Semiconductor 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

190MHz Rail-to-Rail Output Amplifier with Disable

General Description

LMH6639

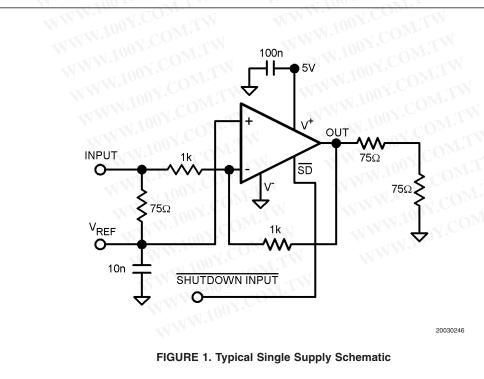
National

The LMH6639 is a voltage feedback operational amplifier with a rail-to-rail output drive capability of 110mA. Employing National's patented VIP10 process, the LMH6639 delivers a bandwidth of 190MHz at a current consumption of only 3.6mA. An input common mode voltage range extending to 0.2V below the V⁻ and to within 1V of V⁺, makes the LMH6639 a true single supply op-amp. The output voltage range extends to within 30mV of either supply rail providing the user with a dynamic range that is especially desirable in low voltage applications.

The LMH6639 offers a slew rate of 172V/µs resulting in a full power bandwidth of approximately 28MHz. The TON value of 83nsec combined with a settling time of 33nsec makes this device ideally suited for multiplexing applications. Careful attention has been paid to ensure device stability under all operating voltages and modes. The result is a very well behaved frequency response characteristic for any gain setting including +1, and excellent specifications for driving video cables including harmonic distortion of -60dBc, differential gain of 0.12% and differential phase of 0.045°

Features

特力材料 886-3-5753170


胜特力电子(上海) 86-21-54151736

(V_S = 5V, Typical values unless specified)

Supply current (no load)	3.6mA
Supply current (off mode)	400µA
 Output resistance (closed loop 1MHz) 	0.186Ω
■ -3dB BW (A _V = 1)	190MHz
Settling time	33nsec
Input common mode voltage	-0.2V to 4V
Output voltage swing	40mV from rails
Linear output current	110mA
Total harmonic distortion	-60dBc
Fully characterized for 3V, 5V and ±5V	1.1. T
No output phase reversal with CMVR e	exceeded
Excellent overdrive recovery	
Off Isolation 1MHz	-70dB
Differential Gain	0.12%
Differential Phase	0.045°

Applications

- Active filters
- CD/DVD ROM
- ADC buffer amplifier
- Portable video
- Current sense buffer

July 2003

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance	2KV (Note 2)
	200V (Note 9)
V _{IN} Differential	±2.5V
Input Current	±10mA
Supply Voltage (V ⁺ - V ⁻)	13.5V
Voltage at Input/Output pins	V ⁺ +0.8V, V ⁻ -0.8V
Storage Temperature Range	-65°C to +150°C

3V Electrical Characteristics

Junction Temperature (Note 4)	+150°C
Soldering Information	
Infrared or Convection (20 sec)	235°C

minaled of Convection (20 Sec)	200 0
Wave Soldering (10 sec)	260°C

Operating Ratings (Note 1)

Operating Temperature Range (Note 4)	–40°C to +85°C
Package Thermal Resistance (θ_{JA}) (Note 4)	
SOT23-6	265°C/W
SOIC-8	190°C/W

Unless otherwise specified, all limits guaranteed for at $T_J = 25^{\circ}C$, $V^+ = 3V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$, and $R_L = 2k\Omega$ to $V^+/2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions		Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
BW	-3dB BW	A _V = +1	M	120	170	COM	.
	OX.CONTR	$A_V = -1$	M.T.	AL	63	COM.	MHz
BW _{0.1dB}	0.1dB Gain Flatness	$R_{\rm F} = 2.65 k\Omega$, $R_{\rm L} = 1$	kΩ,	N.	16.4		MHz
FPBW	Full Power Bandwidth	$A_V = +1, V_{OUT} = 2V_{PP}, -1dB$ V ⁺ = 1.8V, V ⁻ = 1.2V		W	21	A'CON	MHz
GBW	Gain Bandwidth product	A _V = +1	WI.IW	V	83	01	MHz
e _n	Input-Referred Voltage Noise	$R_F = 33k\Omega$	f = 10kHz	-	19	10Y.C	nV/ √Hz
	W.100 COM.I	WW.100	f = 1MHz	N	16	J.V.	NV/√HZ
i _n	Input-Referred Current Noise	$R_F = 1M\Omega$	f = 10 kHz		1.30	.100	
	NY CONTRACTIV	f = 1MHz		N.	0.36	x 100 Y.	pA/ √Hz
THD	Total Harmonic Distortion	$f = 5MHz, V_O = 2V_{PP}, A_V = +2,$ $R_L = 1k\Omega \text{ to } V^+/2$		IW	-50	W.100Y	dBc
Ts	Settling Time	V _O = 2V _{PP} , ±0.1%		1.1.4	37	W.100	ns
SR	Slew Rate	$A_V = -1$ (Note 8)		120	167	10	V/µs
V _{OS}	Input Offset Voltage	TW WWW.LOOY.CO		M.TW	1.01	5 7	mV
TC V _{os}	Input Offset Average Drift	(Note 11)		WT.I	8		µV/°C
I _B	Input Bias Current	(Note 7)		COM.T	-1.02	-2.6 -3.5	Au
I _{OS}	Input Offset Current	DVILLA WWW.1001		K.COM.	20	800 1000	nA
R _{IN}	Common Mode Input Resistance	$A_V = +1$, f = 1kHz, $R_S = 1M\Omega$		N.COM	6.1	WY	MΩ
C _{IN}	Common Mode Input Capacitance	$A_V = +1, R_S = 100 k\Omega$		DOX.CO	1.35	41	pF
CMVR	Input Common-Mode Voltage Range	CMRR ≥ 50dB	WWW	100Y.C	-0.3	-0.2 -0.1	
	WWW.I	OV.COM.TW WWY		1.8 1.6	2		V
CMRR	Common Mode Rejection Ratio	(Note 12)		72	93		dB
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 2V_{PP}, R_{L} = 2k\Omega$	2 to V+/2	80 76	100		dD
		$V_{\rm O} = 2V_{\rm PP}, R_{\rm L} = 150$	Ω to V+/2	74 70	78		dB

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units	
Vo	Output Swing	$R_L = 2k\Omega$ to V ⁺ /2, $V_{ID} = 200mV$	2.90	2.98	WILL		
	High	$R_L = 150\Omega$ to V ⁺ /2, $V_{ID} = 200$ mV	2.75	2.93	VII.	V V	
	COM.TH W	$R_{L} = 50\Omega$ to V ⁺ /2, $V_{ID} = 200$ mV	2.6	2.85	.O.M		
	Output Swing	$R_L = 2k\Omega$ to V ⁺ /2, $V_{ID} = -200mV$	W	25	75		
	Low	$R_L = 150\Omega$ to V ⁺ /2, $V_{ID} = -200$ mV	WW	75	200	mV	
	COM.L	$R_{L} = 50\Omega$ to V ⁺ /2, $V_{ID} = -200$ mV	V.	130	300		
I _{sc}	Output Short Circuit Current	Sourcing to V ⁺ /2, (Note 10)	50 35	120	NY.COM	WT.	
	N.100Y.COM.TW	Sinking to V ⁺ /2, (Note 10)	67 40	140	00Y.COX	mA	
I _{OUT}	Output Current	$V_{O} = 0.5V$ from either supply	1	99	1001.	mA	
PSRR	Power Supply Rejection Ratio	(Note 12)	72	96	1004.0	dB	
I _S	Supply Current (Enabled)	No Load	T.M.	3.5	5.6 7.5		
	Supply Current (Disabled)	N WWW.100Y.COM	WT.	0.3	0.5 0.7	mA CO	
TH_SD	Threshold Voltage for Shutdown Mode	W WWW.100X.CO	WI.IN	V ⁺ -1.59	WW.100	V.VC	
I_SD PIN	Shutdown Pin Input Current	SD Pin Connect to 0V (Note 7)	WT	-13		μA	
T _{ON}	On Time After Shutdown	N. M. M. M. M.	ON	83	WWW.	nsec	
T _{OFF}	Off Time to Shutdown	T.L. M. TOOX	-OM.	160	W	nsec	
R _{OUT}	Output Resistance Closed	$R_F = 10k\Omega$, f = 1kHz, $A_V = -1$	I.M.	27	N. N.	mΩ	
	Loop	$R_F = 10k\Omega$, f = 1MHz, $A_V = -1$	1.00	266	N.V.	11122	

5V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for at $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$, and $R_L = 2k\Omega$ to $V^+/2$. **Boldface** limits apply at the temperature extremes.

Parameter	Condi	tions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
–3dB BW	A _V = +1	MM	130	190	1	
II.WW.II	$A_V = -1$	WW	N. Market	64	N	MHz
0.1dB Gain Flatness	$R_F = 2.51 k\Omega, R_L =$	1kΩ,	1.100	16.4		MHz
Full Power Bandwidth	$A_V = +1, V_{OUT} = 2V$	/ _{PP} , –1dB	-X1007	28	LA.	MHz
Gain Bandwidth Product	$A_V = +1$		100	86	NT.	MHz
Input-Referred Voltage Noise	$R_{F} = 33k\Omega \qquad \qquad \frac{f = 10kHz}{f = 1MHz}$		MN.Y	19	W	m)// /115
			.W.I	16	1.1	nV/√Hz
Input-Referred Current Noise	$R_{F} = 1M\Omega \qquad \qquad \frac{f = 10KHz}{f = 1MHz}$			1.35	M.T.Y	
TA I I I I I I I I I I I I I I I I I I I			f = 1MHz	WWW	0.35	J ***
Total Harmonic Distortion	f = 5MHz, V _O = 2V _{PP} , A _V = +2 R _L = 1kΩ to V ⁺ /2		MMM	-60		dBc
Differential Gain	NTSC, $A_V = +2$ $B_1 = 150\Omega$ to V ⁺ /2			0.12		%
Differential Phase	NTSC, $A_V = +2$ $R_L = 150\Omega$ to V ⁺ /2			0.045		deg
Settling Time	$V_{O} = 2V_{PP}, \pm 0.1\%$			33		ns
Slew Rate	$A_{V} = -1$, (Note 8)		130	172		V/µs
Input Offset Voltage				1.02	5 7	mV
	胜特力电子(深圳)	86-755-832987	and a second second		w	ww.national.c
	-3dB BW 0.1dB Gain Flatness Full Power Bandwidth Gain Bandwidth Product Input-Referred Voltage Noise Input-Referred Current Noise Total Harmonic Distortion Differential Gain Differential Phase Settling Time Slew Rate	$-3dB BW$ $A_{V} = +1$ $A_{V} = -1$ 0.1dB Gain Flatness $R_{F} = 2.51k\Omega, R_{L} =$ Full Power Bandwidth $A_{V} = +1, V_{OUT} = 2V$ Gain Bandwidth Product $A_{V} = +1$ Input-Referred Voltage Noise Input-Referred Current Noise $R_{F} = 33k\Omega$ Input-Referred Current Noise $R_{F} = 1M\Omega$ Total Harmonic Distortion $f = 5MHz, V_{O} = 2V_{H}$ $R_{L} = 1k\Omega \text{ to } V^{+}/2$ Differential Gain $NTSC, A_{V} = +2$ $R_{L} = 150\Omega \text{ to } V^{+}/2$ Differential Phase $V_{O} = 2V_{PP}, \pm 0.1\%$ Slew Rate $A_{V} = -1, \text{ (Note 8)}$ Input Offset Voltage $MS \ \text{$f$} \ \text{$f$} \ \text{$h$} \ \text{$f$} $ $MS \ \text{$f$} \ \text{$h$} \ \text{$f$} $ $MS \ \text{$f$} \ \text{$h$} \ \text{$f$} \ \text{$h$} \ \text{$f$} $ $MS \ \text{$f$} \ \text{$h$} \$	-3dB BW $A_V = +1$ $A_V = -1$ 0.1dB Gain Flatness $R_F = 2.51k\Omega$, $R_L = 1k\Omega$,Full Power Bandwidth $A_V = +1$, $V_{OUT} = 2V_{PP}$, $-1dB$ Gain Bandwidth Product $A_V = +1$ Input-Referred Voltage Noise $R_F = 33k\Omega$ Input-Referred Current Noise $R_F = 1M\Omega$ Input-Referred Current Noise $f = 10kHz$ Input-Referred Current Noise $R_F = 1M\Omega$ $R_F = 1M\Omega$ $f = 10kHz$ Input-Referred Current Noise $R_F = 1M\Omega \Omega$ $P_F = 1MHz$ $f = 10kHz$ Input-Referred Current Noise $R_F = 1M\Omega \Omega$ $P_F = 1M\Omega \Omega$ $f = 10kHz$ Input-Referred Current Noise $R_F = 1M\Omega \Omega$ $P_F = 1M\Omega \Omega$ $f = 10kHz$ Input-Referred Current Noise $R_F = 1M\Omega \Omega$ $P_F = 10kHz$ $P_F = 10kHz$ Input Offset Polace $R_F = 10k \Omega \Omega$ Input Offset Voltage $NTSC, A_V = +2$ $R_L = 150\Omega$ to V ⁺ /2 $NTSC$ Slew Rate $A_V = -1$, (Note 8)Input Offset Voltage $R_F d d A $ $R h f d R $ $R - 21 - 541517$ $R h f d R - 755 - 83298'$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Av = +1 (Note 6) (Note 5) -3dB BW $A_v = +1$ 130 190 $A_v = -1$ 64 0.1dB Gain Flatness $R_r = 2.51k\Omega$, $R_L = 1k\Omega$, 16.4 Full Power Bandwidth $A_v = +1$, $V_{OUT} = 2V_{PP}$, $-1dB$ 28 Gain Bandwidth Product $A_v = +1$, $V_{OUT} = 2V_{PP}$, $-1dB$ 28 Gain Bandwidth Product $A_v = +1$ 86 Input-Referred Voltage Noise $R_r = 33k\Omega$ $f = 10kHz$ 19 f = 10kHz 19 16 1 Input-Referred Current Noise $R_r = 1M\Omega$ $f = 10KHz$ 1.35 Total Harmonic Distortion $f = 5MHz$, $V_O = 2V_{PP}$, $A_V = +2$ -60 $R_L = 1k\Omega$ to V ⁺ /2 0.12 $R_L = 15\Omega\Omega$ to V ⁺ /2 0.12 Differential Gain NTSC, $A_v = +2$ 0.045 0.045 $R_L = 150\Omega$ to V ⁺ /2 0.12 33 33 Settling Time $V_O = 2V_{PP}$, $\pm 0.1\%$ 33 130 172 Input Offset Voltage 1.02 $K \hbar \hbar \hbar N \hbar N 86-3-5753170$ $K \hbar \hbar \hbar h 4^2 (86-31-5753170$	(Note 6) (Note 5) (Note 6) -3dB BW $A_{V} = +1$ 130 190 $A_{V} = -1$ 64 0.1dB Gain Flatness $R_{F} = 2.51k\Omega, R_{L} = 1k\Omega,$ 16.4 Full Power Bandwidth $A_{V} = +1, V_{OUT} = 2V_{PP}, -1dB$ 28 66 Gain Bandwidth Product $A_{V} = +1$ 86 19 Input-Referred Voltage Noise $R_{F} = 33k\Omega$ $f = 10kHz$ 19 Input-Referred Current Noise $R_{F} = 1M\Omega$ $f = 10kHz$ 1.35 Total Harmonic Distortion $f = 5MHz, V_{O} = 2V_{PP}, A_{V} = +2$ -60 $R_{L} = 1k\Omega to V^{+/2}$ 0.12 -60 Differential Gain NTSC, $A_{V} = +2$ 0.12 $R_{L} = 150\Omega to V^{+/2}$ 0.12 -7 Differential Phase NTSC, $A_{V} = +2$ 0.045 $R_{L} = 150\Omega to V^{+/2}$ 33 -7 Settling Time $V_{O} = 2V_{PP}, \pm 0.1\%$ 33 Slew Rate $A_{V} = -1,$ (Note 8) 130 172 Input Offset Voltage 1.02 5 7 B 特 力 材 料 886-3-575317

LMH6639

1001

N.100X.C

WW.100Y.COM.TW LMH6639

5V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for at $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_O = V_{CM} = V^+/2$, and $R_L = 2k\Omega$ to $V^+/2$. Boldface limits apply at the temperature extremes.

100X.COM.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units	
TC V _{os}	Input Offset Average Drift	(Note 11)	1004.04	8		μV/°C	
всол	Input Bias Current	(Note 7)	N.100Y.C	-1.2	-2.6 -3.25	μA	
os	Input Offset Current	DOY.COM.TW WW	W.100X	20	800	nA	
R _{IN}	Common Mode Input Resistance	$A_V = +1$, f = 1kHz, $R_S = 1M\Omega$	NN.100	6.88	TW	MΩ	
CIN	Common Mode Input Capacitance	$A_V = +1, R_S = 100 k\Omega$	NWW.1	1.32	N.TW	pF	
CMVR			WWW.	-0.3	-0.2 - 0.1	V	
W.100	Y.COM.TW W	WW.100Y.COM.TW	WWW	4	3.8 3.6	V V	
CMRR	Common Mode Rejection Ratio	(Note 12)	72	95	COM.	dB	
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 4V_{PP}$ $R_{L} = 2k\Omega$ to V ⁺ /2	86 82	100	N.COM	dB	
	V.100Y.COM.TW	$V_{O} = 3.75V_{PP}$ R _L = 150 Ω to V ⁺ /2	74 70	77	NOY.CO		
Vo	Output Swing	$R_L = 2k\Omega$ to V ⁺ /2, $V_{ID} = 200mV$	4.90	4.97	LOO CO	Wr.r	
WW	High	$R_{L} = 150\Omega$ to V ⁺ /2, V _{ID} = 200mV	4.65	4.90	1001.	V	
		$R_{L} = 50\Omega$ to V ⁺ /2, $V_{ID} = 200mV$	4.40	4.77	1001.0		
	Output Swing Low	$R_L = 2k\Omega$ to V ⁺ /2, $V_{ID} = -200mV$	- N	25	100	COA	
		$R_L = 150\Omega$ to V ⁺ /2, $V_{ID} = -200$ mV		85	200	mV	
	NWWW. DOY.CO. NTY	$R_{L} = 50\Omega$ to V ⁺ /2, $V_{ID} = -200$ mV	I.T.W	190	400		
I _{SC}	Output Short Circuit Current	Sourcing to V ⁺ /2, (Note 10)	100 79	160	WW.100	<u>.</u>	
	WWW.100Y.COM	Sinking from V ⁺ /2, (Note 10)	120 85	190	NWW.I	mA	
I _{OUT}	Output Current	$V_{O} = 0.5V$ from either supply	COM	110	WWW.	mA	
PSRR	Power Supply Rejection Ratio	(Note 12)	72	96	WW	dB	
I _s	Supply Current (Enabled)	No Load	K.COM.	3.6	5.8 8.0	mA	
	Supply Current (Disabled)	OM.I WWW.100	NY.COM	0.40	0.8 1.0		
TH_SD	Threshold Voltage for Shutdown Mode	COW'LAN MANANY	DOX.CO	V+ -1.65	4	V	
_SD PIN	Shutdown Pin Input Current	SD Pin Connected to 0V (Note 7)	Ton	-30		μA	
Г _{ол}	On Time after Shutdown	T.C. MIN WILL	100Y.C	83		nsec	
Г _{ОFF}	Off Time to Shutdown	NW WT		160		nsec	
R _{OUT}	Output Resistance Closed	$R_{F} = 10k\Omega, f = 1kHz, A_{V} = -1$ $R_{F} = 10k\Omega, f = 1MHz, A_{V} = -1$		29 253		mΩ	

胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Symbol	Parameter	Condition	IS	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
3W	–3dB BW	A _V = +1	IN	150	228	WT.In	
1.100	CONT.	$A_V = -1$	Wm.	WWW	65	1	MHz
V _{0.1dB}	0.1dB Gain Flatness	$R_F = 2.26k\Omega, R_L = 1k\Omega$	2	VIV	18	CONL	MHz
BW	Full Power Bandwidth	$A_{V} = +1, V_{OUT} = 2V_{PP},$, –1dB	N '	29	COM.	MHz
BW	Gain Bandwidth Product	A _V = +1	WTN	1111	90		MHz
	Input-Referred Voltage Noise	$R_F = 33k\Omega$	f = 10kHz	WV.	19	V.COm	nV/√Hz
N	LOO T COM. L	W.W. LUC	f = 1MHz		16	J.CON	- N
	Input-Referred Current Noise	$R_F = 1M\Omega$	f = 10 kHz $f = 1 MHz$		1.13 0.34	07.CO	pA/ √Hz
1D	Total Harmonic Distortion	$f = 5MHz, V_O = 2V_{PP}, A_V = +2,$ $R_L = 1k\Omega$		l .	-71.2	100X.CC	dBc
G 📢	Differential Gain	NTSC, $A_V = +2$ $R_L = 150\Omega$	V.COM.T		0.11	V.100X.	%
P	Differential Phase	NTSC, $A_V = +2$ $R_L = 150\Omega$		TW	0.053	N.100	deg
3	Settling Time	$V_{\rm O} = 2V_{\rm PP}, \pm 0.1\%$	TONY.CON	WT.	33	100	ns
1	Slew Rate	$A_{V} = -1$ (Note 8)	.100 CO	140	200	MN.	V/µs
S	Input Offset Voltage	TW WWW.100X.CC		MIT	1.03	5 7	mV
V _{os}	Input Offset Voltage Drift	(Note 11)	N. M. M.	ON	8	MMM.	µV/°C
	Input Bias Current	(Note 7)		COMPT	-1.40	-2.6 -3.25	μA
	Input Offset Current	DM.TW WWW.100		COM.	20	800 1000	nA
4	Common Mode Input Resistance	A_V +1, f = 1kHz, R_S = 1M Ω		N.CON	7.5		MΩ
1	Common Mode Input Capacitance	$A_V = +1, R_S = 100 k\Omega$		00Y.CO	1.28	4	pF
IVR	Common Mode Input Voltage	CMRR ≥ 50dB	WWW.	1004.0	-5.3	-5.2	
	Range	NT.COM TW		.Yoor	T	-5.1	v
	J.WW.I	V.COM.		3.8	4.0	N	WW
				3.6	$-c0^{M-3}$		
RR	Common Mode Rejection Ratio	(Note 12)		72	95		dB
OL	Large Signal Voltage Gain	$V_{O} = 9V_{PP}, R_{L} = 2k\Omega$	V V	88 84	100	WTD	1
	WW	$V_{\rm O} = 8V_{\rm PP}, R_{\rm L} = 150\Omega$	W	74 70	77	MT.TW	dB
C	Output Swing	$R_L = 2k\Omega, V_{ID} = 200m^{1}$	V	4.85	4.96		
	High	$R_{L} = 150\Omega, V_{ID} = 200r$		4.55	4.80		v
		$R_{L} = 50\Omega, V_{ID} = 200m^{2}$		3.60	4.55		1
	Output Swing	$R_L = 2k\Omega, V_{ID} = -200n$			-4.97	-4.90	
	Low	$R_{L} = 150\Omega, V_{ID} = -200$)mV		-4.85	-4.55	V
		$R_L = 50\Omega, V_{ID} = -200r$			-4.65	-4.30	
	Output Short Circuit Current	Sourcing to Ground, (N	ote 10)	100 80	168		
		Sinking to Ground, (No	te 10)	110 85	190		mA

WW.19<u>0Y.</u>COM.TW ±5V Electrical Characteristics

WWW.100X.CO

100Y.COM.TW

WWW.100x.c.

N.100Y.COM.TW

MT.Mo

Http://www.100y.com.tw

LMH6639

±5V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for at $T_J = 25^{\circ}C$, $V_{SUPPLY} = \pm 5V$, $V_O = V_{CM} = GND$, and $R_L = 2k\Omega$ to V⁺/2. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
I _{OUT}	Output Current	$V_{O} = 0.5V$ from either supply	1001.0	112		mA
PSRR	Power Supply Rejection Ratio	(Note 12)	72	96	N	dB
Is CON	Supply Current (Enabled)	No Load	N.100Y	4.18	6.5 8.5	
	Supply Current (Disabled)		N.N.100	0.758	1.0 1.3	– mA
TH_SD	Threshold Voltage for Shutdown Mode	V.1001.COM.TW	WW.10	V ⁺ - 1.67	WTN	V
I_SD PIN	Shutdown Pin Input Current	SD Pin Connected to -5V (Note 7)	WW.	-84	Wn	μA
T _{ON}	On Time after Shutdown	W.100 COM	War	83	$\mathcal{D}_{\mathbf{M}}$	nsec
TOFF	Off Time to Shutdown	100X.001.TW	N	160	M.T.Y	nsec
R _{OUT}	Output Resistance Closed	$R_F = 10k\Omega$, $f = 1kHz$, $A_V = -1$	MMA	32	TI	
	Loop	$R_{F} = 10k\Omega, f = 1MHz, A_{V} = -1$	W	226	COM	mΩ

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Note 2: Human body model, 1.5kΩ in series with 100pF.

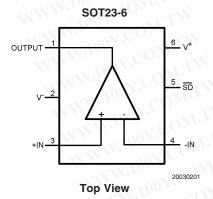
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

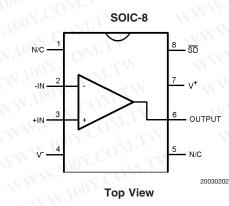
Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Note 5: Typical values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: Positive current corresponds to current flowing into the device.


Note 8: Slew rate is the average of the rising and falling slew rates.

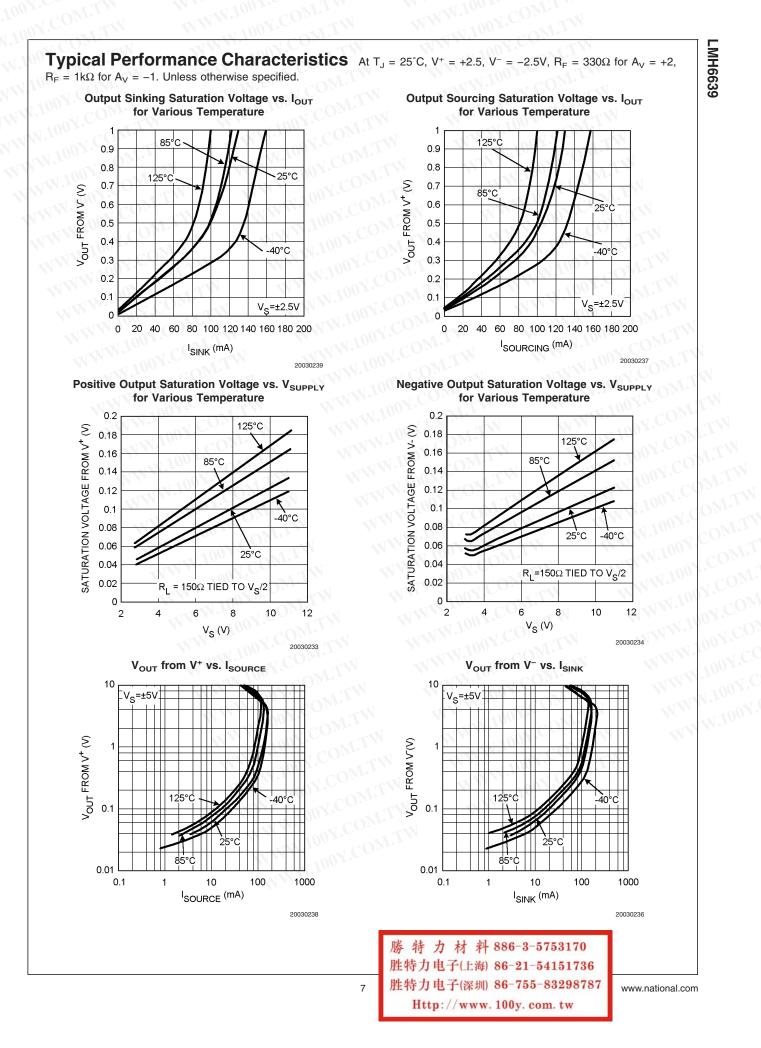

Note 9: Machine Model, 0Ω in series with 200pF.

Note 10: Short circuit test is a momentary test.

Note 11: Offset voltage average drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change. Note 12: $f \le 1 \text{kHz}$ (see typical performance Characteristics)

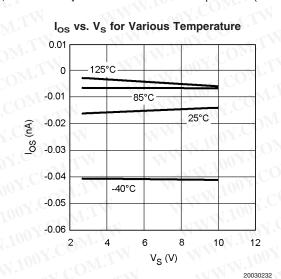
Connection Diagrams

勝特力材料 886-3-5753170

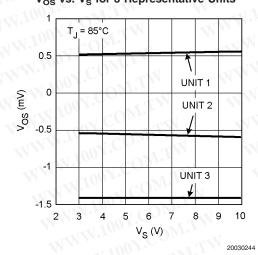

胜特力电子(上海) 86-21-54151736

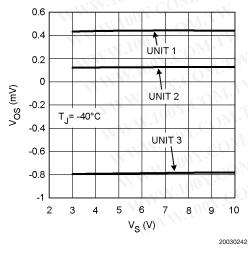
Http://www.100y.com.tw

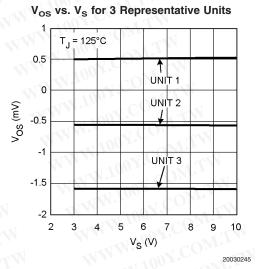
胜特力电子(深圳) 86-755-83298787

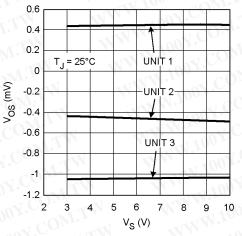

Ordering Information

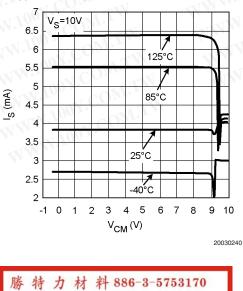
Package	Part Number	Package Marking	Transport Media	NSC Drawing
6-Pin SOT-23	LMH6639MF	A81A	1k Units Tape and Reel	MF06A
	LMH6639MFX	_	3k Units Tape and Reel	
8-Pin SOIC	LMH6639MA	LMH6639MA	Rails	M08A
	LMH6639MAX	-	2.5k Units Tape and Reel	




Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = +2.5$, $V^- = -2.5V$, $R_F = 330\Omega$ for $A_V = +2$, $R_F = 1k\Omega$ for $A_V = -1$. Unless otherwise specified. (Continued)



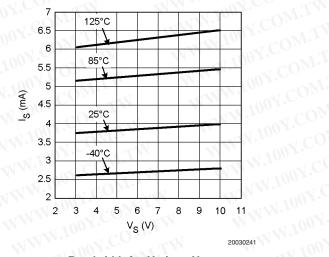




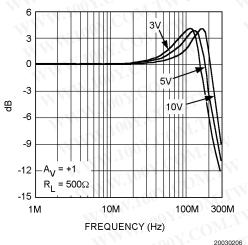
Vos vs. Vs for 3 Representative Units

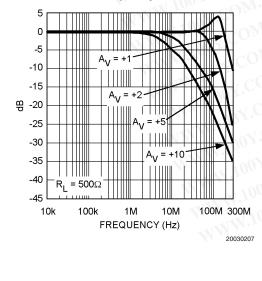
20030243

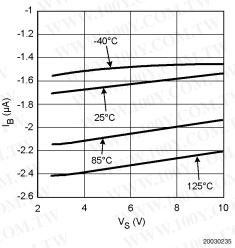
I_{SUPPLY} vs. V_{CM} for Various Temperature

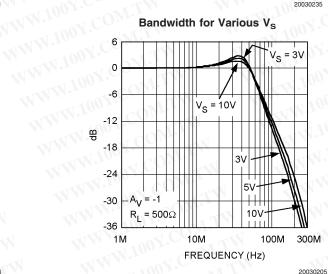

唐 村 方 村 村 880 5 5755170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

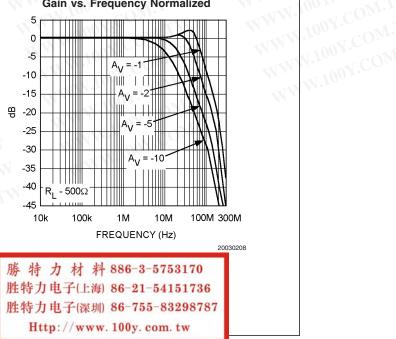
www.national.com


Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = +2.5$, $V^- = -2.5V$, $R_F = 330\Omega$ for $A_V = +2$, $R_F = 1k\Omega$ for $A_V = -1$. Unless otherwise specified. (Continued)

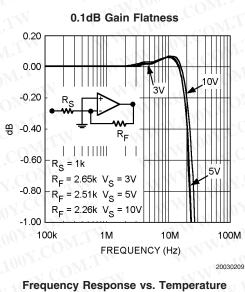

NY.COM.

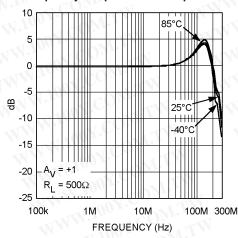

Bandwidth for Various V_S


Gain vs. Frequency Normalized

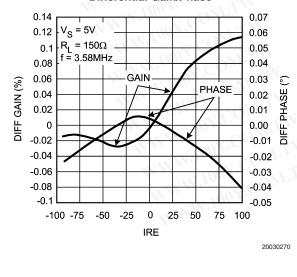


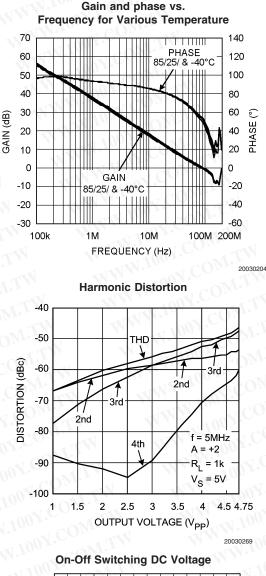
Bandwidth for Various V_S

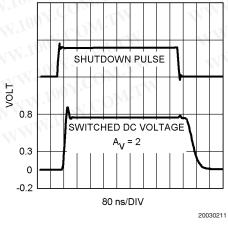




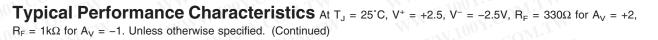
LMH6639

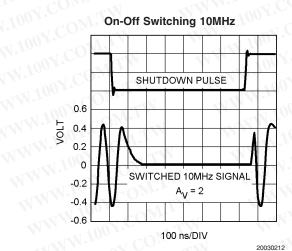

Typical Performance Characteristics At $T_J = 25^{\circ}C$, $V^+ = +2.5$, $V^- = -2.5V$, $R_F = 330\Omega$ for $A_V = +2$, $R_F = 1k\Omega$ for $A_V = -1$. Unless otherwise specified. (Continued)

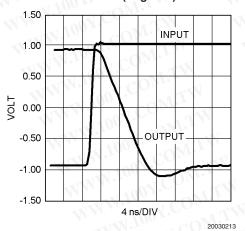


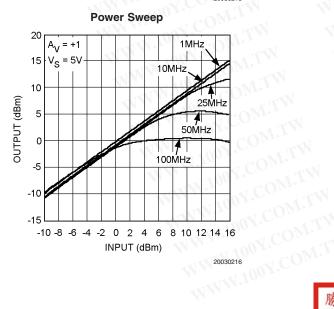


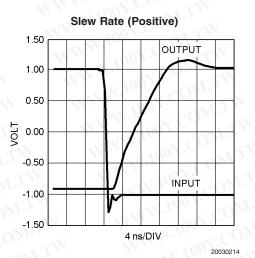
20030210



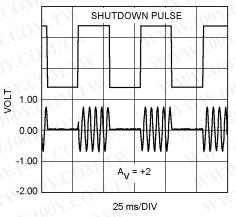


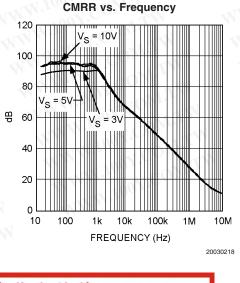

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


LMH6639



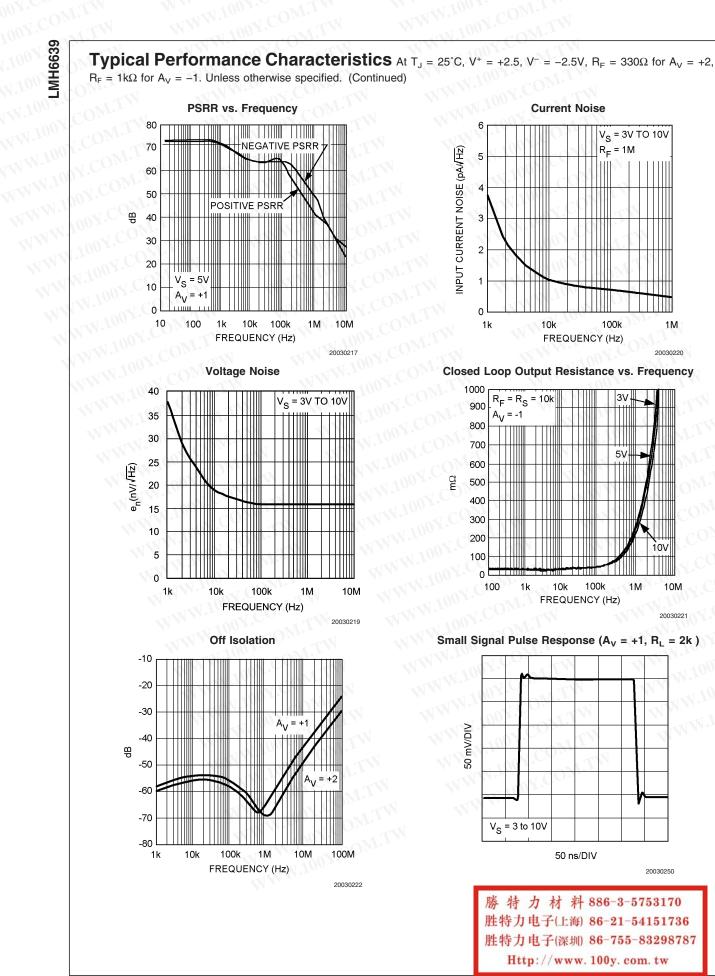
Slew Rate (Negative)





LMH6639

On-Off Switching of Sinewave



勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

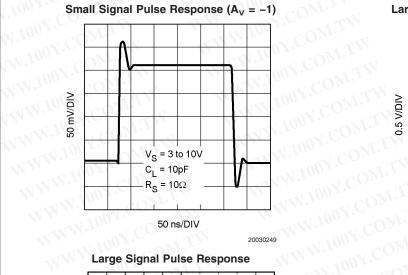
NWN

WWW.100Y

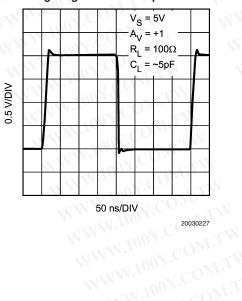
WWW.100Y.C

1M

20030220

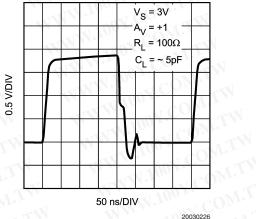

10M

20030221


www.national.com

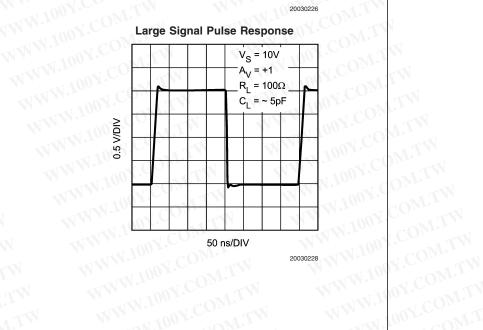

WW.100X.COM.T **Typical Performance Characteristics** At $T_J = 25^{\circ}C$, $V^+ = +2.5$, $V^- = -2.5V$, $R_F = 330\Omega$ for $A_V = +2$, $R_F = 1k\Omega$ for $A_V = -1$. Unless otherwise specified. (Continued)

<u>10</u>0¥.COM.



Large Signal Pulse Response

100Y.COM.


LMH6639

.COM.TW X.COM.TW

00Y.COM.TV

WWW.100Y.COM.T

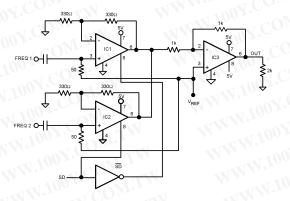
WWW.100Y.COM. WWW.100Y.COM

W.100Y.COM.TW

WWW.100

WWW.

WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw


13

WWW.100

Application Notes

MULTIPLEXING 5 AND 10MHz

The LMH6639 may be used to implement a circuit which multiplexes two signals of different frequencies. Three LMH6639 high speed op-amps are used in the circuit of *Figure 2* to accomplish the multiplexing function. Two LMH6639 are used to provide gain for the input signals, and the third device is used to provide output gain for the selected signal.

030247

Note: Pin numbers pertain to SOIC-8 package

FIGURE 2. Multiplexer

Multiplexing signals "FREQ 1" and "FREQ 2" exhibit closed loop non-inverting gain of +2 each based upon identical 330 Ω resistors in the gain setting positions of IC1 and IC2. The two multiplexing signals are combined at the input of IC3, which is the third LMH6639. This amplifier may be used as a unity gain buffer or may be used to set a particular gain for the circuit.

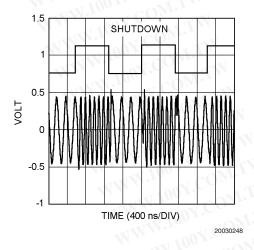


FIGURE 3. Switching between 5 and 10MHz

1k resistors are used to set an inverting gain of –1 for IC3 in the circuit of *Figure 2. Figure 3* illustrates the waveforms produced. The upper trace shows the switching waveform used to switch between the 5MHz and 10MHz multiplex signals. The lower trace shows the output waveform consisting of 5MHz and 10MHz signals corresponding to the high or low state of the switching signal.

In the circuit of *Figure 2*, the outputs of IC1 and IC2 are tied together such that their output impedances are placed in parallel at the input of IC3. The output impedance of the disabled amplifier is high compared both to the output impedance of the active amplifier and the 330Ω gain setting resistors. The closed loop output resistance for the LMH6639 is around 0.2Ω . Thus the active state amplifier output impedance dominates the input node to IC3, while the disabled amplifier is assured of a high level of suppression of unwanted signals which might be present at the output.

SHUTDOWN OPERATION

With \overline{SD} pin left floating, the device enters normal operation. However, since the \overline{SD} pin has high input impedance, it is best tied to V⁺ for normal operation. This will avoid inadvertent shutdown due to capacitive pick-up from nearby nodes. LMH6639 will typically go into shutdown when \overline{SD} pin is more than 1.7V below V⁺, regardless of operating supplies. The \overline{SD} pin can be driven by push-pull or open collector (open drain) output logic. Because the LMH6639's shutdown is referenced to V+, interfacing to the shutdown logic is rather simple, for both single and dual supply operation, with either form of logic used. Typical configurations are shown in *Figure 4* and *Figure 5* below for push-pull output:

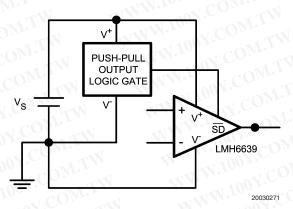
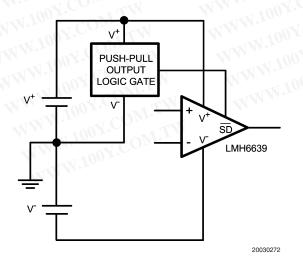
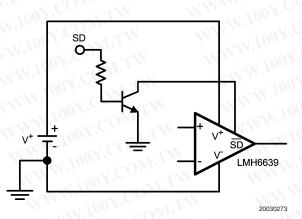



FIGURE 4. Shutdown Interface (Single Supply)

FIGURE 5. Shutdown Interface (Dual Supplies)


Common voltages for logic gates are +5V or +3V. To ensure proper power on/off with these supplies, the logic should be able to swing to 3.4V and 1.4V minimum, respectively.

14

LMH6639

Application Notes (Continued)

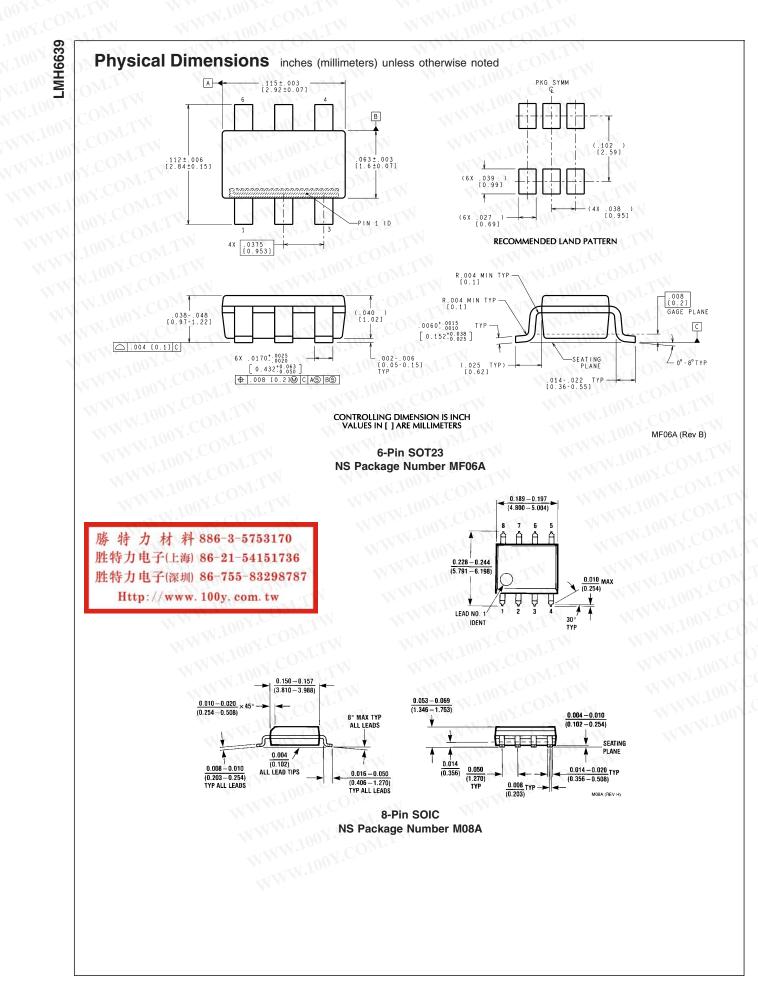
LMH6639's shutdown pin can also be easily controlled in applications where the analog and digital sections are operated at different supplies. *Figure 6* shows a configuration where a logic output, SD, can turn the LMH6639 on and off, independent of what supplies are used for the analog and the digital sections:

FIGURE 6. Shutdown Interface (Single Supply, Open Collector Logic)

The LMH6639 has an internal pull-up resistor on \overline{SD} such that if left un-connected, the device will be in normal operation. Therefore, no pull-up resistor is needed on this pin. Another common application is where the transistor in *Figure* 6 above, would be internal to an open collector (open drain) logic gate; the basic connections will remain the same as shown.

PCB LAYOUT CONSIDERATION AND COMPONENTS SELECTION

Care should be taken while placing components on a PCB. All standard rules should be followed especially the ones for high frequency and/ or high gain designs. Input and output pins should be separated to reduce cross-talk, especially under high gain conditions. A groundplane will be helpful to avoid oscillations. In addition, a ground plane can be used to create micro-strip transmission lines for matching purposes. Power supply, as well as shutdown pin de-coupling will reduce cross-talk and chances of oscillations.


Another important parameter in working with high speed amplifiers is the component values selection. Choosing high value resistances reduces the cut-off frequency because of the influence of parasitic capacitances. On the other hand choosing the resistor values too low could "load down" the nodes and will contribute to higher overall power dissipation. Keeping resistor values at several hundreds of ohms up to several k Ω will offer good performance.

National Semiconductor suggests the following evaluation boards as a guide for high frequency layout and as an aid in device testing and characterization:

Device	Package	Evaluation Board PN
LMH6639MA	8-Pin SOIC	CLC730027
LMH6639MF	SOT23-6	CLC730116

These free evaluation boards are shipped when a device sample request is placed with National Semiconductor. For normal operation, tie the SD pin to V^+ .

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Notes WWW.100Y.COM

WWW.100<u>7</u>.

100Y.COM

WWW.100Y.COM

WWW.100Y

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

LIFE SUPPORT POLICY

Ń

ox.coM.TW

WW.100Y.COM.TW

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.