February 1995

LM320L, LM79LXXAC Series 3-Terminal Negative Regulators

General Description

The LM320L/LM79LXXAC series of 3-terminal negative voltage regulators features fixed output voltages of -5V, -12V, and -15V with output current capabilities in excess of 100 mA. These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of 0.1 $\mu\text{F},$ exhibits an excellent transient response, a maximum line regulation of 0.07% $\text{V}_{\text{O}}/\text{V},$ and a maximum load regulation of 0.01% $\text{V}_{\text{O}}/\text{mA}.$

The LM320L/LM79LXXAC series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM79LXXAC series is available in the 3-lead TO-92 package, and SO-8; 8 lead package. The LM320L series is available in the 3-lead TO-92 package.

For output voltage other than -5V, -12V and -15V the LM137L series provides an output voltage range from 1.2V to 47V.

Features

- \blacksquare Preset output voltage error is less than $\pm 5\%$ overload, line and temperature
- Specified at an output current of 100 mA
- Easily compensated with a small 0.1 μF output capacitor
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than 0.07% V_{OUT}/V
- Maximum load regulation less than 0.01% V_{OUT}/mA

Typical Applications

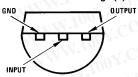
Fixed Output Regulator C1* C2** -VIN O LM320LZ LM79LXXACZ O -VOUT

TL/H/7748-1

Adjustable Output Regulator + C3 0.1 µF R2 + C2 0.1 µF -V_{IN} -V_O = -5V - (5V/R1 + I_O) • R2,

5V/R1 > 3 I_Q

Connection Diagrams


SO-8 Plastic (Narrow Body)

TL/H/7748-4

Order Number LM79L05ACM, LM79L12ACM or LM79L15ACM See NS Package Number M08A

TO-92 Plastic Package (Z)

TL/H/7748-2

Bottom View

Order Number LM320LZ-5.0, LM79L05ACZ, LM320LZ-12, LM79L12ACZ, LM320LZ-15 or LM79L15ACZ See NS Package Number Z03A

^{*}Required if the regulator is located far from the power supply filter. A 1 μF aluminum electrolytic may be substituted.

^{**}Required for stability. A 1 μ F aluminum electrolytic may be substituted.

Http://www. 100y. com. tw

WWW.100Y.COM.TW **Absolute Maximum Ratings**

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Input Voltage

VWW.100Y.COM.TW

 $V_0 = -5V, -12V, -15V$

-35V

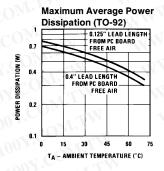
Internal Power Dissipation (Note 1)

Internally Limited

WWW.100Y.COM.TW

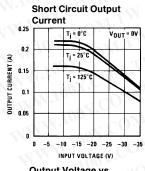
Operating Temperature Range 0°C to +70°C +125°C Maximum Junction Temperature -55° C to $+150^{\circ}$ C Storage Temperature Range Lead Temperature (Soldering, 10 sec.) 260°C

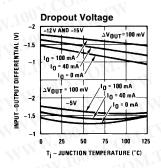
Electrical Characteristics (Note 2) T_A = 0°C to +70°C unless otherwise noted.

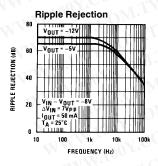

Output Voltage Input Voltage (unless otherwise noted)				−5V −10V			−12V −17V			−15V −20V		
V _O	Output Voltage	$Tj = 25^{\circ}C, I_{O} = 100 \text{ mA}$	-5.2	-5	-4.8	-12.5	-12	-11.5	-15.6	-15	-14.4	00 -
		$1 \text{ mA} \leq I_O \leq 100 \text{ mA}$ $V_{MIN} \leq V_{IN} \leq V_{MAX}$	-5.25 (-20 ≤	V _{IN} ≤	1110	-12.6 (-27 ≤	V _{IN} ≤		-15.75 (-30 ≤		−14.25 (−18)	, v
		$\begin{array}{l} 1 \text{ mA} \leq I_O \leq 40 \text{ mA} \\ V_{MIN} \leq V_{IN} \leq V_{MAX} \end{array}$	-5.25 (-20 ≤	≤ V _{IN} ≤	-4.75 ≤ -7)				-15.75 (-30 ≤		14.25 17.5)	1
ΔV _O	Line Regulation	$Tj = 25^{\circ}C$, $I_O = 100 \text{ mA}$ $V_{MIN} \le V_{IN} \le V_{MAX}$		V _{IN} ≤	60 -7.3)	(−27 ≤	V _{IN} ≤	45 -14.6)	(−30 ≤	V _{IN} ≤	45 17.7)	mV V
		$Tj = 25$ °C, $I_O = 40$ mA $V_{MIN} \le V_{IN} \le V_{MAX}$	(-20 s	≤ V _{IN} ≤	60 ≤ -7)	(−27 ≤	V _{IN} ≤	45 -14.5)	(−30 ≤	V _{IN} ≤	45 17.5)	mV V
ΔV _O	Load Regulation	$Tj = 25^{\circ}C$ 1 mA $\leq I_O \leq$ 100 mA		W	50	1.100	Y.C	100			125	mV
ΔV_{O}	Long Term Stability	I _O = 100 mA		20		N.10	48	COM		60		mV/khrs
ΙQ	Quiescent Current	I _O = 100 mA		2	6	×11	2	6	TIV	2	6	mA
ΔIQ	Quiescent Current Change	$1 \text{ mA} \le I_{O} \le 100 \text{ mA}$	N		0.3	1111	.003	0.3		N	0.3	WW
		1 mA \leq I $_{O} \leq$ 40 mA	_<1		0.1	WW.	Inc	0.1	Mr	TXI.	0.1	mA
		I _O = 100 mA			0.25		1700	0.25	M	1.	0.25	mA
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(−20 ≤	V _{IN} ≤	-7.5)	(-27 ≤	$V_{IN} \leq$	-14.8)	(-30 ≤	≤ V _{IN} ≤	-18)	V
V _n		Tj = 25°C, l _O = 100 mA f = 10 Hz - 10 kHz	WI.	40		WW	96	00 V.		120	N	μV
$\frac{\Delta V_{IN}}{\Delta V_{O}}$		$Tj = 25^{\circ}C, I_{O} = 100 \text{ mA}$ f = 120 Hz	50	N		52		7002	50	M	W	dB
	Input Voltage Required to Maintain Line Regulation	$Tj = 25^{\circ}C$, $I_{O} = 100 \text{ mA}$ $I_{O} = 40 \text{ mA}$	OM.T	TW	-7.3 -7.0		NW	-14.6 -14.5	OY.C	COJ OM	-17.7 -17.5	V V

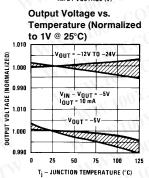
Note 1: Thermal resistance of Z package is 60°C/W θ_{jc} , 232°C/W θ_{ja} at still air, and 88°C/W at 400 ft/min of air. The M package θ_{ja} is 180°C/W in still air. The maximum junction temperature shall not exceed 125°C on electrical parameters. WWW.100Y.COM.

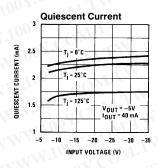

Note 2: To ensure constant junction temperature, low duty cycle pulse testing is used. WWW.100Y.COM.T

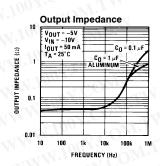

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

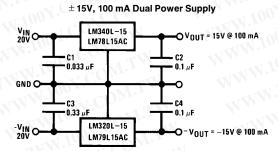

WWW.100Y.COM.TW **Typical Performance Characteristics**

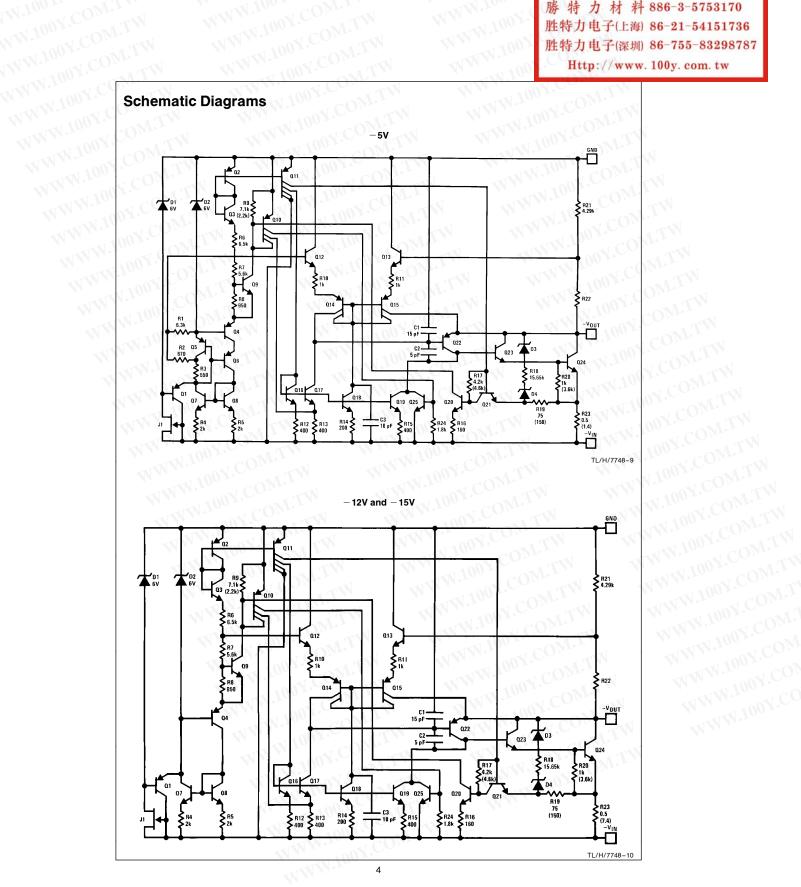



VWW.100Y.COM.TW








TL/H/7748-5

OY.COM.TW

Typical Applications (Continued)

TL/H/7748-6

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

MTW

ov.COM.TW

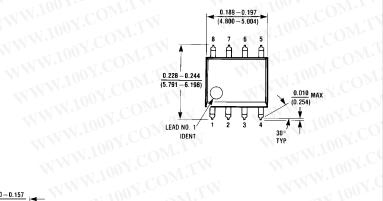
00X.COM.TW

NWW.100Y.COM.TW

WWW.100Y.COM.TW Physical Dimensions inches (millimeters) WWW.100Y.COM.TW WWW.100Y

VWW.100Y.COM.TW

WWW.100

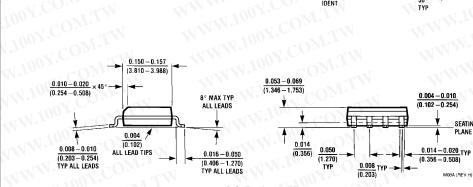

WWW.19 OY.COM.TW

DOY.COM.TW

100Y.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

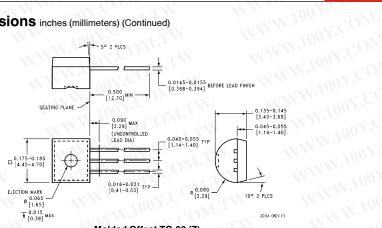


100X.

SEATING

WWW.100Y.COM.TV

WWW.



S.O. Package (M) Order Number LM79L05ACM, LM79L12ACM or LM79L15ACM NS Package Number M08A WWW.100Y.COM.TW

MMM

<u>w</u>.com.tw

Physical Dimensions inches (millimeters) (Continued)

Molded Offset TO-92 (Z) Order Number LM320LZ-5.0, LM79L05ACZ, LM320LZ-12, LM79L12ACZ, LM320LZ-15 or LM79L15ACZ NS Package Number Z03A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

M.COM.TW

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

