JRC

LOW VOLTAGE AUDIO POWER AMPLIFIER

GENERAL DESCRIPTION

The NJM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200.

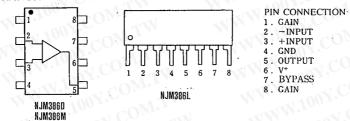
The inputs are ground reference while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the NJM386 ideal for battery operation.

FEATURES É

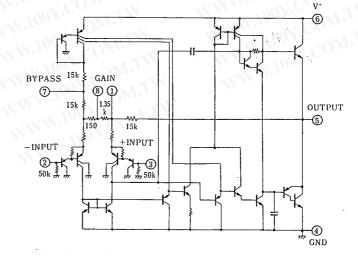
- **Operating Voltage**
- Minimum External Components
- Low Operating Current
- Voltage Gain .
- Single Supply Operation .
- Self-centering of Output Offset Voltage .
- Package Outline .
- **Bipolar** Technology

A PPLICATIONS

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms .
- TV sound systems .
- Line drivers
- Ultrasconic drivers
- Small servo drivers
- Power converters
- **PIN CONFIGURATION**



 $(4V \sim 12V)$


 $(20 \sim 200)$

(3mA)

服 肑 胆

EQUIVALENT CIRCUIT

NJM386D

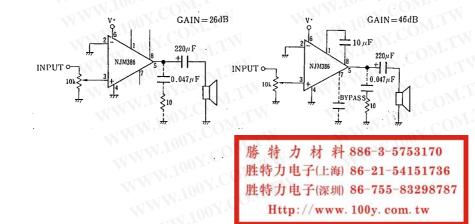
NJM386M

券特力材料	886-3-5753170
生特力电子(上海)	86-21-54151736
生特力电子(深圳)	86-755-83298787
Http://www.	100y. com. tw

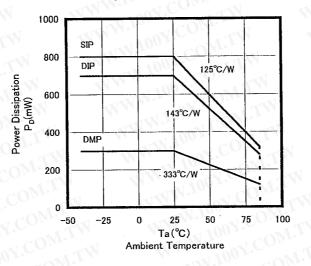
ABSOLUTE MAXIMUM RATINGS

(ta=25℃)

(Ta=25℃)


PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	15	V
Power Dissipation	Ро	(DIP8) 700	mW
	100	(SIP8) 800	mW
	VIN LO	(DMP8) 300	mW
Input Voltage Range	Vin	±0.4	V
Operating Temperature Range	Topr	-40~+85	C
Storage Temperature Range	Tstg	-40~+125	C

ELECTRICAL CHARACTERISTICS

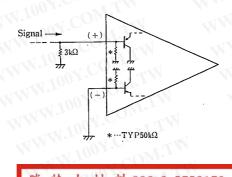

TYP. MAX. UNIT TEST CONDITION MIN. SYMBOL PARAMETER V+ 4 12 v Operating Voltage $V^{+}=6V, V_{IN}=0$ 3 8 mA **Operating** Current lcc 250 325 mW $V^{+}=6V, R_{L}=8\Omega, THD=10\%$ -----Output Power (note 2) P_o $V^+=9V, R_L=16\Omega, THD=10\%$ 500 mW _____ 26 28 dB Voltage Gain V+=6f, f=1kHz 24 Av dB 46 49 10µF from Pin 1 to 8 43 300 kHz Bandwidth BW V*=6V, Pins 1 and 8 Open % Total Harmonic Distortion THD $V^{+}=6V, R_{L}=8\Omega, P_{OUT}=125mW$ 0.2 f=1kHz, Pins 1 and 8 open SVR $V^+=6V$, f=1kHz, C_{BYPASS}=10 μ F 50 dB Power Supply Rejection Ratio Pins 1 and 8 Open RIN kΩ 50 Input Resistance V+=6V, Pins 2 and 3 Open IB 250 nΑ Input Bias Current

TYPICAL APPLICATION

5

POWER DISSIPATION VS. AMBIENT TEMPERATURE

NOTICE WHEN APPLICATION


· Prevention of Oscillation

It is recommended to insert capacitors at around the supply source and the GND pins with the value of 0.1μ F and more than 100μ F which are featuring higher frequency efficiency.

When start of oscillation accordingly to the load condition, it is recommendable to insert the resistor of 10Ω and the capacitor of 0.047μ F between the output and the GND pins.

• How to use the Input Resistor (TYP. 50kΩ)

The input resistors have much deviation in value generally, so that it is recommended not to use them as the constant of the circuit. The countermesure to be recommended si to apply the resistor of higher in value, which is so higher to be able to ignore the input deviation($3k\Omega$ approximately) in parallel application.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

5

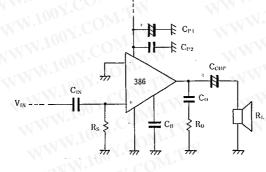
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Maintenance of Output Offset Voltage

By making connection of both input pins with low value resistors (below $10K\Omega$ approximately) to GND, the output offset voltage is automatically set in the medium range value of the supply source. However, the DC Gain of NJM386 is approximately at 20 times in value, so that when keeping one side input pin open, and the other side to GND on DC condition. The voltage drop caused by input resistor X input bias current, that is, (input resistor X input bias current) X 20 times voltage is to be added to the output offset voltage, and that the medium range output voltage is to be sheared, which in the result, no distortion output oscillation range shall be decreased.

In regard to dealing with the input pin, it is recommendable to put the input pin into the GND at first, and the other side of signal input pin, to be connected into GND with the resistor of less than about $10K\Omega$ on DC condition.

Concerning Cross-Over Distortion


NJM386 in application, the cross-over distortion is to be generated in the high band operation.

The countermeasure for that, it is recommendable to have it replaced with NJM386B (But, be carful in prevention of oscillation). And for prevention of the cross-over distortion, it is recommendable to apply NJM2072, NJM2073.

The Application Purpose and Recommended Value of the External parts.

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	REMARKS
R _s	Current like nois reduction V_{0Q} stabilization	Below 10 KQ	The noise becomes high when the input pin opend.
	V _{0Q} stabilization	lμF	It is not required in case when there is no DC offset in the input signal.
Срі	V ⁺ stabilization	≅C _{CUP}	It can be decreased in value when the output impedance source is low.
C _{P2}	Oscillation prevention	0.1μF	Insert near around the supply source and GND pins.
Св	Ripple rejection to V ₀ by way of V ⁺	47μF	It is not required when the V^+ is stabilized.
Co	Oscillation prevention	0.047µF	To be decided in value according to load condition.
Ro	Oscillation prevention	10Ω	To be decided in value according to load condition.
CCUP	Output DC Decoupling	$220\mu F \text{ when} \\ R_L = 8\Omega$	Low band cutoff frequency(f_L) shall be decided by $C_{CUP}R_L$. When C_{CUP} is less in value, f_L is to be increased.

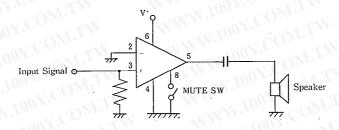
NJM386 Recommended Circuit

New Japan Radio Co., Ltd.

5-4

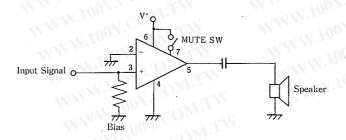
NJM386

5-5


MUTING CIRCUIT EXAMPLE The way how to apply DC voltage to -INPUT pin. WUTE SW Input Signal Wute 東京 前子 14 WUTE SW MUTE SW

According to this method, when applicating DC voltage, Vmute to -INPUT PIN, the output voltage V₀ at voltage gain A_v will be,

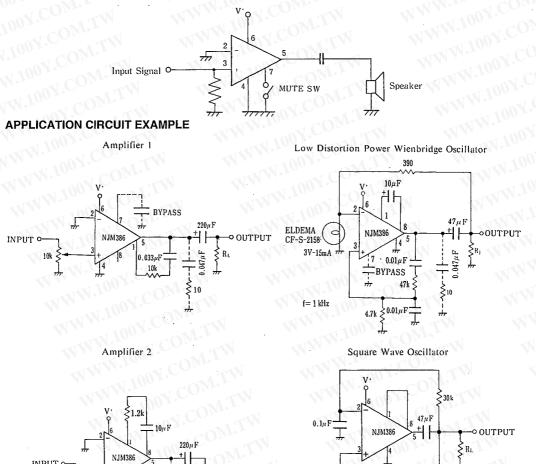
 $V_0 = V^+/2 - Vmute * A_V$


It is the way that the muting shall be proceeded by keeping V_0 saturating at the GND side. Now, the output is saturated, so that there is no leakage of muting. However, when the peak value of signal input is increased higher than about the value of 1/4 Vmute, the leakage of muting shall be started.

(2) The way, how to connect gain. No. 8 PIN to GND

It is the way, originally that the pin which is to be used for adjusting the gain of NLM386, but to have it applied in connecting to GND side, and by doing so, to stop the earely stage motion, but keeping on for muting operation. The earely stage motion shall be stopped, therefore, the precise muting shall be proceeded with less leakage on operation.

(3) The way how to proceed casting the BY PASS pin on V⁺ side


By this way, the bias circuit within IC, to be stopped and then, further for stopping motion of driver level, and at the output level. However, the input level alone is operating, so that a slight leakage of signal to the output pin through inside resistor to be occured. The leakage level is to be inverse proportion to load, therefore, it is necessary to check accordingly through the load condition.

New Japan Radio Co., Ltd.

NJM386		勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736
COM.TW	WWW.1001.	胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

operate depending on IC to be used.

The way how to connect the BY PASS PIN to GND.

WIDE RANGE APPLICATION

NJM386 is a small output power amplifier with minimum external parts, and also the gain of which is fixed, yet it can be made changeable in value, too.

0.047 /1

BYPASS 10 10 k

f = 1 kHz

1k

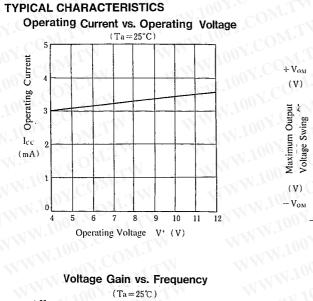
GAIN CONTROL

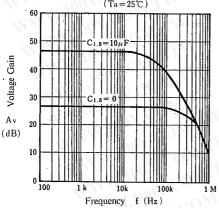
5-6

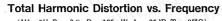
INPUT 0

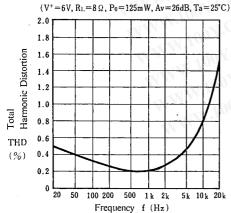
101

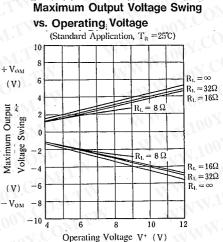
To make the NJM386 a more versatile amplifier, two pins (1 and 8) are provieded the gain contorol. With pins 1 and 8 open the $1.35k\Omega$ resistor sets the gain at 20 (26dB). If a capacitor is put from pin 1 to 8, bypassing the $1.35k\Omega$ resistor, the gain will go up to 200 (46dB). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. Gain contorol can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

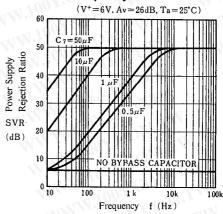

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual appapplications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal $15k\Omega$ resistor). For 6dB effective bass boost: $R \cong 15k\Omega$, the lowest value for good stable operation is $R_{MIN} = 10k\Omega$ if pin 8 is open. If pins 1 and 8 are bypassed then R as low as $2k\Omega$ can be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

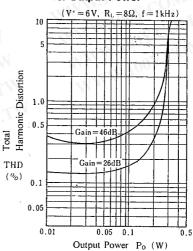

New Japan Radio Co., Ltd.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787


Http://www. 100y. com. tw

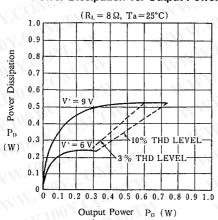

NJM386





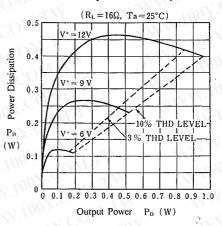
Power Supply Rejection Ratio vs. Frequency

Total Harmonic Distortion vs. Output Power

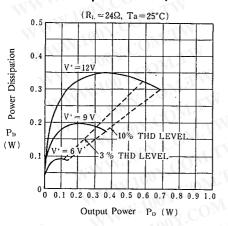


5-7

-New Japan Radio Co., Ltd.


NJM386

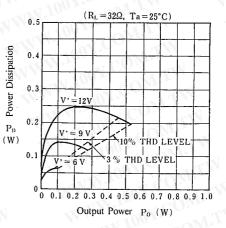
TYPICAL CHARACTERISTICS



Power Dissipation vs. Output Power

Power Dissipation vs. Output Power

Power Dissipation vs. Output Power



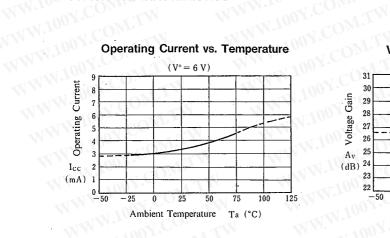
 $(Ta = 25^{\circ}C)$ 27 26 25 Voltage Gain 24 23 22 21 Αv (dB) 20 19 18 17 20 50 100 200 500 1k 2k 5k 10k 20k Frequency f (Hz) (Typical Application "Amplifier 1")

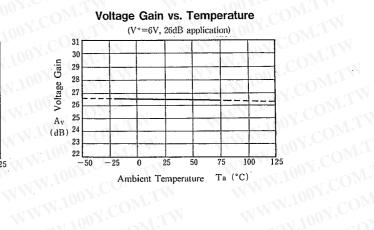
-New Japan Radio Co., Ltd.

Frequency Response with Bass Boost

Power Dissipation vs. Output Power

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


5


TYPICAL CHARACTERISTICS

N.100Y.CUM-1

WW.100Y

W.100Y.COM.TW

勝	特力材料 886-3-5753170
.CON 胜	寺力电子(上海) 86-21-54151736
一胜	寺力电子(深圳) 86-755-8329878
COME	Http://www.100y.com.tw

JOY.COM.TW

W.100Y.COM

WWW.100Y. 5

WWW.100Y.COM.TW

W.100X.COM. 1 NJM386

MEMO

WWW.100Y.C

WWW.100Y.COM.TW

OM.TW

WW.10

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.

COM.TW

WW.100Y.COM.TW

WWW.100

100X.COM.TW

WWW.100Y.COM

NWW.I

DM.TW

W100X.COM.TW

WWW.100X.COM

WWW.

OM.TW

WWW.100Y.COM.TW

ICAUTION1

The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.