

Current Transducer LA 25-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

E	lectrical data						
I _{PN}	Primary nominal r.m.s.	. current		25			At
I _P	Primary current, meas	uring range		0	± 36		At
\mathbf{R}_{M}	Measuring resistance	@	$T_A =$	70°C	T _A :	= 85°C	
			$R_{\text{M min}}$	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	\mathbf{R}_{Mmin}	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	
	with ± 15 V	@ ± 25 At max	100	320	100	315	Ω
		@ ± 36 At max	100	190	100	185	Ω
I _{SN}	Secondary nominal r.n	n.s. current		25			mΑ
K	Conversion ratio			1-2	2-3-4-5	: 100	О
V _c	Supply voltage (± 5 %)(1)		± 1	5		V
I_{c}	Current consumption			10	+ I _s		mA
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn				2.5		kV
V _b	R.m.s. rated voltage 1),	R.m.s. rated voltage 1), safe separation			600		V
17.		basic isolation		170	00		V

A	ccuracy - Dynamic performan	ce data	40	Zir.		
X	Typical accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$		± 0.5		%	
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity error		< 0.2		%	
			Тур	Max		
l _o 1	Offset current 2) @ $I_p = 0$, $T_A = 25$ °C			± 0.15	mΑ	
I _{OM}	Residual current ³⁾ @ I _P = 0, after an	overload of 3 x I _{PN}	± 0.05	± 0.15	mA	
OT.	Thermal drift of I _o	0°C + 25°C	± 0.06	± 0.25	mΑ	
	+	· 25°C + 70°C	± 0.10	± 0.35	mΑ	
	4	25°C + 85°C	130	± 0.5	mA	
	Dr. COpp. LAN -	40°C + 85°C		± 1.2	mΑ	
t,	Response time 4 @ 90 % of I _{PN}		< 1		μs	
di/dt	di/dt accurately followed		> 50		A/µs	
f	Frequency bandwidth (- 1 dB)		DC 1	150	kHz	
G	eneral data			1	00	
T _A	Ambient operating temperature		- 40	+ 85	°C	
T _s	Ambient storage temperature		- 45	+ 90	°C	
R _P	Primary resistance per turn @	$T_A = 25^{\circ}C$	< 1.25		mΩ	
R _s	Secondary coil resistance @	$T_A = 70$ °C	110		Ω	
		$T_A = 85^{\circ}C$	115		Ω	
R _{IS}	Isolation resistance @ 500 V, $T_A = 2$	25°C	> 1500		$M\Omega$	
m	Mass				g	
	Standards			EN 50178 : 1997		

$I_{PN} = 5-6-8-12-25 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) Pollution class 2

- 2) Measurement carried out after 15 mn functioning
- 3) The result of the coercive field of the magnetic circuit

4) With a di/dt of 100 A/µs.

060327/13

Http://www.100y.com.tw

Dimensions LA 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal I _{PN} [A]	current maximum I_P [A]	Nominal output current I_{SN} [mA]	Turns ratio K _N	Primary resistance \mathbf{R}_{P} [m Ω]		Recommended connections
S	25	36	25	1/1000	0.3	0.023	5 4 3 2 1 IN 0-0-0-0-0 0-0-0-0 OUT 6 7 8 9 10
2	12	18	24	2/1000	1.1	0.09	5 4 3 2 1 IN 0-0 0-0-0 0-0 0-0-0 OUT 6 7 8 9 10
3 00	8	12	24	3/1000	2.5	0.21	5 4 3 2 1 IN 0-0 0 0-0 0-0 0-0 OUT 6 7 8 9 10
4	6	9	24	4/1000	4.4	0.37	5 4 3 2 1 IN 0 0-0 0 0 0 0-0 0 0 OUT 6 7 8 9 10
5	5	7.00	25	5/1000	6.3	0.58	5 4 3 2 1 IN 0 0 0 0 0 0 0 0 OUT 6 7 8 9 10

Mechanical characteristics

- General tolerance
- Fastening & connection of primary
- Fastening & connection of secondary
- Recommended PCB hole
- ± 0.2 mm
- 10 pins 0.7 x 0.6 mm
- 3 pins Ø 1 mm
- 1.2 mm

Remarks

- I_s is positive when I_p flows from terminals 1, 2, 3, 4, 5 to terminals 10, 9, 8, 7, 6
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

060327/13

Page 2/