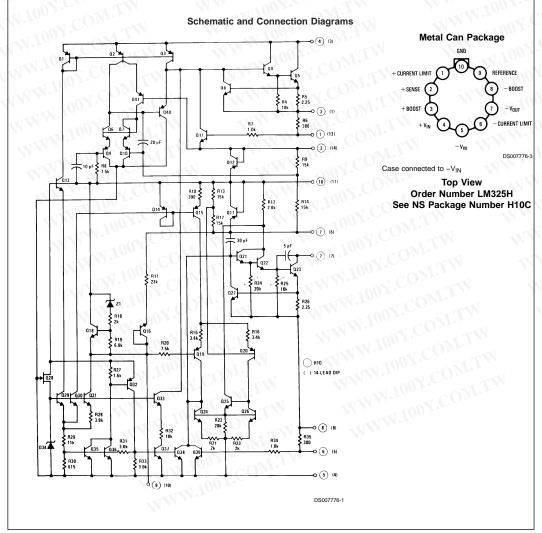

Http://www.100y.com.tw

June 1999


LM325 **Dual Voltage Regulator**

General Description

This dual polarity tracking regulator is designed to provide balanced positive and negative output voltages at current up to 100 mA, and is set for ±15V outputs. Input voltages up to ±30V can be used and there is provision for adjustable current limiting. The device is available in two package types to accommodate various power requirements and temperature ranges.

Features

- ±15V tracking outputs
- Output current to 100 mA
- Output voltage balanced to within 2%
- Line and load regulation of 0.06%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

WWW.100Y.COM.TW **Absolute Maximum Ratings** (Note 1)

WWW.100Y.COM.TW If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

> Input Voltage ±30V Forced V_O⁺ (Min) (Note 2) -0.5VForced V_O⁻ (Max) (Note 2) +0.5V Power Dissipation (Note 3) P_{MAX}

Output Short-Circuit Duration (Note 4)

Continuous

Y.COM.TW JOY.COM.TW 100Y.COM.TW

Operating Conditions

Operating Free Temperature Range 0°C to +70°C Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering, 10 sec.) WWW.100Y.C

Electrical Characteristics

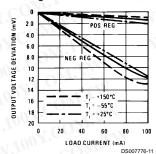
Parameter	Conditions	Min	Тур	Max	Units
Output Voltage	$T_j = 25^{\circ}C$	14.5	15	15.5	V
Input-Output Differential	1.700 x COM:1.	2.0	TW.II	7 (1	V
Line Regulation	$V_{IN} = 18V \text{ to } 30V, I_{L} = 20 \text{ mA},$ $T_{j} = 25^{\circ}\text{C}$		2.0	10	mV
Line Regulation Over Temperature Range	$V_{IN} = 18V \text{ to } 30V, I_{L} = 20 \text{ mA},$		20	20	mV
Load Regulation V_{O}^{+} V_{O}^{-}	$I_L = 0$ mA to 50 mA, $V_{IN} = \pm 30V$, $T = {}_{j} 25^{\circ}C$		3.0 5.0	10 10	mV mV
Load Regulation Over Temperature Range $V_O^+ \ V_O^-$	$I_L = 0$ mA to 50 mA, $V_{IN} = \pm 30V$	N	4.0 7.0	20 20	mV mV
Output Voltage Balance	$T_j = 25^{\circ}C$	M	M.	±300	mV
Output Voltage Over Temperature Range	$P \le P_{MAX}, \ 0 \le I_{O} \le 50 \text{ mA},$ $18V \le V_{IN} \le 30$	14.27	1	15.73	00V.
Temperature Stability of V _O	MINN.	TVV	±0.3	MAN	%
Short Circuit Current Limit	$T_j = 25^{\circ}C$	1.1	260	TAN V	mA
Output Noise Voltage	$T_j = 25^{\circ}C$, BW = 100 – 10 kHz	WILL	150	MA	μVrms
Positive Standby Current	$T_j = 25^{\circ}C$	Mrs	1.75	3.0	mA
Negative Standby Current	$T_j = 25^{\circ}C$	M.I.	3.1	5.0	mA
Long Term Stability	WW		0.2		%/kHr
Thermal Resistance Junction to Case (Note 5) LM325H Junction to Ambient Junction to Ambient	(Still Air) (400 Lf/min Air Flow)	COM:	20 215 82	N	°C/W °C/W
Junction to Ambient LM325N	(Still Air)	1.00	90		°C/W

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

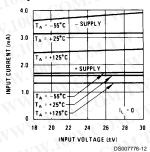
Note 2: That voltage to which the output may be forced without damage to the device.

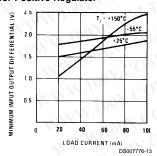
Note 3: Unless otherwise specified these specifications apply for $T_j = 0^{\circ}C$ to +125 $^{\circ}C$ on LM325, $V_{IN} = \pm 20V$, $I_L = 0$ mA, $I_{MAX} = 100$ mA, $P_{MAX} = 2.0W$ for the H10

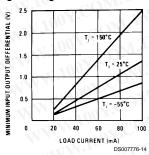
Note 4: If the junction temperature exceeds 150°C, the output short circuit duration is 60 seconds.

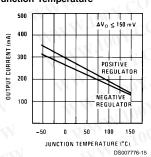

Note 5: Without a heat sink, the thermal resistance junction to ambient of the H10 Package is about 155°C/W. With a heat sink, the effective thermal resistance can WWW.100Y.COM.TW only approach the junction to case values specified, depending on the efficiency of the sink. WWW.100Y.COM.

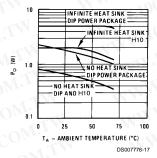
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

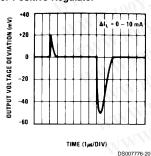

Http://www.100y.com.tw

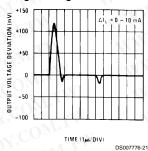

Load Regulation

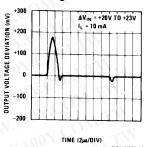

Standby Current Drain


Regulator Dropout Voltage for Positive Regulator


Regulator Dropout Voltage for Negative Regulator


Peak Output Current vs Junction Temperature

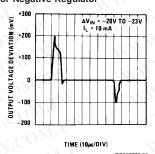

LM325 Maximum Average Power Dissipation vs Ambient Temperature


Load Transient Response for Positive Regulator

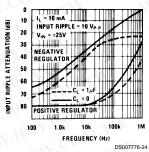
Load Transient Response for Negative Regulator

Line Transient Response for Positive Regulator

DS007776-2

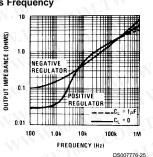

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw



NWW.100Y.COM.TW

Line Transient Response for Negative Regulator



Ripple Rejection

WWW.100Y

Output Impedance vs Frequency

M.TW

OM.TW

I.COM.TW

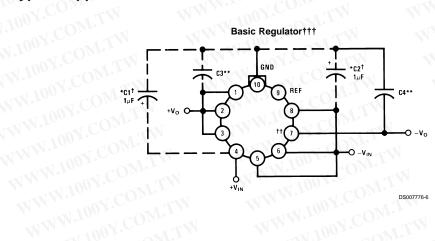
M.COM.TW

JOY.COM.TW

100Y.COM.TW

W.100Y.COM.T

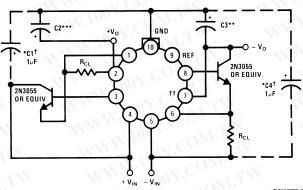
WW.100Y.COM


WWW.100Y.9

WWW.100Y

WWW.1007

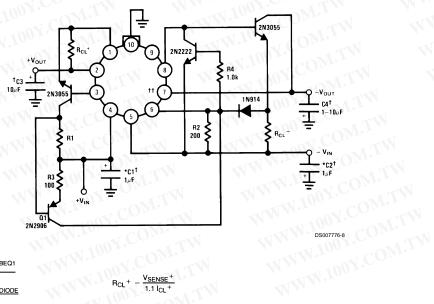
Typical Applications


Basic Regulator†††

Http://www.100y.com.tw

WWW.100Y.COM.T Typical Applications (Continued)

2.0 Amp Boosted Regulator with Current Limit



Note: Metal can (H) packages shown.

$$I_{CL} = \frac{\text{Current Limit Sense Voltage (See Curve)}}{R_{CL}}$$

- †Solid tantalum
- ††Short pins 6 and 7 on dip
- †††R_{CL} can be added to the basic regulator between pins 6 and 5, 1 and 2 to reduce current limit.
- *Required if regulator is located an appreciable distance from power supply filter.
- **Although no capacitor is needed for stability, it does help transient response. (If needed use 1 µF electrolytic.)
- ***Although no capacitor is needed for stability, it does help transient response. (If needed use 10 μF electrolytic.)

Positive Current Dependent Simultaneous Current Limiting

$$\begin{split} I_{CL}^{+} &= \frac{\frac{V_{SENSE}\,NEG}{2} + V_{BEO1}}{R1} \\ I_{CL}^{+} &= \frac{V_{SENSE}\,NEG}{R_{CL}^{-}} \\ I_{CL}^{+} &= \frac{V_{SENSE}\,NEG}{R_{CL}^{-}} \\ I_{CL}^{+} &= \frac{V_{SENSE}\,NEG}{R_{CL}^{-}} \end{split}$$

 $I_{CL}^{\ +}$ Controls Both Sides of the Regulator.

WWW.100Y.CO

WWW.100Y.

WWW.100Y

WWW.100

WWW.1

WT.MC

OM.TW

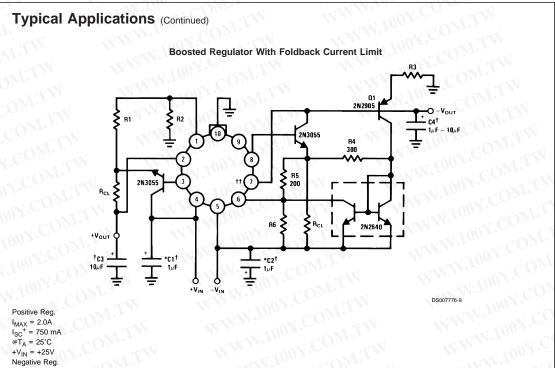
LCOM.TW

JOY.COM.TW 100Y.COM.TW

W.100Y.COM.T

WW.100Y.COM

WWW.100Y.COM.TW



WWW.100Y.COM.TW

Boosted Regulator With Foldback Current Limit

WWW.100Y.CC

100Y.C

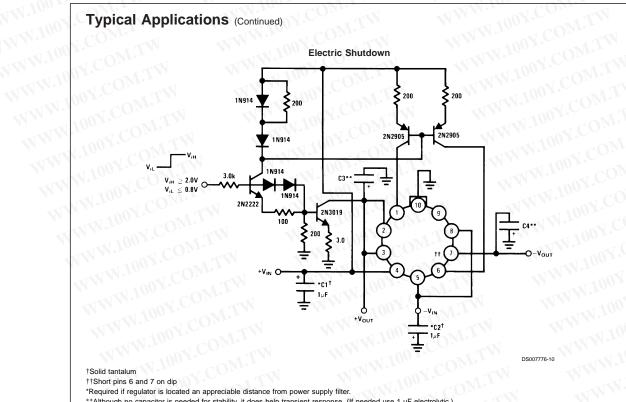
Positive Reg.

 $I_{MAX} = 2.0A$ $I_{SC}^{+} = 750 \text{ mA}$ $@T_A = 25^{\circ}C$

+V_{IN} = +25V

Negative Reg.

 $I_{MAX} = 2.0A$ $I_{SC} = 750 \text{ mA}$


Resistor Values

WW	125	126
R1	18	20
R2	310	180
R3	2.4k	1.35k
R6	300	290
R _{CL}	0.7	0.9

Http://www. 100y. com. tw

ox.com.TW

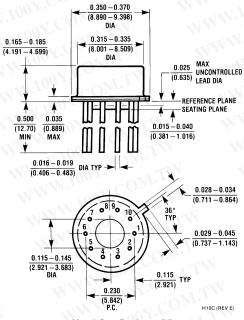
WWW.100Y.COM.TW WWW.100Y.COM.TW Typical Applications (Continued)

WWW.100

 $W_{\underline{\Lambda}}$

WWW.100Y.COM.TW

†Solid tantalum


WWW

††Short pins 6 and 7 on dip

WWW.100Y.COM.TW *Required if regulator is located an appreciable distance from power supply filter. **Although no capacitor is needed for stability, it does help transient response. (If needed use 1 μF electrolytic.)

WWW.100Y.COM.TW

Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H) Order Number LM325H NS Package Number H10C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

