Current Transducer LA 25-NP For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). | E | lectrical data | | | | | | | |------------------|---|--|--------------------|---------------------------------------|-------------------------|---------------------------------------|----------| | I _{PN} | Primary nominal r.m.s. | . current | | 25 | | | At | | I _P | Primary current, meas | uring range | | 0 | ± 36 | | At | | \mathbf{R}_{M} | Measuring resistance | @ | $T_A =$ | 70°C | T _A : | = 85°C | | | | | | $R_{\text{M min}}$ | $\mathbf{R}_{\mathrm{M}\mathrm{max}}$ | \mathbf{R}_{Mmin} | $\mathbf{R}_{\mathrm{M}\mathrm{max}}$ | | | | with ± 15 V | @ ± 25 At max | 100 | 320 | 100 | 315 | Ω | | | | @ ± 36 At max | 100 | 190 | 100 | 185 | Ω | | I _{SN} | Secondary nominal r.n | n.s. current | | 25 | | | mΑ | | K | Conversion ratio | | | 1-2 | 2-3-4-5 | : 100 | О | | V _c | Supply voltage (± 5 % |)(1) | | ± 1 | 5 | | V | | I_{c} | Current consumption | | | 10 | + I _s | | mA | | V _d | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | | | 2.5 | | kV | | V _b | R.m.s. rated voltage 1), | R.m.s. rated voltage 1), safe separation | | | 600 | | V | | 17. | | basic isolation | | 170 | 00 | | V | | | | | | | | | | | A | ccuracy - Dynamic performan | ce data | 40 | Zir. | | | |-------------------------------------|--|---------------------------------|--------|-----------------|-----------|--| | X | Typical accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ | | ± 0.5 | | % | | | $\mathbf{e}_{\scriptscriptstyle L}$ | Linearity error | | < 0.2 | | % | | | | | | Тур | Max | | | | l _o 1 | Offset current 2) @ $I_p = 0$, $T_A = 25$ °C | | | ± 0.15 | mΑ | | | I _{OM} | Residual current ³⁾ @ I _P = 0, after an | overload of 3 x I _{PN} | ± 0.05 | ± 0.15 | mA | | | OT. | Thermal drift of I _o | 0°C + 25°C | ± 0.06 | ± 0.25 | mΑ | | | | + | · 25°C + 70°C | ± 0.10 | ± 0.35 | mΑ | | | | 4 | 25°C + 85°C | 130 | ± 0.5 | mA | | | | Dr. COpp. LAN - | 40°C + 85°C | | ± 1.2 | mΑ | | | t, | Response time 4 @ 90 % of I _{PN} | | < 1 | | μs | | | di/dt | di/dt accurately followed | | > 50 | | A/µs | | | f | Frequency bandwidth (- 1 dB) | | DC 1 | 150 | kHz | | | G | eneral data | | | 1 | 00 | | | T _A | Ambient operating temperature | | - 40 | + 85 | °C | | | T _s | Ambient storage temperature | | - 45 | + 90 | °C | | | R _P | Primary resistance per turn @ | $T_A = 25^{\circ}C$ | < 1.25 | | mΩ | | | R _s | Secondary coil resistance @ | $T_A = 70$ °C | 110 | | Ω | | | | | $T_A = 85^{\circ}C$ | 115 | | Ω | | | R _{IS} | Isolation resistance @ 500 V, $T_A = 2$ | 25°C | > 1500 | | $M\Omega$ | | | m | Mass | | | | g | | | | Standards | | | EN 50178 : 1997 | | | # $I_{PN} = 5-6-8-12-25 A$ #### **Features** - Closed loop (compensated) multirange current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0. ## **Advantages** - Excellent accuracy - Very good linearity - Low temperature drift - · Optimized response time - · Wide frequency bandwidth - No insertion losses - High immunity to external interference - Current overload capability. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - · Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. Notes: 1) Pollution class 2 - 2) Measurement carried out after 15 mn functioning - 3) The result of the coercive field of the magnetic circuit 4) With a di/dt of 100 A/µs. 060327/13 Http://www.100y.com.tw # Dimensions LA 25-NP (in mm. 1 mm = 0.0394 inch) | Number
of primary
turns | Primary
nominal
I _{PN} [A] | current maximum I_P [A] | Nominal output current I_{SN} [mA] | Turns
ratio
K _N | Primary resistance \mathbf{R}_{P} [m Ω] | | Recommended connections | |-------------------------------|---|---------------------------|--------------------------------------|---|---|-------|--| | S | 25 | 36 | 25 | 1/1000 | 0.3 | 0.023 | 5 4 3 2 1 IN
0-0-0-0-0
0-0-0-0
OUT 6 7 8 9 10 | | 2 | 12 | 18 | 24 | 2/1000 | 1.1 | 0.09 | 5 4 3 2 1 IN
0-0 0-0-0
0-0 0-0-0
OUT 6 7 8 9 10 | | 3 00 | 8 | 12 | 24 | 3/1000 | 2.5 | 0.21 | 5 4 3 2 1 IN
0-0 0 0-0
0-0 0-0
OUT 6 7 8 9 10 | | 4 | 6 | 9 | 24 | 4/1000 | 4.4 | 0.37 | 5 4 3 2 1 IN
0 0-0 0 0
0 0-0 0 0
OUT 6 7 8 9 10 | | 5 | 5 | 7.00 | 25 | 5/1000 | 6.3 | 0.58 | 5 4 3 2 1 IN
0 0 0 0
0 0 0 0
OUT 6 7 8 9 10 | #### **Mechanical characteristics** - General tolerance - Fastening & connection of primary - Fastening & connection of secondary - Recommended PCB hole - ± 0.2 mm - 10 pins 0.7 x 0.6 mm - 3 pins Ø 1 mm - 1.2 mm ### **Remarks** - I_s is positive when I_p flows from terminals 1, 2, 3, 4, 5 to terminals 10, 9, 8, 7, 6 - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us. 060327/13 Page 2/