	All
		Used during programming．	$\begin{aligned} & \hline \mathrm{P} 8748 \mathrm{H} \\ & \text { P8749H } \end{aligned}$

Table 1．Pin Description（Continued）

Symbol	Pin No．	Function	Device
T1	39	Input pin testable using the JT1，and JNT1 instructions．Can be designated the timer／counter input using the STRT CNT instruction．	All
INT	6	Interrupt input．Initiates an interrupt if interrupt is enabled．Interrupt is disabled after a reset．Also testable with conditional jump instruction． （Active low）interrupt must remain low for at least 3 machine cycles for proper operation．	All
$\overline{\mathrm{RD}}$	8	Output strobe activated during a BUS read．Can be used to enable data onto the bus from an external device． Used as a read strobe to external data memory．（Active low）	All
$\overline{\mathrm{RESET}}$	4	Input which is used to initialize the processor．（Active low）（Non TTL V_{IH} ）	All
		Used during power down． 勝 特 力材 料 886－3－5753170 胜特力电子（上海）86－21－54151736 胜特力电子（深圳）86－755－83298787 Http：／／www． 100 y ．com．tw	B048AH 8035AHL 8049AH 8039AHL 8050AH 8040AHL
		Used during programming．	$\begin{aligned} & \hline \mathrm{PB748H} \\ & \mathrm{P} 8749 \mathrm{H} \end{aligned}$
		Used during ROM verification．	$\begin{aligned} & \text { 8048AH } \\ & \text { P8748H } \\ & 8049 A H \\ & \text { P8749H } \\ & 8050 A H \end{aligned}$
WR	10	Output strobe during a bus write．（Active low） Used as write strobe to external data memory．	All
ALE	11	Address latch enable．This signal occurs once during each cycle and is useful as a clock output． The negative edge of ALE strobes address into external data and program memory．	All
PSEN	9	Program store enable．This output occurs only during a fetch to external program memory．（Active low）	All
SS	5	Single step input can be used in conjunction with ALE to＂single step＂ the processor through each instruction．	All
		（Active low）Used in sync mode．	8048AH 8035AHL 8049AH 8039AHL 8050AH 8040AHL
EA	7	External access input which forces all program memory fetches to reference external memory．Useful for emulation and debug．（Active high）	All
		Used during（18V）programming．	$\begin{aligned} & \mathrm{P8748H} \\ & \mathrm{P} 8749 \mathrm{H} \end{aligned}$
		Used during ROM verification（12V）．	8048AH 8049AH 8050AH
XTAL1	2	One side of crystal input for internal oscillator．Also input for external source．（Non TTL $V_{1 H}$ ）	All
XTAL2	3	Other side of crystal input．	All

Table 2．Instruction Set

Accumulator			
Mnemonic	Description	Bytes	ycles
ADD A， R	Add register to A	1	1
ADD A，＠R	Add data memory to A	1	1
ADD A，\＃data	Add immediate to A	2	2
ADDC A，R	Add register with carry	1	1
ADDC A，＠R	Add data memory with carry	1	1
ADDC A．\＃data	Add immediate with carry	2	2
ANL A，R	And register to A	1	1
ANLA，＠R	And data memory to A	1	1
ANL A，\＃data	And immediate to A	2	2
ORL A，R	Or register to A	1	1
ORL A，＠R	Or data memory to A	1	1
ORL A，\＃data	Or immediate to A	2	2
XRL A， F	Exclusive or register to A	1	1
XRL A，＠R	Exclusive or data memory to A	1	1
XRL A，\＃data	Exclusive or immediate to A	2	2
INC A	Increment A	1	1
DEC A	Decrement A	1	1
CLRA	Clear A	1	1
CPLA	Complement A	1	1
DA A	Decimal adjust A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1

勝 特 力材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www． 100 y ．com．tw

Input／Output			
Mnemonic	Description	Byt	ycles
IN A，P	Input port to A	1	2
OUTL P，A	Output A to port	1	2
ANL P，\＃data	And immediate to port	2	2
ORL P，\＃data	Or immediate to port	2	2
INS A，BUS	Input BUS to A	1	2
OUTL BUS，A	Output A to BUS	1	2
ANL BUS，\＃data	And immediate to BUS	2	2
ORL BUS，\＃data	Or immediate to BUS	2	2
MOVD A，P	Input expander port to A	1	2
MOVD P，A	Output A to expander port	1	2
ANLD P，A	And A to expander port	1	2
ORLD P，A	Or A to expander port	1	2

Registers			
Mnemonic		Description	Bytes
Cycles			
INC R	Increment register	1	1
INC＠R	Increment data memory	1	1
DEC R	Decrement register	1	1

Branch			
Mnemonic	Description	Bytes	Cycles
JMP addr	Jump unconditional	2	2
JMPP＠A	Jump indirect	1	2
DJNZ R，addr	Decrement register and skip	2	2
JC addr	Jump on carry $=1$	2	2
JNC addr	Jump on carry $=0$		2
JZ addr	Jump on A zero	2	2
JNZ addr	Jump on A not zero	2	2
JT0 addr	Jump on T0 $=1$	2	2
JNTO addr	Jump on T0 $=0$	2	2
JT1 addr	Jump on $\mathrm{T} 1=1$	2	2
JNT1 addr	Jump on T1 $=0$	2	2
JF0 addr	Jump on F0 $=1$	2	2
JF1 addr	Jump on F1 $=1$	2	2
JTF addr	Jump on timer flag	2	2
JNI addr	Jump on $\overline{\mathrm{NT}}=0$	2	2
JBb addr	Jump on accumulator bit	2	2

MCS®－48

Table 2．Instruction Set（Continued）

Subroutine			
Mnemonic	Description	Bytes	Cycles
CALL addr	Jump to subroutine	2	2
RET	Return	1	2
RETR	Return and restore status	1	2

Flags			
Mnemonic	Description	Bytes	Cycles
CLR C	Clear carry	1	1
CPL C	Complement carry	1	1
CLR F0	Clear flag 0	1	1
CPL F0	Complement flag 0	1	1
CLR F1	Clear flag 1	1	1
CPL F1	Complement flag 1	1	1

Data Moves		
Mnemonic	Description	Bytes Cycles
MOV A，R	Move register to A	1
MOV A，＠R	Move data memory to A	11
MOV A，\＃data	Move immediate to A	22
MOV R，A	Move A to register	$1 \quad 1$
MOV＠R，A	Move A to data memory	11
MOV R，\＃data	Move immediate to register	22
MOV＠R，\＃data	Move immediate to data memory	22
MOV A，PSW	Move PSW to A	11
MOV PSW，A	Move A to PSW	$1 \quad 1$
$\mathrm{XCH} A, R$	Exchange A and register	11
XCH A，＠R	Exchange A and data memory	11
XCHD A，＠R	Exchange nibble of A and data memory	11
MOVX A，＠R	Move external data memory to A	12
MOVX＠R，A	Move A to external data memory	1
MOVP A，＠A	Move to A from current page	12
MOVP3 A，＠A	Move to A from page 3	12

Timer／Counter			
Mnemonic	Description	Bytes	Cycles
MOV A，T	Read timer／counter	1	1
MOV T，A	Load timer／counter	1	1
STRT T	Start timer	1	1
STRT CNT	Start counter	1	1
STOP TCNT	Stop timer／counter	1	1
EN TCNTI	Enable timer／	1	1
DIS TCNTI	counter interrupt		
	Disable timer／	1	1
	counter interrupt		

Control			
Mnemonic	Description	Bytes	Cycles
EN I	Enable external interrupt	1	1
DIS I	Disable external	1	1
	interrupt		
SEL RBO	Select register bank 0	1	1
SEL RB1	Select register bank 1	1	1
SEL MBO	Select memory bank 0	1	1
SEL MB1	Select memory bank 1	1	1
ENTO CLK	Enable clock output	1	1
	on TO		

Mnemonic	Description	Bytes	Cycles
NOP	No operation	1	1
勝 特 力 材	料 $886-3-5753170$		
胜特力电子（上海） $86-21-54151736$			
胜特力电子（深圳） $86-755-83298787$			
Http：／／www． 100 y. com．tw			

ABSOLUTE MAXIMUM RATINGS＊

Case Temperature Under Bias $\ldots . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any Pin with Respect
to Ground．
-0.5 V to +7 V
Power Dissipation 1.5 W

NOTICE：This is a production data sheet．The specifi－ cations are subject to change without notice．
＊WARNING：Stressing the device beyond the＂Absolute Maximum Ratings＂may cause permanent damage． These are stress ratings only．Operation beyond the ＂Operating Conditions＂is not recommended and ex－ tended exposure beyond the＂Operating Conditions＂ may affect device reliability．

D．C．CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=\mathrm{V}_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$

Symbol	Parameter	Limits			Unit	Test Conditions	Device
		Min	Typ	Max			
$V_{\text {IL }}$	Input Low Voltage（All Except RESET，X1，X2）	－0．5		0.8	V		All
$\mathrm{V}_{\text {ILI }}$	Input Low Voltage （RESET，X1，X2）	－0．5		0.6	V		All
$\mathrm{V}_{\text {IH }}$	Input High Voltage （All Except XTAL1， XTAL2，RESET）	2.0		V_{cc}	v		All
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage （X1，X2，RESET）	3.8		Vcc	v		All
V_{OL}	Output Low Voltage （BUS）			0.45	v	$\mathrm{l}_{\mathrm{OL}}=2.0 \mathrm{~mA}$	All
Volı	Output Low Voltage （ $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE})$			0.45	V	$\mathrm{lOL}=1.8 \mathrm{~mA}$	All
Vol2	Output Low Voltage （PROG）			0.45	V	$\mathrm{l} \mathrm{OL}=1.0 \mathrm{~mA}$	All
$\mathrm{V}_{\text {OL3 }}$	Output Low Voltage （All Other Outputs）			0.45	v	$1 \mathrm{OL}=1.6 \mathrm{~mA}$	All
V_{OH}	Output High Voltage （BUS）	2.4			V	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	All
$\mathrm{V}_{\mathrm{OH} 1}$	Output High Voltage （ $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{PSEN}}, \mathrm{ALE}$ ）	2.4			V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	All
$\mathrm{V}_{\mathrm{OH} 2}$	Output High Voltage （All Other Outputs）	2.4			V	$\mathrm{l}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$	All
		勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787 Http：／／www． 100 y ．com．tw				$\begin{aligned} & .70 \\ & .736 \\ & 8787 \end{aligned}$	

D．C．CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=\mathrm{V}_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{S S}=0 \mathrm{~V}$（Continued）

Symbol	Parameter	Limits			Unit	Test Conditions	Device
		Min	Typ	Max			
LL1	Leakage Current （T1，INT）			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	All
ILII	Input Leakage Current （P10－P17，P20－P27， EA，SS）			-500	$\mu \mathrm{A}$	$V_{S S}+0.45 \leq V_{I N} \leq V_{\text {cC }}$	All
ILI2	Input Leakage Current RESET	－10		-300	$\mu \mathrm{A}$	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq 3.8$	All
＇LO	Leakage Current （BUS，TO）（High Impedance State）			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	All
IDD	$V_{D D}$ Supply Current （RAM Standby）		3	5	mA		$\begin{aligned} & \text { 8048AH } \\ & 8035 A H L \end{aligned}$
			4	7	mA	－	$\begin{aligned} & \text { 8049AH } \\ & \text { 8039AHL } \end{aligned}$
			5	10	mA		$\begin{aligned} & \text { 8050AH } \\ & \text { 8040AHL } \end{aligned}$
$\begin{aligned} & \mathrm{IDD}+ \\ & \mathrm{ICC} \end{aligned}$	Total Supply Current＊		30	65	mA		$\begin{aligned} & \text { 8048AH } \\ & 8035 \mathrm{ALL} \end{aligned}$
勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787 Http：／／www．100y．com．tw			35	70	mA		$\begin{aligned} & \text { 8049AH } \\ & \text { 8039AHL } \end{aligned}$
			40	80	mA		$\begin{aligned} & \text { 8050AH } \\ & \text { 8040AHL } \end{aligned}$
			30	100	mA		P8748H
			50	110	mA		P8749H
$V_{D D}$	RAM Standby Voltage	2.2		5.5	V	Standby Mode Reset $\leq V_{\text {IL }}$	$\begin{aligned} & \text { 8048AH } \\ & 8035 A H \end{aligned}$
		2.2		5.5	V		$\begin{aligned} & \text { 8049AH } \\ & \text { 8039AH } \end{aligned}$
		2.2		5.5	V		8050АН

${ }^{\circ} \mathrm{ICC}+\mathrm{I}_{\mathrm{DD}}$ are measured with all outputs in their high impedance state；$\overline{\text { EESET }}$ low； 11 MHz crystal applied；INTT，SS，and EA floating．

A．C．CHARACTERISTICS $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=V_{D D}=5 \mathrm{~V} \pm 10 \% ; V_{S S}=0 \mathrm{~V}$

Symbol	Parameter	$f(t)$ （Note 3）	11 MHz		Unit	Conditions （Note 1）
			Min	Max		
t	Clock Period	1／xtal freq	90.9	1000	ns	（Note 3）
tLL	ALE Pulse Width	3．5t－170	150		ns	
t_{AL}	Addr Setup to ALE	2t－110	70		ns	（Note 2）
tLA	Addr Hold from ALE	t－40	50		ns	
${ }_{\text {tCC1 }}$	Control Pulse Width（ $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ ）	7．5t－200	480		ns	
${ }^{\text {cCe2 }}$	Control Pulse Width（ $\overline{\text { PSEN }}$ ）	6t－200	350		ns	
$t_{\text {DW }}$	Data Setup before $\bar{W} R$	6．5t－200	390		ns	
tWD	Data Hold after WR	t－50	40		ns	
$t_{\text {DR }}$	Data Hold（ $\overline{\mathrm{RD}}, \overline{\mathrm{PSEN}}$ ）	$1.5 \mathrm{t}-30$	0	110	ns	
$t_{\text {RD1 }}$	$\overline{\mathrm{RD}}$ to Data in	6t－170		375	ns	
$t_{\text {RD2 }}$	$\overline{\text { PSEN }}$ to Data in	4．5t－170		240	ns	
taw	Addr Setup to WR	5t－150	300		ns	
$t_{\text {AD1 }}$	Addr Setup to Data（ $\overline{\mathrm{RD}}$ ）	10．5t－220		730	ns	
$t_{\text {AD2 }}$	Addr Setup to Data（ $\overline{\text { PSEN }}$ ）	7．5t－200		460	ns	
$t_{\text {AFC1 }}$	Addr Float to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$	$2 \mathrm{t}-40$	140		ns	（Note 2）
$\mathrm{t}_{\mathrm{AFC} 2}$	Addr Float to PSEN	0．5t－40	10		ns	（Note 2）
t LAFC1	ALE to Control（ $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ ）	3t－75	200		ns	
tLAFC2	ALE to Control（ $\overline{\text { PSEN }}$ ）	$1.5 \mathrm{t}-75$	60		ns	
${ }^{\text {tCA1 }}$	Control to ALE（ $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{PROG}$ ）	t－65	25		ns	
tCA2	Control to ALE（ $\overline{\text { PSEN }}$ ）	4t－70	290		ns	
${ }^{\text {c }}$ CP	Port Control Setup to PROG	1．5t－80	50		ns	
tpe	Port Control Hold to PROG	4t－260	100		ns	
$t_{\text {PR }}$	PROG to P2 Input Valid	8．5t－120		650	ns	
tpF	Input Data Hold from PROG	1.5 t	0	140	ns	
$t_{\text {DP }}$	Output Data Setup	6t－290	250		ns	
$t_{\text {PO }}$	Output Data Hold	$1.5 \mathrm{t}-90$	40		ns	
tpp	PROG Pulse Width	10．5t－250	700		ns	
$t_{\text {PL }}$	Port 2 I／O Setup to ALE	4t－200	160		ns	
t_{LP}	Port 2 I／O Hold to ALE	0．5t－30	15		ns	
tpV	Port Output from ALE	$4.5 t+100$		5.0	ns	
toprr	T0 Rep Rate	3 t	270		ns	
t_{CY}	Cycle Time	$15 t$	1.36	15.0	$\mu \mathrm{s}$	

NOTES：

1．Control outputs： $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$ ．BUS Outputs： $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ ．
2．BUS High Impedance Load 20 pF
3． $\mathrm{f}(\mathrm{t})$ assumes 50% duty cycle on $\mathrm{X} 1, \mathrm{X} 2$ ．Max clock period is for a 1 MHz crystal input．

勝 特 力 材 料 886－3－5753170胜特力电子（上海）86－21－54151736胜特力电子（深圳）86－755－83298787

Http：／／www．100y．com．tw

WAVEFORMS

INSTRUCTION FETCH FROM PROGRAM MEMORY

WRITE TO EXTERNAL DATA MEMORY

PORT 1/PORT 2 TIMING

READ FROM EXTERNAL DATA MEMORY

INPUT AND OUTPUT FOR A.C. TESTS

270053-7
A.C. testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Output timing measurements are made at 2.0 V for a logic "1" and 0.8 V for a logic " 0 "

CRYSTAL OSCILLATOR MODE

270053－9
$\mathrm{C} 1=5 \mathrm{pF}+1 / 2 \mathrm{pF}+($ STRAY $<5 \mathrm{pF})$
$\mathrm{C} 2=(\mathrm{CRYSTAL}+$ STAY $)<8 \mathrm{pF}$

$$
\mathrm{C} 3=20 \mathrm{pF} \pm 1 \mathrm{pF}+(\mathrm{STRAY}<5 \mathrm{pF})
$$

Crystal series resistance should be tess than 30Ω at 11 MHz ；less
than 75Ω at 6 MHz ；less than 180Ω at 3.6 MHz ．

CERAMIC RESONATOR MODE

> 勝 特 力材 料 $886-3-5753170$胜特力电子(上海) $86^{-21-54151736}$胜特力电子(深圳) $86^{-755}-83298787$
> Http://www. 100 y. com. tw

DRIVING FROM EXTERNAL SOURCE

270053－11
For XTAL1 and XTAL2 define＂high＂as voltages above 1.6 V and ＂low＂as voltages below 1.6 V ．The duty cycle requirements for externally driving XTAL1 and XTAL2 using the circuits shown above are as follows：XTAL1 must be high 35－65\％of the period and XTAL2 must be high $35-65 \%$ of the period．Rise and fall times must be faster than 20 ns．

MCS ${ }^{(1)}$-48

PROGRAMMING AND VERIFYING THE P8749H/48H PROGRAMMABLE ROM

Programming Verification

In brief, the programming process consists of: activating the program mode, applying an address, latching the address, applying data, and applying a programming pulse. Each word is programmed completely before moving on to the next and is followed by a verification step. The following is a list of the pins used for programming and a description of their functions:

Pin	Function
XTAL1	Clock Input (3 to 4.0 MHz)
XTAL2	
$\overline{\text { RESET }}$	Initialization and Address Latching
TO	Selection of Program or Verifying Mode
EA	Activation of Program/Verify Modes
BUS	Address and Data Input
	Data Output During Verify
P20-P22	Address Input
VDD	Programming Power Supply
PROG	Program Pulse Input

WARNING:

An attempt to program a missocketed $\mathrm{P} 8749 \mathrm{H} / 48 \mathrm{H}$ will result in severe damage to the part. An indication of a properly socketed part is the appearance of the ALE clock output. The lack of this clock may be used to disable the programmer.

The Program/Verify sequence is:

1. $\mathrm{V}_{D D}=5 \mathrm{~V}$, Clock applied or internal oscillator operating, $\overline{\text { RESET }}=O \mathrm{~V}, \mathrm{TO}=5 \mathrm{~V}, \mathrm{EA}=5 \mathrm{~V}$, BUS and PROG floating. P10 and P11 must be tied to ground.
2. Insert $\mathrm{P} 8749 \mathrm{H} / 48 \mathrm{H}$ in programming socket
3. $\mathrm{TO}=\mathrm{OV}$ (select program mode)
4. $E A=18 \mathrm{~V}$ (activate program mode)
5. Address applied to BUS and P20-22
6. $\overline{\text { RESET }}=5 \mathrm{~V}$ (latch address)
7. Data applied to BUS
8. $\mathrm{V}_{\mathrm{DD}}=21 \mathrm{~V}$ (programming power)
9. $\mathrm{PROG}=\mathrm{V}_{C C}$ or fioat followed by one 50 ms pulse to 18 V
10. $V_{D D}=5 \mathrm{~V}$.
11. $\mathrm{TO}=5 \mathrm{~V}$ (verify mode)
12. Read and verify data on BUS
13. $\mathrm{TO}=\mathrm{OV}$
14. $\overline{\text { RESET }}=\mathrm{OV}$ and repeat from step 5
15. Programmer should be at conditions of step 1 when $\mathrm{P} 8749 \mathrm{H} / 48 \mathrm{H}$ is removed from socket.

NOTE:
Once programmed the $\mathrm{P} 8749 \mathrm{H} / 48 \mathrm{H}$ cannot be erased.

A．C．TIMING SPECIFICATION FOR PROGRAMMING P8748H／P8749H ONLY
$T_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=21 \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
$t_{\text {AW }}$	Address Setup Time to RESET	$4 \mathrm{t}_{\mathrm{Cr}}$	勝 特 力 材 料 886－3－5753170胜特力电子（上海） $86-21-54151736$胜特力电子（深圳）86－755－83298787 Http：／／www． 100 y．com．tw		
twa	Address Hold Time After RESET	$4{ }^{\text {cher }}$			
tow	Data in Setup Time to PROG	$4 \mathrm{t}_{\mathrm{CY}}$			
two	Data in Hold Time After PROG	4 tcy			
$t_{\text {PH }}$	RESET Hold Time to Verity	4 tCY			
tvodw	$\mathrm{V}_{\text {DD }}$ Hold Time Before PROG	0	1.0	ms	
tVDDH	$V_{\text {DD }}$ Hold Time After PROG	0	1.0	ms	
tpw	Program Pulse Width	50	60	ms	
t ${ }_{\text {Tw }}$	To Setup Time for Program Mode	$4{ }^{\text {t }} \mathrm{CY}$			
${ }^{\text {tw }}$ T	TO Hold Time After Program Mode	$4{ }^{4} \mathrm{CY}$			
$t_{\text {do }}$	To to Data Out Delay		$4{ }^{\text {chey }}$		
tww	RESET Pulse Width to Latch Address	$4{ }^{4} \mathrm{C} Y$			
t_{r}, t_{i}	$V_{D D}$ and PROG Rise and Fall Times	0.5	100	$\mu \mathrm{s}$	
t_{CY}	CPU Operation Cycle Time	3.75	5	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {RE }}$	RESET Setup Time before EA	$4{ }^{4} \mathrm{CY}$			

NOTE：
If Test 0 is high，$t_{D O}$ can be triggered by RESET．

D．C．CHARACTERISTICS FOR PROGRAMMING P8748H／P8749H ONLY

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD}}=21 \pm 0.5 \mathrm{~V}$

Symbol	Parameter	Min	Max	Unit	Test Conditions
$V_{D D H}$	$V_{D D}$ Program Voltage High Level	20.5	21.5	V	
$V_{D D L}$	$V_{\text {DD }}$ Voltage Low Level	4.75	5.25	V	
$V_{P H}$	PROG Program Voltage High Level	17.5	18.5	V	
$V_{P L}$	PROG Voltage Low Level	4.0	V_{CC}	V	
$V_{\text {EAH }}$	EA Program or Verify Voltage High Level	17.5	18.5	V	
$I_{D D}$	$V_{D D}$ High Voltage Supply Current		20.0	mA	
$I_{\text {PROG }}$	PROG High Voltage Supply Current		1.0	mA	
$I_{E A}$	EA High Voltage Supply Current		1.0	mA	

SUGGESTED ROM VERIFICATION ALGORITHM FOR ROM DEVICE ONLY

COMBINATION PROGRAM/VERIFY MODE (PROGRAMMABLE ROMS ONLY)

