

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

DOT MATRIX LIQUID CRYSTAL DISPLAY MODULE

USER' MANUAL

MODEL: LMG-SS24D12DLNW-E

PRO	POSED BY	APPROVED
Design	Approved	WWW.100X.COM.TW
	WWW.TOOY.COM.TY	MANATOON CONTEN
	WWW.100Y.COM.T	M MM TW TOOK COM TW
	MALM TOOK COM	TW WWW.100Y.COM.TY
	MM 100X COV	T.TW WWW.100X.COM.T
	WW.100Y.CO	W.TW WWW.100Y.COM
	WW.100Y.C	DW.TW WWW.1001.5
	W 1007.0	

SDEC TECHNOLOGY CORP.

WWW.100Y.COM.IV CONTENTS

	CONT	TENTS COMPANY COMPANY	
			PAGE
1.	GENERAL AND MECHANICAL		N 2
2.	ABSOLUTE MAXIMUN RATINGS		2
	2.1 Electrical absolute maximum rating	SOMITY WWW.1007.COM	2
	2.2 Environmental absolute maximum	ratings	1.TY 2
3.	ELECTRICAL CHARACTERISTIC	SCOWIEW WWW.100X.CO	OM.TW3
4.	ELECTRO-OPTICAL CHARACTE	RISTICS	COM 3
5.	BLOCK DIAGRAM AND POWER S	SUPPLY	y.co.4
6.	TIMING CHARACTERISTICS		00 ^Y .C 4 ^M
7.	DIMENSION OUTLINE AND PIN (CONNECTIONS	1.100 × .CO
8.	POWER SUPPLY FOR BACKLIGH	TWWW.100Y.COM.TW WW	VV.100 X.C
9.	DISPLAY CONTROL INTEUCTION	NS WWW.100X.COM.TW W	WW.1201
	9.1 Description of command		WW 5
	9.2 Display variables		8
	9.3 Initialize LCM register set list		9
10	INTERFACE FOR MPU	勝 特 力 材 料 886-3-5753170	9
10.	10.1 Interface to 80 family	胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787	9
	10.2 Interface to 68 family	胜特力电子(深圳) 80-735-83298787 Http://www.100y.com.tw	9
11.	RELIABILITY CONDITION	T. TWW. DOV. COM. TW	10
12.	FUNCTIONAL TEST & INSPECTIO	N CRITERIA	1 0
1.2	CC DOTA DA EMPERATA		TW
L 3.	CG ROM PATTERN		12

MAM.TO	OY.COM.TW	N	MMM.100	OY.COM.T	LM	
Model	ON.COM.	TW L	MG-SS24D12	2DLNW-E	TW	
Dot Matrix Format	Too Y.COM	WT	240 × 128	8 dots	NT.IV	
Controller IC	M. TOON CON	WT	LC7981 or ec	quivalent	WIW	
Dimensional Outline	W.F. 100X.CO	144.0V	W × 104.0H	× 13.0D	mm	
Viewing Area	17V. 100Y.C	MI	14.0W × 61.	.0H mm	COM.TW	
Active Viewing Area	14/V.	10	5.56W × 56.	.28H mm	I.COM.TV	
Dot Pitch	1001	CO	$0.44W \times 0.44$	4H mm	TMON	N
Dot Size	MM 4.	Y.Co	$0.40W \times 0.40$	0H mm	ON.COM.	Ţ.N
Viewing Direction	6 OʻCLOCK					
LCD Mode	STN, Blue, extended temperature					
BACKLIGHT TYPE	LED USE INVERTER					
BACKLIGHT INPUT	DC +3.5V	V	240	mA	TOON CE	Hz

ABSOLUTE MAXIMUM RATINGS:

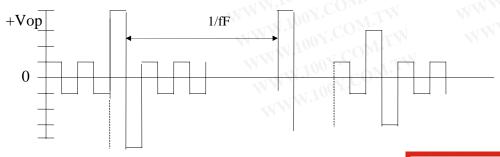
2.1 Electrical absolute maximum rating

ITEM	SYMBOL	MIN	MAX	UNIT
Logic Circuit Supply Voltage	V _{DD} - V _{SS}	V.COO	7.0	V.C.
LCD Driver Circuit Supply Voltage	$V_{ m DD}$ - $V_{ m EE}$	0	15.0	V
Input Voltage	$V_{\rm I}$	V_{SS}	$V_{ m DD}$	V
Operating Temperature	T_{OP}	-10	+70	$\mathbb{C}^{\mathbb{C}}$
Storage Temperature	T_{ST}	-20	+80	$^{\circ}$ C

2.2 Environmental absolute maximum ratings

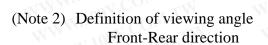
ITEM	OPER.	ATING	STOI	RAGE	COMMENT	
W	MIN	MAX	MIN	MAX	M.TW WY.10	
Ambient Temperature	0/-20	50/70	-10/-30	60/80	Norm/Extended Note (1)	
Humidity	Note	e (2)	Not	e (2)	Without condensation	
Vibration	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.9m/s^2	u vu	19.6m/s^2	XYZ directions	
Shock	W.10	29.4m/s^2		490.0m/s^2	XYZ directions	

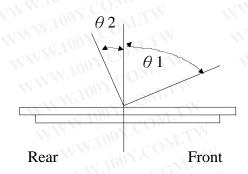
Note (1) Ta at 60°C 50 HR MAX Ta ≤40°C Note (2) 90% RH MAX

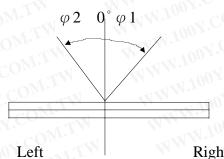

> Ta $>40^{\circ}$ C Absolute humidity must be lower than the humidity of 90% at 40° C.

(Note 1) Definition of response time and measuring condition. Response time should be measured at the point of the most smallest response in all segments under the following condition.

Temperature


Frame frequency 64 Hz


 $\theta = 0^{\circ}, \quad \varphi = 0^{\circ}$ Viewing angle


- 2-

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Right-Left direction

3. ELECTRICAL CHARACTERISTICS

$$V_{SS} = 0V$$
, $Ta = 25^{\circ}C$

ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Logic Circuit Power Supply	V_{DD} - V_{SS}	WW 100	4.75	5.0	5.25	V
LCD Driver Power Supply	$V_{ m DD}$ - $V_{ m EE}$	WANN	11.75	12.5	13.25	V
Input Voltage	V_{IH}	$V_{DD} = 5V \pm$	0.7*V _{DD}	. TV	V_{DD}	V
M.100	$V_{\rm IL}$	0.25	000		0.3*V _{DD}	V
Power Supply Current	I_{DD}	$V_{DD} = 5V$	100 = CC	M	15.0	mA
WW.	I_{EE}	$V_{EE} = -10V$	1005	$0M_{\overline{M}}$	2.0	mA

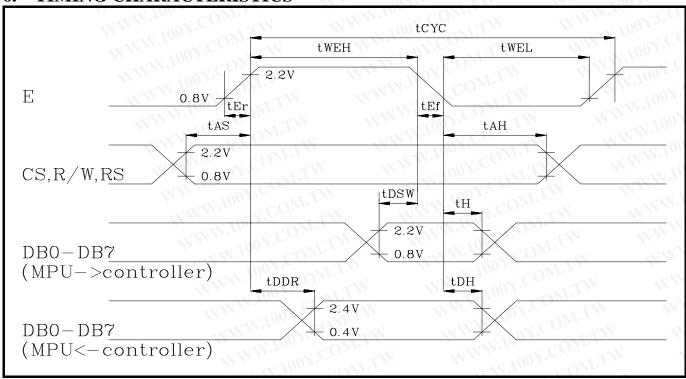
4. ELECTRO-OPTICAL CHARACTERISTICS

ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT	REF.
Rise Time	Tr	25°C	W	396	COL	mS	Note 1
Fall Time	Tf	25°C		109	$^{\Lambda,C}$ $_{UM}$.	mS	Note 1
Contrast	Cr	25°C		12.3	W COM	-CV	Note 3
Viewing Angle	θ	25°C &	50	1.W - W.1	TCO)	DEG	Note 2
	φ 1, φ 2	Cr≧3		40	- CC	DEG	Note 2
Frame Frequency	Ff	25°C		64	1007.	Hz	

Note 1&2: See previous page.

Note 3 : Contrast ration is defined under the following condition.

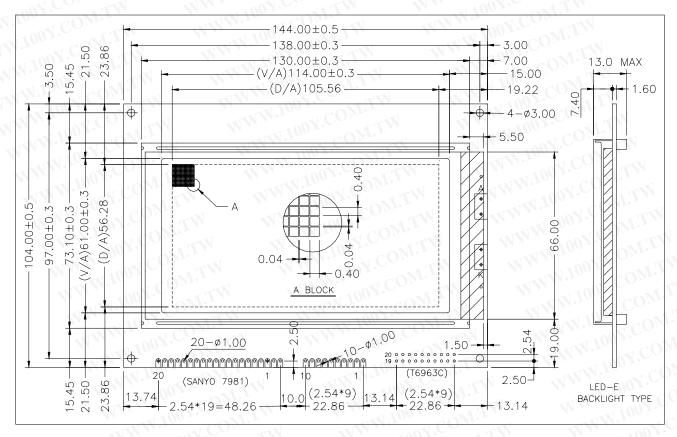
Cr = reflectance value of non-selected condition ÷ reflectance value of selected condition.


- (a) Temperature...... 25° C
- (b) Frame frequency...... 64 Hz
- (c) Viewing angle..... $\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
- (d) Operating voltage......12.5V

- 3-

5. BLOCK DIAGRAM AND POWER SUPPLY

6. TIMING CHARACTERISTICS


ITEM	SYMBOL	MIN	TYP	MAX	UNIT
Enable cycle time	tcyc	1000	WW.IO	$^{A}C_{OM}$	ns
Enable pulse width High/Low level	tweh,twel	450	-4V.10	T COM	ns
Enable rise/fall time	ter, tef		W = 101.1	25	ns
Setup time	tas	140	M A		ns
Data setup time	tosw	225			ns
Data delay time	tddr			225	ns*
Data hold time	th	10			ns
Address hold time	tан	10			ns
Output data hold time	tдн	20			ns

Note: * The following load circuit is connected for specification

7. DIMENSION OUTLINE AND PIN CONNECTIONS

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

NO.	SYMBOL	FUNCTION	NO.	SYMBOL	FUNCTION
1	Vss	Ground	15	/CS	Chip enable
2	V _{DD}	Power supply for logic circuit	16	/RES	Controller reset
3	Vo	Power supply for LCD circuit	17	VEE	Negative voltage input
4	RS	Instruction / Data	18	N.C	WW. WILL
5	R/W	Read / Write	19	A A	CON TW WWW.
6	Е	Enable Signal	20	K	COM. TAIN MAIN.
7~14	DB0~DB7	Data bus line		WWW.IO	V.COM. TWWW

POWER SUPPLY FOR BACKLIGHT 8.

ITEM	SPECIFICATION	NOTE
Color	White	171 100 1. COM: I.M.
CCFL Voltage(INPUT)	WW TOOK ONLIN	WW. 100Y. COMITW
CCFL Frequency	WWW.100Y.CO	100x.00M.TW
Inverter Current Density	WWW. 100X'CO, TW	WWW. 100X.Com.TW
Initial Brightness	WWW. COX. COX. TW	WWW.100Y.CO.TW
Half-Life Time	10,000HR.	TINW. TO COM

DISPLAY CONTROL INSTRUCTIONS 9.

9.1 Description of command

Display is controlled by writing data into the instruction register and 13 data registers. The RS signal distinguishes the instruction register from the data registers. 8-bit data is written into the instruction register with RS=1, and the code of data register is specified. After that, the 8-bit data is written in the data register and the specified instruction is executed with RS=0. During the execution of the instruction, no new instruction can be accepted. Since the busy flag is set during this, read the busy flag and make sure it is 0 before writing the next instruction.

9.1.1 Mode Control

Code \$"00" (hexadecimal) written into the instruction register specifies the mode control register.

		-4 N L V		\mathcal{U}			8.5	Z 1 L L L L 1 L 1 L 1 L 1 L 1 L 1 L 1 L	0	
REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0	1	0	0	0	0	0	0	0	0
Mode Control Register	0	0	0	0	Mode Data					

DB5	DB4	DB3	DB2	DB1	DB0	Cursor/blink	CG	Graphic/Character
WW	W	0	0		WW	Cursor OFF	100	Y.C. M.TW
- 11	Min	0	1	N		Cursor ON	Internal	OV.COLL TW
	TIN.1	1	0	-7	0	Cursor OFF, Character blink	CG	COM
1N	- 41	001	1			Cursor blink	W.	ion. COWIT.
1/0	1/0	0	0	0	4	Cursor OFF	MAL	Character Mode
	TIWW.	0	c_{DN}	- TXN		Cursor ON	Internal	TY CO
	-XT	10^{10}	0	T.r.	1	Cursor OFF, Character blink	CG	M. In. COM.
	MAA	1,00	1	MIN		Cursor blink	V .	W.100 COM.
	WV	0	0	1	0	WW TOOY. CONTY	MA	Graphic Mode

▶ 1: Master Mode 0: Slave Mode *Normal is set Master Mode

→ 1: Display ON 0: Display OFF

9.1.2 Set Character Pitch

REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0	1	0	0	0	$\sim 0^{1/2}$	0	0	0	100
Character Pitch Register	0	0		(Vp -1) Binary	Mo	0	(H ₁	o -1) Bin	ary

Vp indicates the number of vertical dots per character. The space between the vertically-displayed characters is considered for determination. This value is meaningful only during character display (in the character mode) and becomes invalid in the graphic mode. The Hp indicates the number of horizontal dots per character in display including the space between horizontally-displayed characters. In the graphic mode, the Hp indicates the number of bits of 1 byte display data to be displayed. Three Hp values:

Нр	DB2	DB1	DB0	WWW. 100X.CO. TITW WWW. 10
6	1	0 CO	1	Horizontal character pitch 6
7	1	W.141	0	Horizontal character pitch 7
8	1	1001	11.11	Horizontal character pitch 8

9.1.3 Set Number of Characters

REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0	17.	0	0	0	0	0	0	1	0
Number of Character Register	0	0	0	TW	V	(Hr	n -1) Bin	ary	W	W

Hn indicates the number of horizontal characters in the character mode r the number of horizontal bytes in the graphic mode. If the total sum of horizontal dots on the screen is taken as n, n = Hp x Hn. Hn can be set with an even number of 2 to 128 (decimal).

9.1.4 Set Number of Time Division (inverse of display duty ratio)

REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0	1	0	0	0	0	0	0	1,1	1
Character Pitch Register	0	0	W.I	V.COD	TW	(Nx -1) Binary	. No.	Con	

Nx indicates the number of time division in multiplex display. 1/Nx is a display duty ration. A value of 1 to 128 (decimal) can be set to Nx.

9.1.5 Set Cursor Position

REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0	1	0	0	0	0	0	1	0	0
Cursor Position Register	0	0	0	0	0	0		(Cp -1)	Binary	

Cp indicates the position in a character where the cursor is displayed in the character mode. For example, in 5x7 dot font, the cursor is displayed under a character by specifying Cp=8 (decimal). The cursor

horizontal length is equal to the horizontal character pitch Hp. A value of 1 to 16 (decimal) can be set to Cp. If a smaller value than the number of vertical character pitches Vp is set $(Cp \le Vp)$, and a character is overlapped with the cursor, the cursor has higher priority of display (at cursor display ON). If Cp is greater than Vp, no cursor is displayed. The cursor horizontal length is equal to Hp.

9.1.6 Set Display Start Low Order Address

REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0	1.0	0	0	0 <	0	1	0	0	0
Display Start Address Register (low order byte)	0	0	0Mr	(S	tart lov	v order	addres	s) Bina	ary	N

9.1.7 Set Display start High Order Address

REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0	1	0	0	0	0	1	0	$\sim 0^{\text{M}}$	1
Display Start Address Register (high order byte)	0	0	1.00	(St	art hig	h order	addre	ss) Bin	ary	1.7.1

These instructions cause display start addresses to be written in the display start address registers. The display start address indicates a RAM address at which the data displayed at the top left end on the screen is stored. In the graphic mode, the start address is composed of high/low order 16 bits. In the character display, it is composed of he lower 4 bits of high order address (DB3 - DB4) and 8 bits of low order address. The upper 4 bits of high order address are ignored.

9.1.8 Set Cursor Address (low order) (RAM write low order address)

REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0.0	1.1	0	0	0	0	111	0 🕥	1	0
Cursor Address Counter (low	0.0	0		WIN	(Cursor	low orde	r addres	s) Binary	MAN	O.Y.C
order byte)	10 J.	MIL								100

9.1.9 Set Cursor Address (high order) (RAM write high address)

	. 0	- / (- 0						
REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0.0	1	0	0	0	000.	1.1	0	1	1100
Cursor Address Counter (high	0	0	WT	(Vp -1) Binary	100Y.	0	(H ₁	o -1) Bin	ary
order byte)	M.In.	<1 CO	VI.				CO_{Dr}	TVN		MM.

These instructions cause cursor addresses to be written in the cursor address counters. The cursor address indicates and address for sending or receiving display data and character codes to or from the RAM. Namely, data at address specified by the cursor address are read/written. In the character mode, the cursor is displayed at the digit specified by the cursor address. A cursor address consists of the low-order address (8 bits) and the high-order address (8 bits). Satisfy the following requirements.

1	When you want to rewrite (set) both the low order address and the high order address.	Set the low order address and then set the high order address.
2	When you want to rewrite only the low order address.	Don't fail to set the high order address again after setting the low order address.
3	When you want to rewrite only the high order address.	Set the high order address. You don't have to set the low order address again.

The cursor address counter is a 16 bit up-count with SET and RESET functions. When the bit N Changes from 1 to 0, the bit N+1 is added by 1. When setting the low order address, the LSB (bit 1) of the high order address is added by 1 if the MSB (bit *) of the low order address changes from 1 to 0. Therefore, set both the low order address and the high order address as shown in above table.

9.1.10 Write Display Data

9.1.11

						4				
REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	0	1	0	0	0	0	1	1	0	0
RAM	0	0	WWW	MS	SB (patte	rn data,	characte	code) L	SB	

After the code \$"OC" is written into the instruction register with RS=1, 8 bit data with RS=0 should be written into the data register. This data is transferred to the RAM specified by the cursor address as display data or character code. The cursor address is increased by 1 after this operation.

REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Instruction Register	0	100	0	0	0	0	301	COI_{V}	0	1	
RAM	0	040	O.Y.	MS	SB (patte	rn data,	characte	r code) I	SB		

Data can be read from the RAM with RS=0 after writing code \$"0D" into the instruction register. The read procedure is as follows:

This instruction outputs the contents of data output register on Data Bus (DB0 to DB7) and then transfers RAM data specified by a cursor address to the data output register, also increasing the cursor address by 1. After setting the cursor address, correct data is not output at the first read but at the second time. Thus, make one dummy read when reading data after setting the cursor address.

9.1.12 Set Bit

REGISTER	Oh	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Instruction Register	co_{M}	0	1	0	0, 0	0.0	0	1	1	V.101	1.1
Bit Set Register	~01	0	0	0	0	0//	0	0	$MM.I_0$	=1 C.C	Mr.

The Clear/Set bit instruction sets 1 bit in a byte of display data RAM to 0 or 1, respectively. The position of the bit in a byte is specified by NB and RAM address is specified by cursor address. After the execution of the instruction, the cursor address is automatically increased by 1. NB is a value of 1 to 8. NB=1 and NB=8 indicates LSB and MSB, respectively.

9.1.13 Read Busy Flag

DECIGRED	D ATT	D.C.	DD5	DDC	DD5	DD4	DDA	DDA	DD1	DDO
REGISTER	R/W	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Busy Flag	0	1 1	1/0		700 .	COM.	*	1	MIN.TU	-7.00

When the read mode is set with RS=1, the busy flag is output to DB7. The busy flag is set to 1 during the execution of any of instructions (1) to (13). After the execution, it is set to 0. The next instruction can be accepted. No instruction can be accepted when busy flag=1. Before executing an instruction or writing data, perform a busy flag check to make sure that busy flag is 0. When data is written in the register (RS=1), no busy flag changes. Thus, no busy flag check is required just after the write operation into the instruction register with RS=1. The busy flag can be read without specifying any instruction register.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

NW.100Y.COM.TW

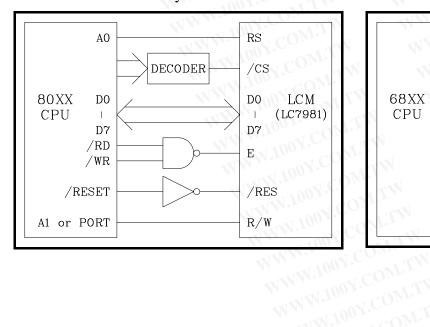
WWW.100Y.COM.TW

a V	COM.TW WWW.100Y	Y.COM.TW WWW.100Y.COM.	TW TW
Symbol	Name	Meaning	Value
Нр	Horizontal character pitch	Lateral character pitch	6 to 8 dots
Hn	Number of horizontal characters	Number of lateral characters per line (number of digits) in the character mode or number of bytes per line in the graphic mode.	2 to 128 digits (an even number)
Vp	Vertical character pitch	Longitudinal character pitch.	1 to 16 dots
Cp	Cursor position	Line number on which the cursor can be displayed.	100Y.COM.TW
nx	Number of time division	Inverse of display duty ratio	1 to 128 lines

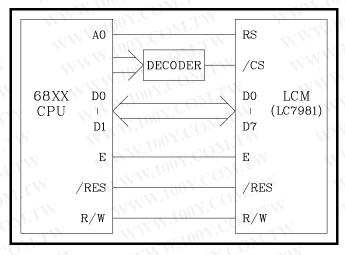
Note: If the number of vertical dots on screen is taken as m, and the number of horizontal dots as n,

1/m = 1/Nx = display duty ratio

n = Hp x Hn, m/Vp = Number of display lines


Cp≦Vp

9.3 Initialize LCM register set list


Register number	0Н	1H	2H	3Н	4H	8H	9H	AH	BH
Character mode	1CH	77H	27H	7FH	07H	00H	00H	00H	H00
Graphics mode	12H	77H	1DH	7FH	07H	00H	00H	00H	H00

10. INTERFACE FOR LCM

10.1 Interface to 80 family

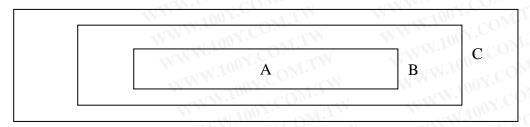
10.2 Interface to 68 family

Http://www.	100v com tw		CTN	Гуре	STN	Туре	
Http://www.	Tooy. com. tw	N)	Normal Temp.	Wide Temp.	Normal Temp.	Wide Temp.	
Viewing	Horizontal (Ď	±30°	±30°	±30°	±30°	
Angle	Vertical ⊖(m)	10° to 30°	10° to 30°	-10° to 40°	-10° to 40°	
Operatin	g Temperature		-10 to 70°C	-25 to 80°C	0 to 50°C	*-20 to 70°C	
Storage	Temperature		-20 to 80°C	-35 to 90°C	-20 to 70°C	*-30 to 80°C	
High Tempe	rature (Power Of	f)	240 Hours @70°C	240 Hours @90°€	240 Hours @65°C	240 Hours @75°C	
Low Temper	Low Temperature (Power Off)			240 Hours @-35°C	240 Hours @-15°C	240 Hours @-25°C	
High Tempe	High Temperature (Power On)			240 Hours @80°C	240 Hours @60°C	240 Hours @70°C	
Low Tempe	Low Temperature (Power On)		240 Hours @-10°C	240 Hours @-25°C	240 Hours @-10°C	240 Hours @-20°C	
High Temperature & High Humidity			55°C/90%RH 240 Hours	75°C/90%RH 240 Hours	45°C/90%RH 240 Hours	65°C/90%RH 240 Hours	
Thermal Shocl	k C	A	60min@-20°C	60min@-35°C	60min@-20°C	60min@-30°C	
5 Cycle	B	В	5min@25°℃	5min@25°℃	5min@25°C	5min@25°℃	
	471 W. 100 Y.	C	60min@70°C	60min@90°C	60min@70°C	60min@80°C	
Exp	ected Lift		50,000 Hours	50,000 Hours	50,000 Hours	50,000 Hours	

*Wide temp. version may not available for some products, Please consult our sales engineer or respresentative.

12. FUNCTIONAL TEST & INSPECTION CRITERIA

12.1 Sample plan


Sample plan according to MIL-STD-105D level 2, and acceptance/rejection criteria is.

Base on: Major defect: AQL 0.65 Minor defect: AQL 2.5

12.2 Inspection condition

Viewing distance for cosmetic inspection is 30cm with bare eyes, and under an environment of 800 lus (20W) light intensity. All direction for inspecting the sample should be within 45° against perpendicular line.

12.3 Definition of Inspection Zone in LCD

Zone A: Character / Digit area

Zone B: Viewing area except Zone A (Zone A + Zone B = minimum Viewing area)

Zone C: Outside viewing area (invisible area after assembly in customer's product)

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble for quality and assembly of customer's product.

12.4 Major Defect

All functional defects such as open (or missing segment), short, contrast differential, excess power consumption, smearing, leakage, etc. and overall outline dimension beyond the drawing. Are classified as major defects.

-10-

12.5 Minor Defect

Except the Major defects above, all cosmetic defects are classified as minor defects.

Item No.	Item to be Inspected	MM.10	Classification of defects				
1.00	Spot defect	Zone siz	ze (mm)	A	cceptable (Qty	Minor
	(Defects in spot	MM	100Y.C	Α	В	COA.	
	from)	$\Phi \leq$	0.15	(cluteri	eptable ng of spot lowed)	Accepta- ble	
	100Y.COM.TW	0.15 ≦ ₫	0.20	COMIT	2	W.10	
	100Y.COM.TW	0.20 ≦ ₫	0 ≤ 0.25	0 1	1	W V V	
	VI 100Y.COM.TW	Ф>(0.25	0	0		
	VW.100Y.COM.TY		for dark/w $\Phi = 1/2(X +$		size Φ is	defined as	
2.	Line defect	rW.	Size (mm)	any.Cu	Accept	able Qty	Minor
	(Defects in line	L		W C		one 🕥	
	form)	Length		dth	A B	C	
	WWW.100 CO	Accep- table	W≦	0.02	Accep- table	Accep- table	
	WWW.100 × CO	L≦3.0 W≦		0.03	2	N table	
	M. 100 F.		L>2.5 $W \leq 0.03$		0	CW	
	W.1001.	$L \le 3.0$ $0.03 < W \le 0.05$			2	TW	
	M. 100 x	L>2.5		$V \leq 0.05$	0		
	M.M.W.100	W>0.05			Counted defect (d as spot Follows 2.5.1)	
	WWW.	Remarks:					
3.	Orientation defect (such as misalignment of L/C)	Not allow	ved inside	viewing a B)	rea (Zone A	A or Zone	Minor
4. Polarizi	Polarizing	glass 2. Incon Shifti	ng in Posi outline din plete coving is not a	area due to	Minor		
		12.5.4.2 Se Po Po					
		Size ((mm)	TAMI	Acceptable Qty Zone		
		* -	0.20	A	B B	C	
		Φ≦		Acce	eptable	Accep- table	
		0.20<Φ		OY.CU	3	lable	
		0.50<Φ	 	100 Y.CO.	2	1	
		Ф>	1.00		0		

WW.10

		CTE	R PA	TTE	RN C	CHAI	RT (5	×7 D	OTS	+CU	RSC	R)	
Higher 4 bit Lower 4 bit	0000	0010	0011	0100	0101	0110	0111	1010	1011	1100	1101	1110	1111
XXXX0000	CG RAM (1)	ČM M	0	a	. 100		F		WW	Ð		œ	þ
XXXX0001	(2)	T.N	1		Q	ā			\mathbf{I}_{\vee}	7			
XXXX0010	(3)			В	R	90	To	LTW	1	W	×	ß	Ð
XXXX0011	(4)	#	TY	C		470 N 700	S	on T	Ţ	Ī			60
XXXX0100	(5)	\$	4	D	W	Ğ		\mathbb{Q}_{M}		ŀ	B	14	Ω
XXXX0101	(6)	000			U		Ų	V.CO.	7	+	1	G	ü
XXXX0110	(7)	&	6		Ų	F	Ų	1007	ħ	TW	3	ρ	Σ
XXXX0111	(8)	N. I. I			W	9	W	N 100	E	×	Ţ	q	π
XXXX1000	(1)		8		X	h	×	(4 (.) (243))	7	末		Ţ	X
XXXX1001	(2)	7	9	0	Y		Ţ	200	.1 T		L	-1	W.
XXXX1010	(3)	*		10	Z	ï	Z	N	W.D			N CW	Ŧ
XXXX1011	(4)	+	7	K	od I.C	k		7	Ţ	100	7	VAM.	Б
XXXX1100	(5)	,			+		1.10	t	3	W.J	97.CC	4	H
XXXX1101	(6)			Y N	MIO	M	OMI		Z	MA	100X	E	TW
XXXX1110	(7)		>	Ы		100			t	1.	•••	ñ	