HA-2420, HA-2425

November 1996

3.2µs Sample and Hold Amplifiers

Features

Maximum Acquisition Time	
- 10V Step to 0.1%	4μs (Max)
- 10V Step to 0.01%	6μ s (Max)
Low Droop Rate (C _H = 1000pF) 5μ	V/ms (Typ)
Gain Bandwidth Product2.	5MHz (Typ)
Low Effective Aperture Delay Time	30ns (Typ)

- **TTL Compatible Control Input**
- ±12V to ±15V Operation

Applications

- 12-Bit Data Acquisition
- **Digital to Analog Deglitcher**
- **Auto Zero Systems**
- **Peak Detector**
- Gated Operational Amplifier

Ordering Information

PART NUMBER	TEMP. RANGE (^O C)	PACKAGE	PKG. NO.
HA1-2420-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-2425-5	0 to 75	14 Ld CERDIP	F14.3
HA3-2425-5	0 to 75	14 Ld PDIP	E14.3
HA4P2425-5	0 to 75	20 Ld PLCC	N20.35
HA9P2425-5 0 to 75		14 Ld SOIC	M14.15

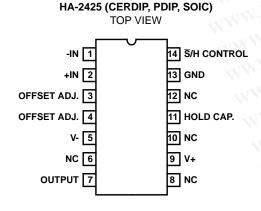
HA-2420 (CERDIP)

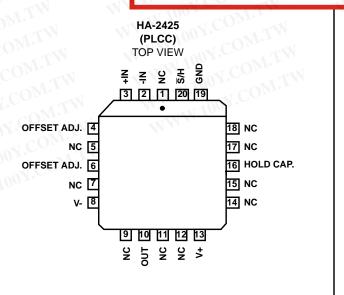
Description

The HA-2420 and HA-2425 is a monolithic circuit consisting of a high performance operational amplifier with its output in series with an ultra-low leakage analog switch and JFET input unity gain amplifier.

With an external hold capacitor connected to the switch output, a versatile, high performance sample-and-hold or track-andhold circuit is formed. When the switch is closed, the device behaves as an operational amplifier, and any of the standard op amp feedback networks may be connected around the device to control gain, frequency response, etc. When the switch is opened the output will remain at its last level.

Performance as a sample-and-hold compares very favorably with other monolithic, hybrid, modular, and discrete circuits. Accuracy to better than 0.01% is achievable over the temperature range. Fast acquisition is coupled with superior droop characteristics, even at high temperatures. High slew rate, wide bandwidth, and low acquisition time produce excellent dynamic characteristics. The ability to operate at gains greater than 1 frequently eliminates the need for external scaling amplifiers.


The device may also be used as a versatile operational amplifier with a gated output for applications such as analog switches, peak holding circuits, etc. For more information, please see Application Note AN517.


The MIL-STD-883 data sheet for this device is available on

request.

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Pinouts

HA-2420, HA-2425

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Absolute Maximum Ratings	Thermal Information
Voltage Between V+ and V- Terminals	Thermal Resistance (Typical, Note 1) θ _{JA} (°C/W) θ _{JC} (°C/W) CERDIP Package 90 35 PDIP Package 100 N/A PLCC Package 75 N/A SOIC Package 120 N/A
Operating Conditions Temperature Range -55°C to 125°C HA-2420-2. -55°C to 75°C HA-2425-5. 0°C to 75°C Supply Voltage Range (Typical) ±12V to ±15V	Maximum Junction Temperature (Ceramic Packages)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

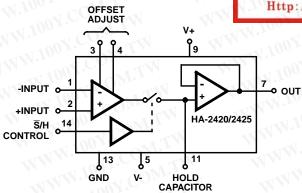
NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Test Conditions (Unless Otherwise Specified) $V_{SUPPLY} = \pm 15.0V$; $C_H = 1000pF$; Digital Input: $V_{IL} = +0.8V$ (Sample), $V_{IH} = +2.0V$ (Hold), Unity Gain Configuration (Output tied to Negative Input)

PARAMETER	TEST	TEMP.	111	HA-2420-	2	HA-2425-5			100%.
	CONDITIONS	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS	COM		WW.	100	CO_{Mr}	-33		TIWV	1.10
Input Voltage Range	Or. OW.I.A.	Full	±10	700 x	CON	±10	-		V
Offset Voltage	ON.CO	25	MA	2	4	TEN	3	6	mV
MWW.I	ON COM	Full	W-W	3	6		4	8	mV
Bias Current	Jon COM.	25	-	40	200	Mi	40	200	nA °
	1001. OW.I.A.	Full	Ā	.TVF.11	400	07-1.	- T	400	nA
Offset Current	100Y.Co	25	-1/1	10	50	No.	10	50	nA
	M. COur	Full	- 1	M.h.	100		TEN	100	nA
Input Resistance	M.Ing COM.	25	5	10	.To.	5	10	-	МΩ
Common Mode Range	W1001.	Full	±10	- 11	1.700	±10	Vr.F	- 1	٧
TRANSFER CHARACTERISTICS	W. 1007.00	TW		MA	-x1 100	N.	W.T.V	N	- AA
Large Signal Voltage Gain	$R_L = 2k\Omega$, $V_O = 20V_{P-P}$	Full	25	50	44.	25	50	W -	kV/V
Common Mode Rejection	$V_{CM} = \pm 10V$	Full	80	90	Mir	74	90	CVV-	dB
Hold Mode Feedthrough Attenuation (Note 2)	f _{IN} ≤ 100kHz	Full	W.	-76	WW.	TOON.	-76	TW	dB
Gain Bandwidth Product (Note 2)	MW.In	25	~XX	2.5	N P	- 03	2.5		MHz
OUTPUT CHARACTERISTICS	W.100	COM	1		-7371	N.Ing	-1 CO	Mr.	cT
Output Voltage Swing	$R_L = 2k\Omega$	Full	±10	-	44-4	±10	D	M-II	V
Output Current	WWW	25	±15	-	41/	±15	07-	- NT T	mA
Full Power Bandwidth (Note 2)	$V_0 = 20V_{P-P}$	25	Mr.	100	-XXI	MAJ	100	OB	kHz
Output Resistance	DC	25	DIVI.	0.15	-	WW.	0.15	$\Box O_{\widetilde{M}^{T}}.$	Ω
TRANSIENT RESPONSE	1111	00 x.	·Mo	A		-11/	700 .	MOD	
Rise Time (Note 2)	$V_{O} = 200 \text{mV}_{P-P}$	25	- 1	75	100	M va.	75	100	ns
Overshoot (Note 2)	$V_{O} = 200 \text{mV}_{P-P}$	25	$C_{O_{L_{i}}}$	25	40	-W-W	25	40	%
Slew Rate (Note 2)	$V_0 = 10V_{P-P}$	25	3.5	5	-	3.5	5	-	V/μs
DIGITAL INPUT CHARACTERISTICS	W.	100	7.	Mil			•		
Digital Input Current	V _{IN} = 0V	Full	N.L.	-	-0.8	-	-	-0.8	mA
	V _{IN} = 5V	Full	-	-	20	-	-	20	μΑ
Digital Input Voltage	Low	Full	-	-	0.8	-	-	0.8	V
	High	Full	2.0	-	-	2.0	-	-	V
SAMPLE AND HOLD CHARACTERIS	TICS							•	_
Acquisition Time (Note 2)	To 0.1% 10V Step	25	-	2.3	4	-	2.3	4	μs

Electrical Specifications Test Conditions (Unless Otherwise Specified) $V_{SUPPLY} = \pm 15.0V$; $C_H = 1000pF$; Digital Input: $V_{IL} = +0.8V$ (Sample), $V_{IH} = +2.0V$ (Hold), Unity Gain Configuration (Output tied to Negative Input) (Continued)


TEST CONDITIONS	TEMP. (°C)	HA-2420-2			HA-2425-5			TV
		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
To 0.01% 10V Step	25	$N_{\overline{c}}$.	3.2	6	- 157	3.2	6	μs
V _{IN} = 0V	25		10	20	MAN.	10	20	mV
To ±1mV	25	$^{L}C_{O_{\overline{D}}}$	860	-	WW	860	V.CC	ns
, Vi	25	- c0	30	_ _	-	30	<7 C	ns
IN WA	25	7	30	-	7/4	30	00 ž.	ns
TW W	25	OY-C	5	W -	- 11	5	100-X.	ns
V _{IN} = 0V	25	V.C	5	c W	-	5	· ooV	pА
	Full	00-	1.8	10	-	-TVV	1.70	- nA
	Full	100 x	-01	1.1.	-	0.1	1.0	nA
	Full	4700	i.C.	FW	-	7.5	10.0	nA
SOM	TAIN!	1.24	V.CO				144.	ony.C
COMIT	25	11:10.	3.5	5.5	- T	3.5	5.5	mA
MIN	25	- 1	2.5	3.5	-	2.5	3.5	mA
COSTIN	Full	80	90	- 1	74	90	MAT.	dB
	CONDITIONS To 0.01% 10V Step V _{IN} = 0V To ±1mV	CONDITIONS (°C) To 0.01% 10V Step 25 V _{IN} = 0V 25 To ±1mV 25 25 25 V _{IN} = 0V 25 Full Full Full Full S 25 25 25	CONDITIONS	CONDITIONS CON	CONDITIONS COC MIN TYP MAX	CONDITIONS COC MIN TYP MAX MIN	TEMP CONDITIONS (°C) MIN TYP MAX MIN TYP TO 0.01% 10V Step 25 -	CONDITIONS CON

NOTES:

- 2. $A_V = \pm 1$, $R_L = 2k\Omega$, $C_L = 50pF$.
- 3. Derived from computer simulation only; not tested.

Functional Diagram

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Test Circuits and Waveforms

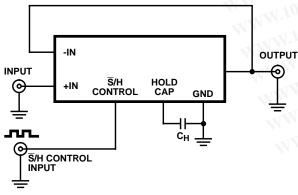
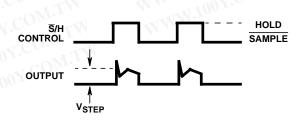
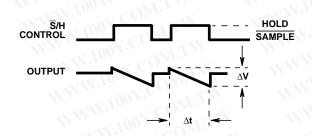



FIGURE 1. HOLD STEP ERROR AND DRIFT CURRENT



NOTE: Set rise/fall times of \overline{S}/H Control to approximately 20ns.

FIGURE 2. HOLD STEP ERROR TEST

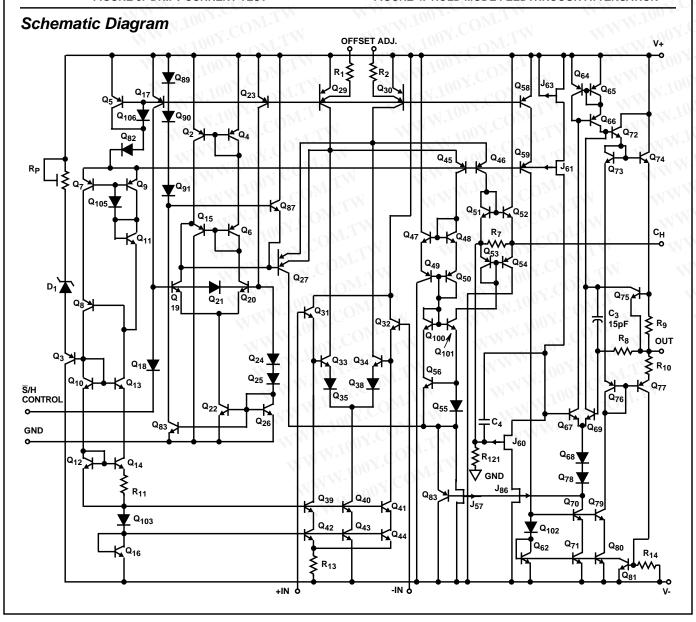
特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Test Circuits and Waveforms (Continued)

NOTE: Measure the slope of the output during hold, $\Delta V/\Delta t$,

and compute drift current from: $I_D = C_H \Delta V/\Delta t$.

SINE WAVE +5V ΕN IN₂ HA-2420/2425 HI-508A IN1 MUX IN₃ OUT IN4 +IN S/H CONTROL OUT HOLD CAP GND IN5 IN6 IN7 IN8 V_{INP-P} A2 S/H CONTROL INPUT


NOTE: Compute hold mode feedthrough attenuation from the formula:

V_{OUT}HOLD Feedthrough Attenuation = $20 \log \frac{VUI}{V_{IN}HOLD}$

Where V_{OUT}HOLD = Peak-to-Peak value of output sinewave during the hold mode.

FIGURE 3. DRIFT CURRENT TEST

FIGURE 4. HOLD MODE FEEDTHROUGH ATTENUATION

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Application Information

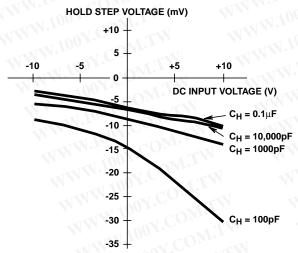


FIGURE 5. HOLD STEP vs INPUT VOLTAGE Offset Adjustment

The offset voltage of the HA-2420 and HA-2425 may be adjusted using a $100k\Omega$ trim pot, as shown in Figure 8. The recommended adjustment procedure is:

Apply 0V to the sample-and-hold input, and a square wave to the \overline{S}/H control.

Adjust the trim pot for 0V output in the hold mode.

Gain Adjustment

The linear variation in pedestal voltage with sample-and-hold input voltage causes a -0.06% gain error ($C_H = 1000 pF$). In some applications (D/A deglitcher, A/D converter) the gain error can be adjusted elsewhere in the system, while in other applications it must be adjusted at the sample-and-hold. The two circuits shown below demonstrate how to adjust gain error at the sample-and-hold.

The recommended procedure for adjusting gain error is:

- 1. Perform offset adjustment.
- Apply the nominal input voltage that should produce a +10V output.
- 3. Adjust the trim pot for +10V output in the hold mode.
- Apply the nominal input voltage that should produce a -10V output.
- 5. Measure the output hold voltage (V_{-10NOMINAL}). Adjust the trim pot for an output hold voltage of

$$\frac{(V_{-10NOMINAL}) + (-10V)}{2}$$

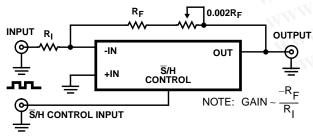


FIGURE 6. INVERTING CONFIGURATION

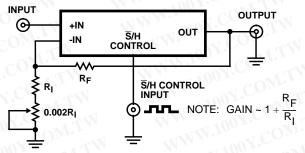


FIGURE 7. NON-INVERTING CONFIGURATION

Figure 8 shows a typical unity gain circuit, with Offset Zeroing. All of the other normal op amp feedback configurations may be used with the HA-2420/2425. The input amplifier may be used as a gated amplifier by utilizing Pin 11 as the output. This amplifier has excellent drive capabilities along with exceptionally low switch leakage.

FIGURE 8. BASIC SAMPLE-AND-HOLD (TOP VIEW)

The method used to reduce leakage paths on the PC board and the device package is shown in Figure 9. This guard ring is recommended to minimize the drift during hold mode.

The hold capacitor should have extremely high insulation resistance and low dielectric absorption. Polystyrene (below 85°C), Teflon, or Parlene types are recommended.

For more applications, consult Intersil Application Note AN517, or the factory applications group.

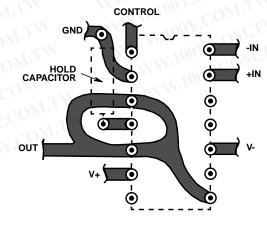


FIGURE 9. GUARD RING LAYOUT (BOTTOM VIEW)

Glossary of Terms

Acquisition Time

The time required following a "sample" command, for the output to reach its final value within $\pm 0.1\%$ or $\pm 0.01\%$. This is the minimum sample time required to obtain a given accuracy, and includes switch delay time, slewing time and settling time.

Aperture Time

The time required for the sample-and-hold switch to open, independent of delays through the switch driver and input amplifier circuitry. The switch opening time is that interval between the conditions of 10% open and 90% open.

Effective Aperture Delay Time (EADT)

The difference between the digital delay time from the Hold command to the opening of the S/H switch, and the propagation time from the analog input to the switch.

EADT may be positive, negative or zero. If zero, the S/H amplifier will output a voltage equal to V_{IN} at the instant the Hold command was received. For negative EADT, the output in Hold (exclusive of pedestal and droop errors) will correspond to a value of V_{IN} that occurred before the Hold command.

Aperture Uncertainty

The range of variation in Effective Aperture Delay Time. Aperture Uncertainty (also called Aperture Delay Uncertainty, Aperture Time Jitter, etc.) sets a limit on the accuracy with which a waveform can be reconstructed from sample data.

Drift Current

The net leakage current from the hold capacitor during the hold mode. Drift current can be calculated from the droop rate using the formula:

$$I_D (pA) = C_H (pF) \times \frac{\Delta V}{\Delta t} (V/s)$$

Typical Performance Curves

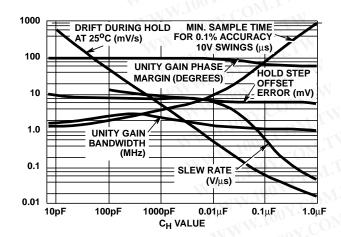


FIGURE 10. TYPICAL SAMPLE AND HOLD PERFORMANCE AS A FUNCTION OF HOLDING CAPACITOR

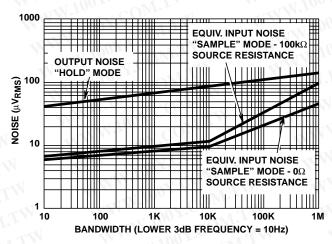


FIGURE 11. BROADBAND NOISE CHARACTERISTICS

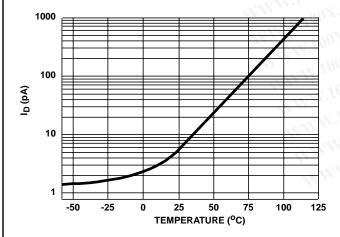


FIGURE 12. DRIFT CURRENT vs TEMPERATURE

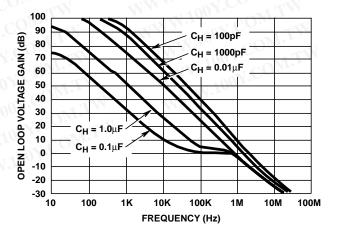
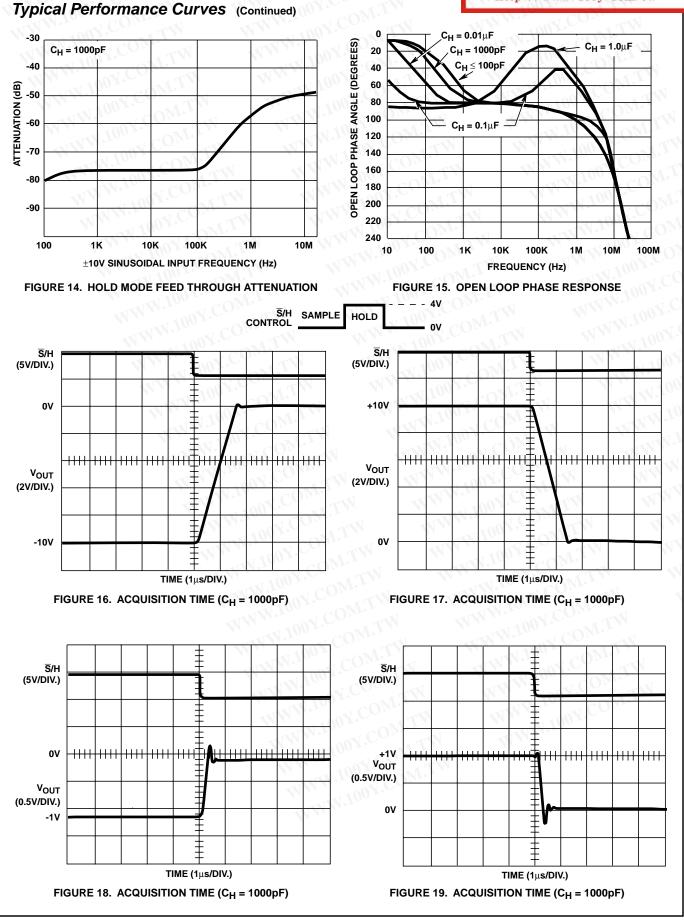
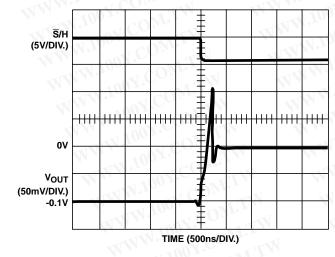
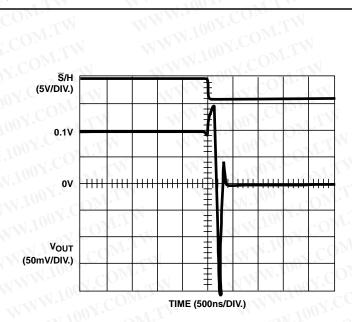



FIGURE 13. OPEN LOOP FREQUENCY RESPONSE

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787





Typical Performance Curves (Continued)

COM.TW

WW.100Y.COM.TW

WWW.100Y.COM.TW

HOOY.COM.TW

FIGURE 20. ACQUISITION TIME (CH = 1000pF) WWW.100Y.COM

FIGURE 21. ACQUISITION TIME (CH = 1000pF) WWW.100Y.CO3

WWW.100

WWW.10

WW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW

OOY.COM.TW

WWW.100Y.CC

Die Characteristics

DIE DIMENSIONS:

102 mils x 61 mils x 19 mils 2590μm x 1550μm x 483μm

METALLIZATION:

Type: Al, 1% Cu Thickness: 16kÅ ±2kÅ

SUBSTRATE POTENTIAL:

V

BACKSIDE FINISH:

Gold, Nickel, Silicon, etc.

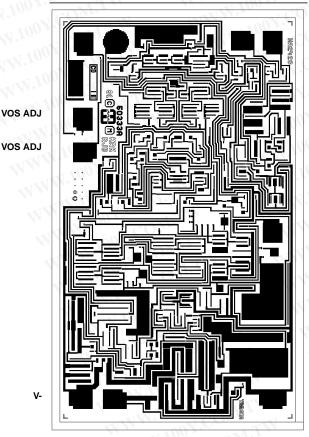
Metallization Mask Layout

PASSIVATION:

Type: Nitride (Si₃N₄) over Silox (SiO₂, 5% Phos.)

Silox Thickness: 12kÅ ±2kÅ Nitride Thickness: 3.5kÅ ±1.5kÅ

TRANSISTOR COUNT:


78

PROCESS:

Bipolar Dielectric Isolation

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

HA-2420, HA-2425

GND

HOLD CAP

۷-

OUTPUT

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com