Http://www. 100y. com. tw

November 1994

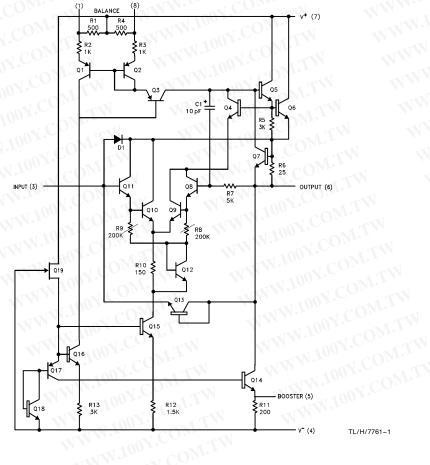
LM110/LM210/LM310 Voltage Follower

General Description

The LM110 series are monolithic operational amplifiers internally connected as unity-gain non-inverting amplifiers. They use super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications, these devices have internal frequency compensation and provision for offset balancing.

The LM110 series are useful in fast sample and hold circuits, active filters, or as general-purpose buffers. Further, the frequency response is sufficiently better than standard IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in replacements for the LM102 series voltage followers, offer-

ing lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.


The LM110 is specified over a temperature range $-55^{\circ}C \le T_{A} \le +125^{\circ}C$, the LM210 from $-25^{\circ}C \le T_{A} \le +85^{\circ}C$ and the LM310 from $0^{\circ}C \le T_{A} \le +70^{\circ}C$.

Features

- Input currentSmall signal bandwidth
 - 10 nA max over temperature
 - 20 MHz 30 V/μs

- Slew rate
- Supply voltage range ±5V to ±18V

Schematic Diagram

WWW.100Y.COM.T **Absolute Maximum Ratings**

WW.100Y.COM.TW

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6)

+18V Supply Voltage Power Dissipation (Note 1) 500 mW Input Voltage (Note 2) $\pm 15V$ Output Short Circuit Duration (Note 3) Indefinite Operating Temperature Range

-55°C to +125°C LM110 LM210 -25°C to +85°C LM310 0°C to +70°C

Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering, 10 sec.) 260°C Soldering Information Dual-In-Line Package Soldering (10 sec.) 260°C Small Outline Package Vapor Phase (60 sec.) 215°C Infrared (15 sec.)

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. WWW.100Y.C

ESD rating to be determined.

Electrical Characteristics (Note 4)

Parameter	Conditions	LM110			LM210			LM310			
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	T _A = 25°C	W	1.5	4.0		1.5	4.0		2.5	7.5	mV
Input Bias Current	$T_A = 25^{\circ}C$	1/1	1.0	3.0	V.C	1.0	3.0		2.0	7.0	nA
Input Resistance	T _A = 25°C	10 ¹⁰	1012	.To	10 ¹⁰	1012	-187	1010	1012	W	Ω
Input Capacitance	Or. OWIN		1.5	N.1	00 r.	1.5	[.T.		1.5	- 1	pF
Large Signal Voltage Gain	$T_A = 25^{\circ}\text{C}, V_S = \pm 15\text{V}$ $V_{OUT} = \pm 10\text{V}, R_L = 8 \text{ k}\Omega$	0.999	0.9999	W.	0.999	0.9999	M.T	0.999	0.9999		V/V
Output Resistance	$T_A = 25^{\circ}C$		0.75	2.5	1,00	0.75	2.5	1.	0.75	2.5	Ω
Supply Current	$T_A = 25^{\circ}C$		3.9	5.5	-110	3.9	5.5	TW	3.9	5.5	mA
Input Offset Voltage	Vito COMP.	N	×	6.0	M.r.	. N.C	6.0		Ń	10	mV
Offset Voltage Temperature Drift	$\begin{array}{l} -55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +85^{\circ}\text{C} \\ +85 \leq \text{T}_{\text{A}} \leq 125^{\circ}\text{C} \\ 0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C} \end{array}$	N	6 12	WV	WW.	6	CO1	M.I	10		μV/°C μV/°C μV/°C
Input Bias Current	100Y.	LA		10	-13	1.100	10	Mo	LAL	10	nA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L = 10 \text{ k}\Omega$	0.999	ecī.	1	0.999	W.100	N.C	0.999	LTW	(1	V/V
Output Voltage Swing (Note 5)	$V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$	±10			±10	W.19	002	± 10	WIL	N	٧
Supply Current	T _A = 125°C	M_{-1}	2.0	4.0		2.0	4.0	«1 C.	DMr.	- X	mA
Supply Voltage Rejection Ratio	$\pm 5V \le V_{S} \le \pm 18V$	70	80		70	80	100	70	80	TV	dB

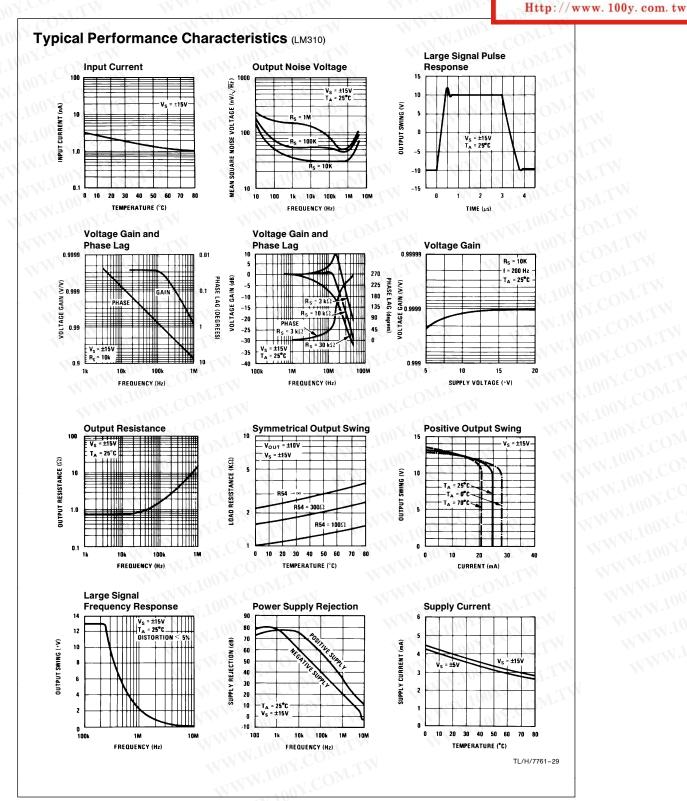
Note 1: The maximum junction temperature of the LM110 is 150°C, of the LM210 is 100°C, and of the LM310 is 85°C. For operating at elevated temperatures, devices in the HO8 package must be derated based on a thermal resistance of 165°C/W, junction to ambient, or 22°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit for the LM110 and LM210 is allowed for case temperatures to 125°C and ambient temperatures to 70°C, and for the LM310, 70°C case temperature or 55°C ambient temperature. It is necessary to insert a resistor greater than 2 k Ω in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted. $R_S=5k$ min, 10k typical is recommended for dynamic stability in all applications.

Note 4: These specifications apply for $\pm 5\text{V} \le \text{V}_S \le \pm 18\text{V}$ and $-55^{\circ}\text{C} \le \text{T}_A$ 125°C for the LM110, $-25^{\circ}\text{C} \le \text{T}_A \le 85^{\circ}\text{C}$ for the LM210, and $0^{\circ}\text{C} \le \text{T}_A \le 70^{\circ}\text{C}$ for the LM10, and $0^{\circ}\text{C} \le \text{T}_A \le 70^{\circ}\text{C}$ for the LM110, $-25^{\circ}\text{C} \le 70^{\circ}\text{C}$ for the LM110, and $0^{\circ}\text{C} \le 70^{\circ}\text{C}$ for the LM110, $-25^{\circ}\text{C} \le 70^{\circ}\text{C}$ for the LM110, $-25^{$ the LM310 unless otherwise specified.

Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V - terminals. See curve.


Note 6: Refer to RETS110X for LM110H, LM110J military specifications.

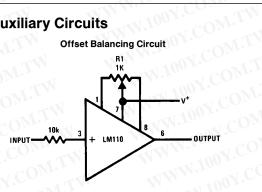
Application Hint

The input must be driven from a source impedance of typically 10 k Ω (5 k Ω min.) to maintain stability. The total source impedance will be reduced at high frequencies if there is stray capacitance at the input pin. In these cases, a 10 k Ω resistor should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent oscillation.

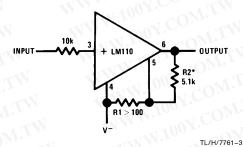
Http://www. 100y. com. tw

X.COM.TW

JOY.COM.TW


100Y.COM.TW

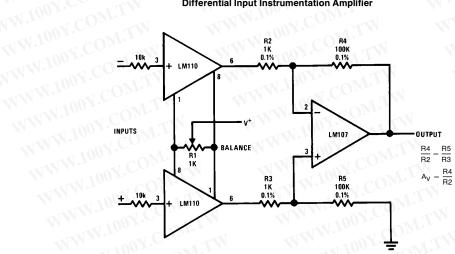
N.100Y.COM.TW


WWW.100Y.COM.TW **Auxiliary Circuits**

VWW.100Y.COM.TW

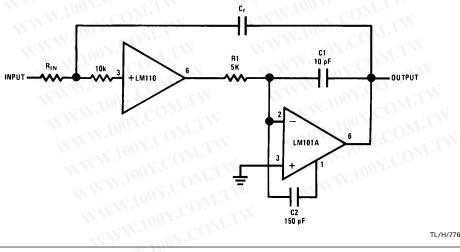
WWW.100Y.COM.TW

Increasing Negative Swing Under Load



TL/H/7761-2

*May be added to reduce internal dissipation


Typical Applications

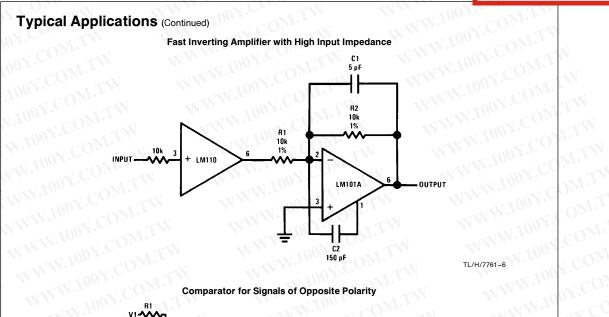
Differential Input Instrumentation Amplifier

TL/H/7761-4

Fast Integrator with Low Input Current

TL/H/7761-5

WWW.100Y.COM.TW Typical Applications (Continued)


VWW.100Y.COM.TW

OOY.COM.T

Fast Inverting Amplifier with High Input Impedance

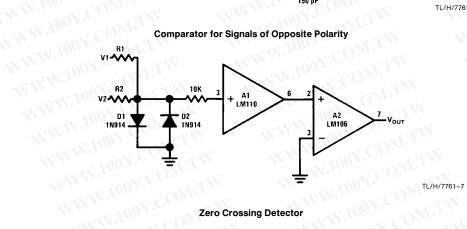
100Y.COM.TW

WWW.100Y.COM.TW

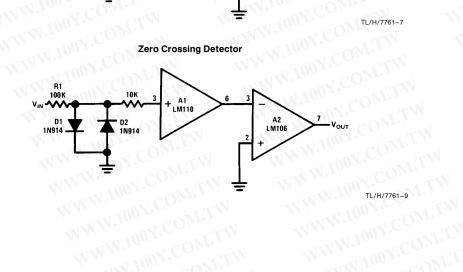
TL/H/7761-6 WWW.100 Y.COM.TW WWW.190Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW


WWW 100Y.COM.TW

WWW.100Y.COM.TW


VWW.100Y.COM.TW

VWW.100

Comparator for Signals of Opposite Polarity

Zero Crossing Detector

TL/H/7761-9

WWW.100Y.COM.TW

X.COM.TW

OY.COM.TW

WWW.100Y.COM.TW VWW.100Y.COM.TW WWW.100Y.COM.TW Http://www. 100y. com. tw Typical Applications (Continued) Driver for A/D Ladder Network WWW.100Y.COM.TW Y.COM.TW **₹** R1 3.6K WWW.10V.COM.TW WWW.100 00Y.COM.TW ₹ R2 7.5K 1% 100Y.COM.TW 1.100Y.COM.TW IN4611 LM110 + 3K W.100Y.COM.TW **₹**84 27K 1% W.100Y.COM.TW WW.100Y.COM.TW 5V REFERENCE TO WW.100Y.COM.T REMAINING SWITCHES WWW.100Y.C WWW.100Y.COM R6 20K 10K + A2 + LM110 10K + A3 + LM110 TO LADDER NETWORK TO LADDER DIGITAL NETWORK DIGITAL SWITCH DRIVE DRIVE WWW.100Y.COM.TW TL/H/7761-8 **Buffer for Analog Switch*** R1 **★** Q1 MM451 C1 0.01μF ηÞ ANALOG + LM110 OUTPUT W.100Y.COM.TW DIGITAL DRIVE TL/H/7761-10

Switch substrates are boot-strapped to reduce output capacitance of switch

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

OM.TW

WWW.100 Y.COM.TW

WWW.190Y.COM.TW

WWW.100Y.COM.TW

WWW 100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

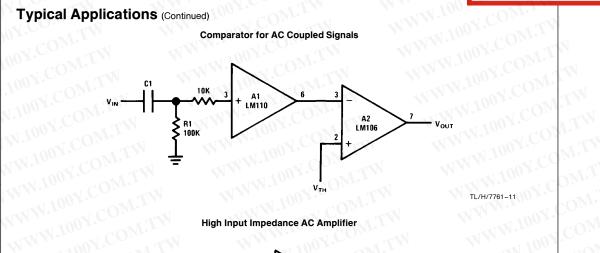
W.100Y.COM.TW

WW.100Y.COM.TW

VWW.100Y.COM.TW

WWW.100Y.COM.TW Typical Applications (Continued)

VWW.100Y.COM.TW

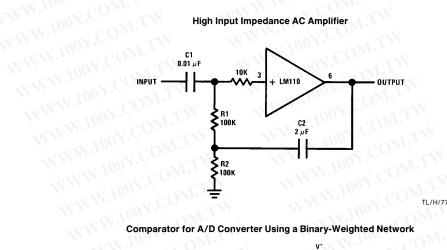

WWW.I

looy.COM.T

Comparator for AC Coupled Signals

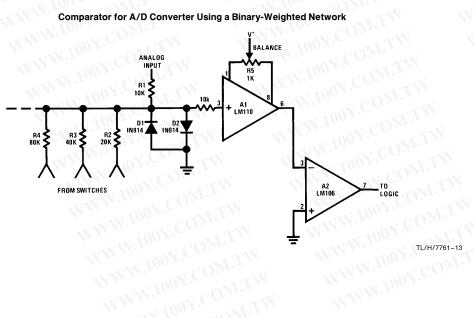
100Y.COM.TW

WWW.100Y.COM.TW



Y.W.100Y.COM.TW TL/H/7761-11 WWW.1007.COM.TW

U.1001


WWW.100

High Input Impedance AC Amplifier

TL/H/7761-12

Comparator for A/D Converter Using a Binary-Weighted Network

<u>w</u>.com.tw

WWW.100Y.COM.TW Typical Applications (Continued)

k.COM.TW

00Y.COM.TW

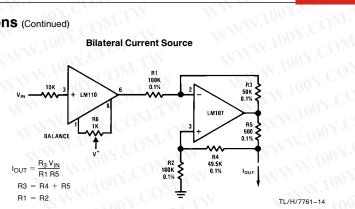
V.100Y.COM.TW

WWW 100Y.COM.TW

WWW.190Y.COM.TW

VWW.100Y.COM.TW

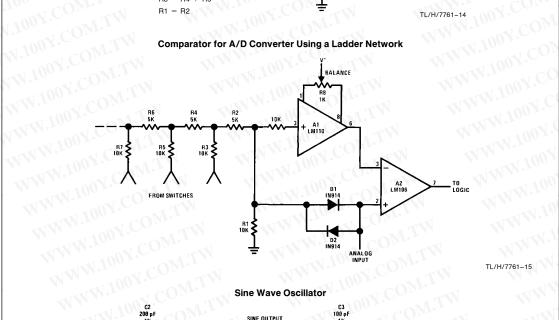
WWW.1007


WWW.100

WW

WWW.100Y.COM.TW

100Y.COM.TW


Bilateral Current Source

W.100Y.COM.T TL/H/7761–14

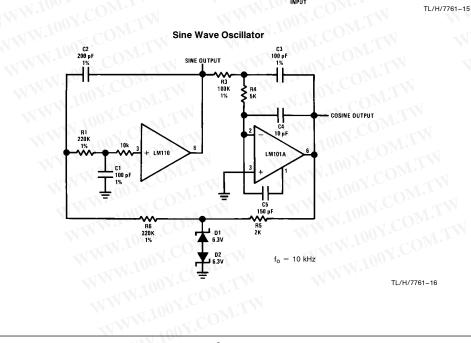
WWW.1007

Comparator for A/D Converter Using a Ladder Network

TL/H/7761-15

WWW.100

MMM:100


Y.COM.TW

JOY.COM.TW

100Y.COM.TW

N.100Y.COM.TW

Sine Wave Oscillator

WWW

<u>N</u>.COM.TW

WWW.100Y.COM 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WW.1007.COM.TW

TL/H/7761-18

WWW.1007.COM.TW

WWV

WWW.100 Y.COM.TW WWW.190Y.COM.TW WWW.100Y.COM.TW

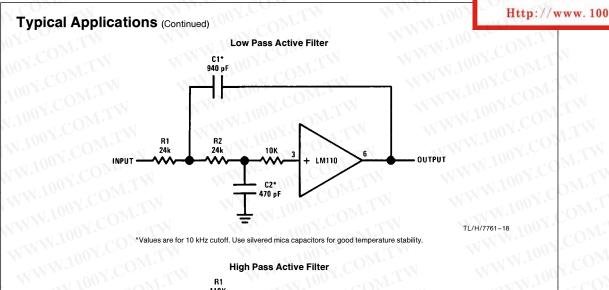
WWW 100Y.COM.TW

1.100Y.COM.TW

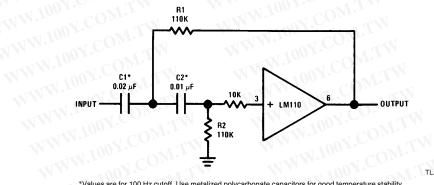
VWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW Typical Applications (Continued)

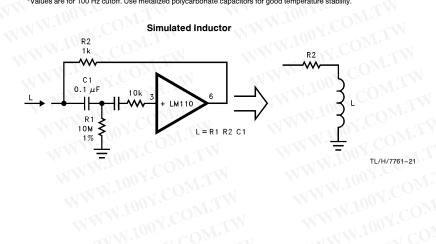

VWW.100Y.COM.TW

WWW.I


Low Pass Active Filter

100Y.COM.TW

WWW.100Y.COM.TW



L100Y

TL/H/7761-19 *Values are for 100 Hz cutoff. Use metalized polycarbonate capacitors for good temperature stability.

Simulated Inductor

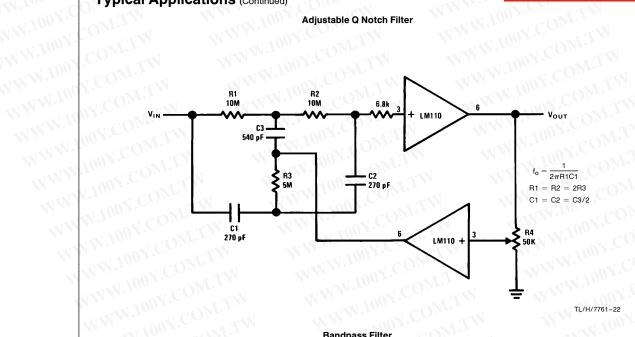
TL/H/7761-21 WWW.100Y.COM.TW WWW.100X.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW **Typical Applications (Continued)** WWW.100Y

VWW.100Y.COM.TW

WWW.1007


WWW

WWW.100Y.COM.TW

100Y.COM.TW

Adjustable Q Notch Filter

WWW.100Y

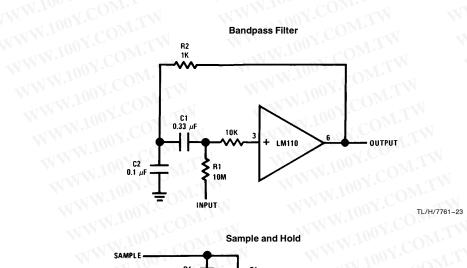
MMM.100

WWW.1003

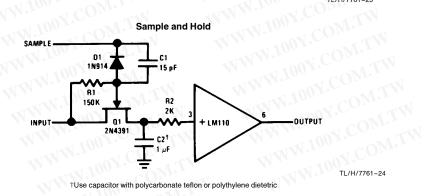
WWW

M.TW

WWW.10 IV.COM.TW


WWW.1 JOY.COM.TW

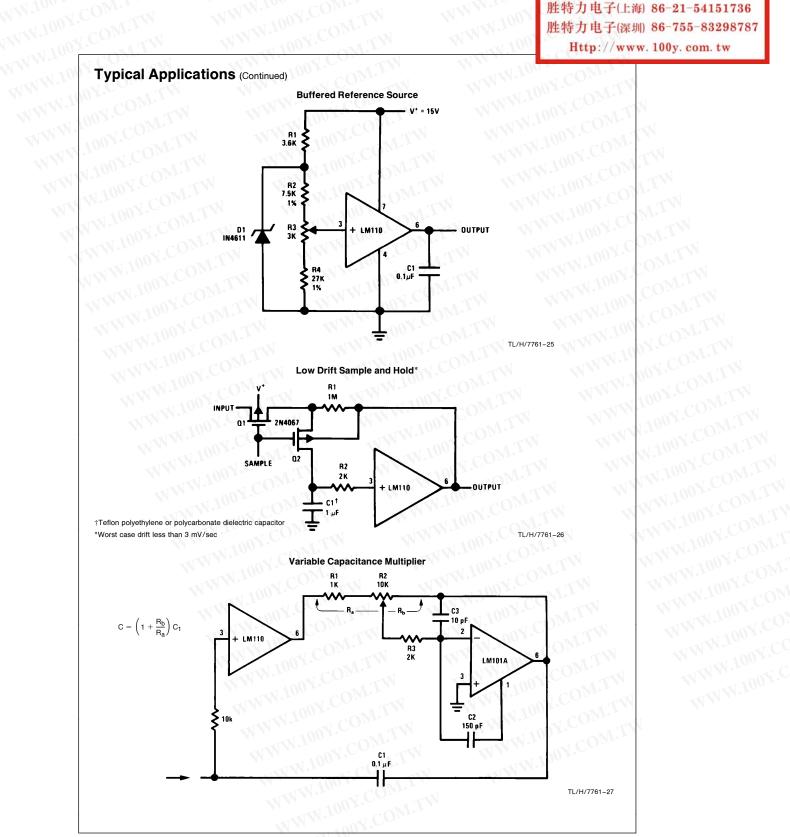
looy.COM.TW


.100Y.COM.TW

W.100Y.COM.TW

Bandpass Filter

Sample and Hold



†Use capacitor with polycarbonate teflon or polythylene dietetric

OY.COM.TW

NWW.100Y.C

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

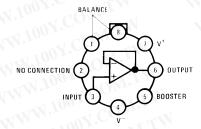
WWW.100Y.COM.TW

100Y.COM.TW

VWW.100Y.COM.TW

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

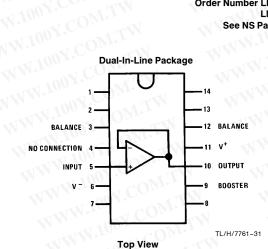

WWW.100Y.COM.TW **Connection Diagrams**

DY.COM.TW DOY.COM.TW

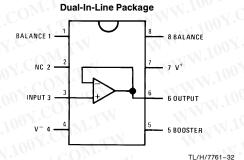
VWW.100Y.COM.TW

WWW.100Y.COM.TW

Metal Can Package



WWW.100Y.COM. WWW.100Y.COM TI /H/7761-30


Package is connected to Pin 4 (V⁻) **Top View**

Order Number LM110H, LM210H or LM310H LM110H/883*

See NS Package Number H08C

Order Number LM110J, LM210J, LM310J or LM110J/883* See NS Package Number J14A

Top View Order Number LM310M, LM310N or LM110J-8/883* See NS Package Number J08A, M08A or N08E

*Available per SMD# 5962-8760601

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

W.COM.TW

WWW.100Y.COM.TW VWW.100Y.COM.TW WWW.100Y Physical Dimensions inches (millimeters) 0.350 - 0.370(8.890 -- 9.398) DIA $\frac{0.315 - 0.335}{(8.001 - 8.509)} \text{ DIA}$ 0.025 UNCONTROLLED LEAD DIA 0.165 - 0.185 (4.191 - 4.699)REFERENCE PLANE SEATING PLANE 0.035 0.015 - 0.040 0.500 (0.889) MAX (0.381 - 1.016)(12.70) MIN $\frac{0.016 - 0.019}{(0.406 - 0.483)} \text{ DIA TYP}$ 0.195 - 0.205 DIA WWW.100Y.COM.TW 0.100 TYP (4.953-5.207) P.C. (2.540) $\frac{0.029 - 0.045}{(0.737 - 1.143)}$ 0.028 - 0.034 $\frac{0.115 - 0.145}{(2.921 - 3.683)}$ (0.711 - 0.864)DIA 45° EQUALLY HOSC (REV E) Metal Can Package (H) Order Number LM110H, LM110H/883, LM210H or LM310H NS Package Number H08C 0.400 MAX R0.010 TYP 8 7 6 5 0.220 0.310 MAX GLASS R0.025 TYP 1 2 3 4 0.045 0.065 TYP 0.290 0.320 0.005 GLASS MIN SEALANT 0.200 MAX MAX 0.060 0.150 0.125 MIN 0.200 90° ± 4° TYP 95° ± 5° TYP 0.055 MAX 0.310 0.018 ± 0.003 TYP 0.008 0.012 TYP JOSA (REV K) 0.100 ± 0.010 TYP **Dual-In-Line Package (J)** Order Number LM110J-8/883 NS Package Number J08A

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

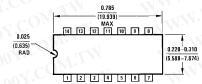
Http://www. 100y. com. tw

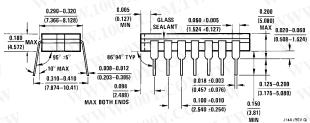
JOY.COM.TW

WWW.100Y.COM.TW Physical Dimensions inches (millimeters) (Continued)

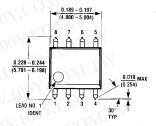
VWW.100Y.COM.TW

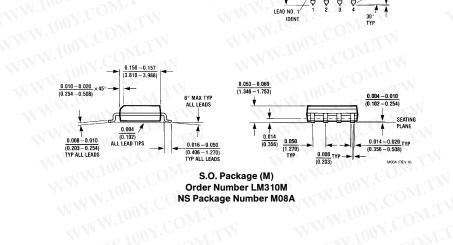
MMM.100

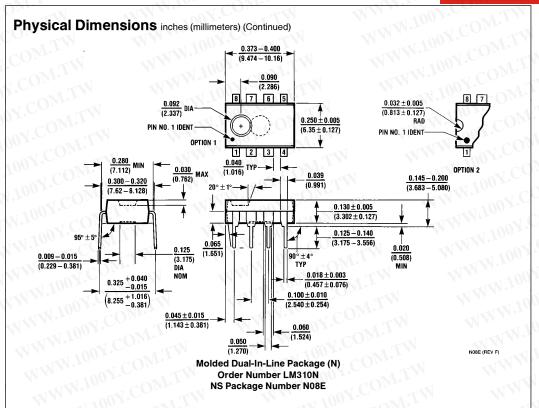

WWW.10


DY.COM.TW

00Y.COM.TW


WWW.100Y.COM.TW


100X.COM.TW


Ceramic Dual-In-Line Package (J) Order Number LM110J/883 **NS Package Number J14A**

S.O. Package (M) Order Number LM310M NS Package Number M08A

W.COM.TW

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconducto

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408