

M27W101

1 Mbit (128Kb x8) Low Voltage UV EPROM and OTP EPROM

- 2.7V to 3.6V LOW VOLTAGE in READ OPERATION
- ACCESS TIME:
 - 70ns at $V_{CC} = 3.0V$ to 3.6V
 - 80ns at $V_{CC} = 2.7 \text{V to } 3.6 \text{V}$
- PIN COMPATIBLE with M27C1001
- LOW POWER CONSUMPTION:
 - Active Current 15mA at 5MHz
 - Standby Current 15μA
- PROGRAMMING TIME 100µs/byte
- HIGH RELIABILITY CMOS TECHNOLOGY
 - 2.000V ESD Protection
 - 200mA Latchup Protection Immunity
- ELECTRONIC SIGNATURE

Manufacturer Code: 20h

Device Code: 05h

DESCRIPTION

The M27W101 is a low voltage 1 Mbit EPROM offered in two range UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems requiring large data or program storage and is organized as 131,072 by 8 bits.

The M27W101 operates in the read mode with a supply voltage as low as 2.7V at -40 to 85 °C temperature range.

The decrease in operating power allows either a reduction of the size of the battery or an increase in the time between battery recharges.

The FDIP32W (window ceramic frit-seal package) has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure.

For application where the content is programmed only one time and erasure is not required, the M27W101 is offered in PDIP32, PLCC32 and TSOP32 (8 x 20 mm) packages.

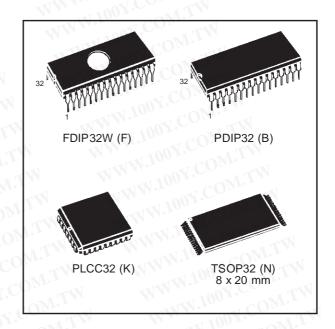
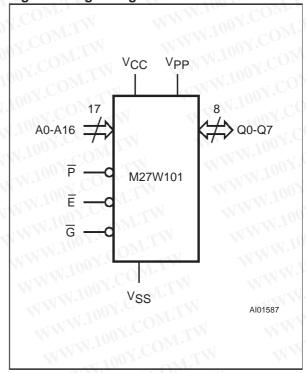



Figure 1. Logic Diagram

April 2000 1/15

Figure 2A. DIP Connections

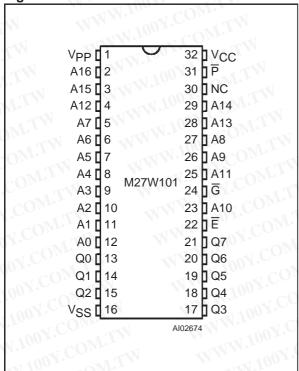


Figure 2B. LCC Connections

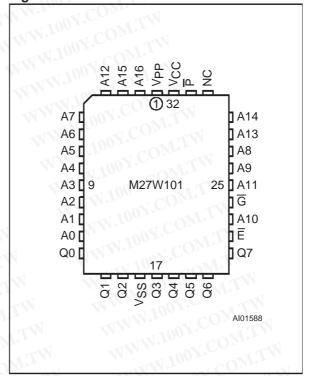
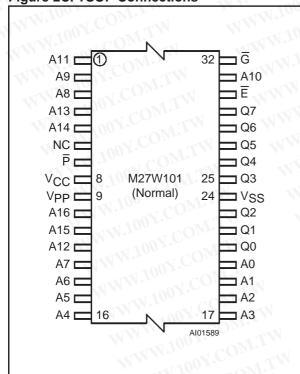



Figure 2C. TSOP Connections

WWW.100Y.COM.

Table 1. Signal Names

A0-A16	Address Inputs
Q0-Q7	Data Outputs
E _{COM} .TW	Chip Enable
G COM	Output Enable
Py.COM	Program W W C
Vpp	Program Supply
V _{CC} COM	Supply Voltage
Vss	Ground
NC NC	Not Connected Internally

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Table 2. Absolute Maximum Ratings (1)

Symbol	Parameter	Value	Unit
TA	Ambient Operating Temperature (3)	-40 to 85	°C
T _{BIAS}	Temperature Under Bias	-50 to 125	°C
T _{STG}	Storage Temperature	-65 to 150	°C
V _{IO} (2)	Input or Output Voltage (except A9)	–2 to 7	V
Vcc	Supply Voltage	–2 to 7	V
V _{A9} (2)	A9 Voltage	-2 to 13.5	V
V _{PP}	Program Supply Voltage	–2 to 14	V

- Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant qual-
 - 2. Minimum DC voltage on Input or Output is -0.5V with possible undershoot to -2.0V for a period less than 20ns. Maximum DC voltage on Output is V_{CC} +0.5V with possible overshoot to V_{CC} +2V for a period less than 20ns.
 - 3. Depends on range.

Table 3. Operating Modes

rable of operating inc	400					
Mode	Ē	G	OM P	A9	V _{PP}	Q7-Q0
Read	VIL	VIL VIL	CONX	X	V _{CC} or V _{SS}	Data Out
Output Disable	VIL	ViH	COX.	X	V _{CC} or V _{SS}	Hi-Z
Program	V _{IL}	VIH	V _{IL} Pulse	X	V _{PP}	Data In
Verify	VIL	VIL	Vih	X	VPP	Data Out
Program Inhibit	ViH	X	XOM	X	VPP	Hi-Z
Standby	V _{IH}	X	XOV	X	V _{CC} or V _{SS}	Hi-Z
Electronic Signature	V _{IL}	V _{IL}	VIH	V _{ID}	Vcc	Codes

Table 4. Electronic Signature

Identifier	A0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Hex Data
Manufacturer's Code	VIL	0	0	1	0	0.0	0	0	0	20h
Device Code	VIH	0	0	0	0	0.0	DN1	as 0	1	05h

WWW.100Y.COM.

WWW.100Y.COM.

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

W.100Y.COM.TW

Table 5. AC Measurement Conditions

M MAM. Ing. COM.	High Speed	Standard
Input Rise and Fall Times	≤ 10ns	≤ 20ns
Input Pulse Voltages	0 to 3V	0.4V to 2.4V
Input and Output Timing Ref. Voltages	1.5V	0.8V and 2V

Figure 3. AC Testing Input Output Waveform

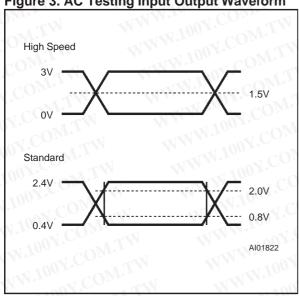


Figure 4. AC Testing Load Circuit

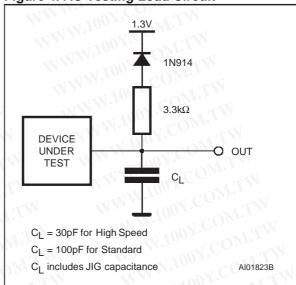


Table 6. Capacitance ⁽¹⁾ ($T_A = 25$ °C, f = 1 MHz)

Symbol	Parameter	Test Condition	Min	Max	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	MM	600	pF
Cout	Output Capacitance	V _{OUT} = 0V	W	12	pF

Note: 1. Sampled only, not 100% tested.

DEVICE OPERATION

The operating modes of the M27W101 are listed in the Operating Modes table. A single power supply is required in the read mode. All inputs are TTL levels except for VPP and 12V on A9 for Electronic Signature.

Read Mode

The M27W101 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{E}) is the power control and should be used for device selection. Output Enable (\overline{G}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that the addresses are stable, the address access time

 (t_{AVQV}) is equal to the delay from \overline{E} to output (t_{ELQV}). Data is available at the output after a delay of t_{GLQV} from the falling edge of \overline{G} , assuming that E has been low and the addresses have been stable for at least tAVQV-tGLQV.

Standby Mode

The M27W101 has a standby mode which reduces the supply current from 15mA to 15µA with low voltage operation V_{CC} ≤ 3.6V, see Read Mode DC Characteristics table for details. The M27W101 is placed in the standby mode by applying a CMOS high signal to the E input. When in the standby mode, the outputs are in a high impedance state, independent of the \overline{G} input.

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Table 7. Read Mode DC Characteristics (1)

 $(T_A = -40 \text{ to } 85^{\circ}\text{C}; V_{CC} = 2.7\text{V to } 3.6\text{V}; V_{PP} = V_{CC})$

Symbol	Parameter	Test Condition	Min	Max	Unit
ILI	Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	WILM	±10	μΑ
I _{LO}	Output Leakage Current	0V ≤ V _{OUT} ≤ V _{CC}	OM.	±10	μΑ
Icc	Supply Current	\overline{E} = V _{IL} , \overline{G} = V _{IL} , I_{OUT} = 0mA, f = 5MHz, $V_{CC} \le 3.6V$	COM.TV	15	mA
I _{CC1}	Supply Current (Standby) TTL	E = V _{IH}	COM	1	mA
I _{CC2}	Supply Current (Standby) CMOS	\overline{E} > V _{CC} - 0.2V, V _{CC} \leq 3.6V	MY.COM	15	μΑ
IPP	Program Current	V _{PP} = V _{CC}	1001.	10	μΑ
V _{IL}	Input Low Voltage	CONTIN	-0.6	0.2 V _{CC}	V
V _{IH} ⁽²⁾	Input High Voltage	COMITY	0.7 V _{CC}	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA	W.100	0.4	V
Voн	Output High Voltage TTL	I _{OH} = -400μA	2.4	COM.	V

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.

2. Maximum DC voltage on Output is V_{CC} +0.5V.

Two Line Output Control

Because EPROMs are usually used in larger memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection.

The two line control function allows:

- a. the lowest possible memory power dissipation,
- complete assurance that output bus contention will not occur.

For the most efficient use of these two control lines, \overline{E} should be decoded and used as the primary device selecting function, while \overline{G} should be made a common connection to all devices in the array and connected to the \overline{READ} line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.

System Considerations

The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, I_{CC}, has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of E. The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device at the output. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 0.1µF ceramic capacitor be used on every device between V_{CC} and VSS. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7μF bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for every eight devices. The bulk capacitor should be located near the power supply connection point. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

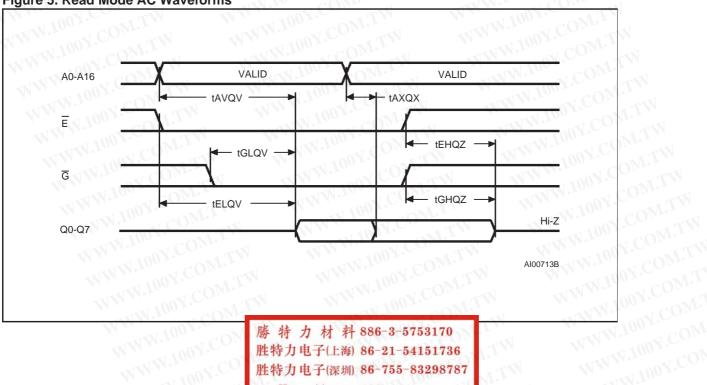
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Table 8. Read Mode AC Characteristics (1)

 $(T_A = -40 \text{ to } 85^{\circ}\text{C}; V_{CC} = 2.7\text{V to } 3.6\text{V}; V_{PP} = V_{CC})$

	111.	W.100Y.	T.I.A.	N		M27	W101			
Symbol	Alt	Parameter	Test		-80	(3)	$O_{M,T}$		00 50/-200)	Unit
TOW		WWW.Ino.	Condition	Vcc = 3.0	OV to 3.6V	Vcc = 2.7	'V to 3.6V	Vcc = 2.7	7V to 3.6V	
		MMM.Ino	OM	Min	Max	Min	Max	Min	Max	
t _{AVQV}	tacc	Address Valid to Output Valid	$\overline{\overline{E}} = V_{IL},$ $\overline{G} = V_{IL}$	N	70	W.100	80	LTW	100	ns
tELQV	tCE	Chip Enable Low to Output Valid	G = V _{IL}	TW	70	NW.10	80	W.I.	100	ns
tGLQV	toe	Output Enable Low to Output Valid	E = V _{IL}	LTW	40	MW.	50	COM.T	60	ns
t _{EHQZ} (2)	t _{DF}	Chip Enable High to Output Hi-Z	G = V _{IL}	0	40	0	50	COM	60	ns
t _{GHQZ} (2)	t _{DF}	Output Enable High to Output Hi-Z	E = V _{IL}	0 1	40	0	50	0	60	ns
t _{AXQX}	tон	Address Transition to Output Transition	$\overline{\overline{G}} = V_{IL},$ $\overline{G} = V_{IL}$	COM		0	WW.10	0.0	MI	ns

WWW.100Y.COM.TW


Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

WWW.100Y.COM.

2. Sampled only, not 100% tested.

3. Speed obtained with High Speed AC measurement conditions.

Figure 5. Read Mode AC Waveforms

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

W.100Y.COM.TW

WWW.100Y.C

Table 9. Programming Mode DC Characteristics (1)

 $(T_A = 25 \text{ °C}; V_{CC} = 6.25 \text{V} \pm 0.25 \text{V}; V_{PP} = 12.75 \text{V} \pm 0.25 \text{V})$

Symbol	Parameter	Test Condition	Min	Max	Uni
ILI	Input Leakage Current	$V_{IL} \le V_{IN} \le V_{IH}$	COMIT	±10	μΑ
Icc	Supply Current	M. 100	TCOM.	50	mA
I _{PP}	Program Current	E = V _{IL}	COM	50	mA
VIL	Input Low Voltage	WWW.1	-0.3	0.8	V
VIH	Input High Voltage	W WWW.	2 (V _{CC} + 0.5	V
Vol	Output Low Voltage	I _{OL} = 2.1mA	1.100 T.	0.4	V
V _{OH}	Output High Voltage TTL	$I_{OH} = -400 \mu A$	2.4	OWIT	V
V_{ID}	A9 Voltage	V. I.A.	11.5	12.5	, V

Table 10. Programming Mode AC Characteristics (1)

Symbol	Alt	Parameter	Test Condition	Min	Max	Unit
t _{AVPL}	t _{AS}	Address Valid to Program Low	M MM	20%	COM.T	μs
tQVPL	t _{DS}	Input Valid to Program Low	LA MA	200	MOM	μs
tvphpl	t _{VPS}	VPP High to Program Low	TAN M	2 00	YICON	μs
tVCHPL	tycs	VCC High to Program Low	W.IM W	2	07.00	μs
tELPL	tces	Chip Enable Low to Program Low	WIN	2	001.C	μs
t _{PLPH}	t _{PW}	Program Pulse Width	W.T.W	95	105	μs
tpHQX	t _{DH}	Program High to Input Transition	MIN	2	1.100 Y.C	μs
t _{QXGL}	toes	Input Transition to Output Enable Low	CONTW	2	N 100Y	μs
t _{GLQV}	toE	Output Enable Low to Output Valid	LCONTW	WW	100	ns
t _{GHQZ} (2)	t _{DFP}	Output Enable High to Output Hi-Z	Y.CO. TY	0	130	ns
t _{GHAX}	t _{AH}	Output Enable High to Address Transition	OY.COM.TW	0	WW.1	ns

Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}.

2. Sampled only, not 100% tested.

Programming

The M27W101 has been designed to be fully compatible with the M27C1001 and has the same electronic signature. As a result the M27W101 can be programmed as the M27C1001 on the same programming equipment applying 12.75V on VPP and 6.25V on V_{CC} using the same PRESTO II algorithm. When delivered (and after each '1's erasure for UV EPROM), all bits of the M27W101 are in the '1' state. Data is introduced by selectively programming '0's into the desired bit locations. Al-

though only '0's will be programmed, both '1's and '0's can be present in the data word. The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The M27W101 is in the programming mode when VPP input is at 12.75V, \overline{E} is at V_{IL} and \overline{P} is pulsed to V_{IL} . The data to be programmed is applied to 8 bits in parallel to the data output pins. The levels required for the ad-WWW.100Y.COM dress and data inputs are TTL. V_{CC} is specified to be $6.25V \pm 0.25V$.

/

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Http://www.100y.com.tw

Figure 6. Programming and Verify Modes AC Waveforms

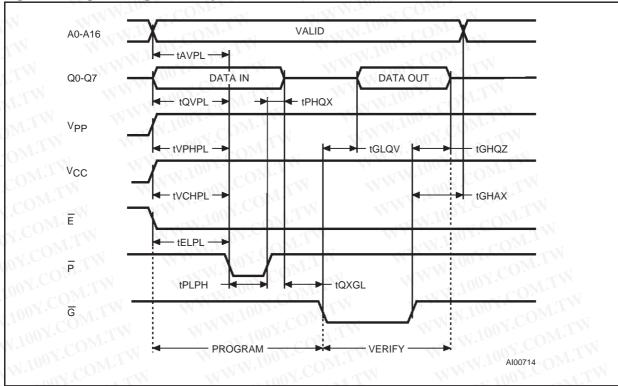
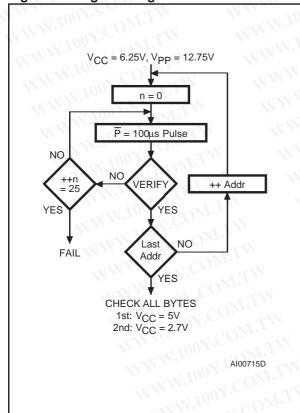



Figure 7. Programming Flowchart

WW.100Y.COM

PRESTO II Programming Algorithm

PRESTO II Programming Algorithm allows the whole array to be programmed, with a guaranteed margin, in a typical time of 13 seconds. Programming with PRESTO II involves in applying a sequence of 100µs program pulses to each byte until a correct verify occurs (see Figure 7). During programming and verify operation, a MARGIN MODE circuit is automatically activated in order to guarantee that each cell is programmed with enough margin. No overprogram pulse is applied since the verify in MARGIN MODE at VCC much higher than 3.6V, provides necessary margin to each programmed cell.

Program Inhibit

Programming of multiple M27W101s in parallel with different data is also easily accomplished. Except for \overline{E} , all like inputs including \overline{G} of the parallel M27W101 may be common. A TTL low level pulse applied to a M27W101's \overline{P} input, with \overline{E} low and V_{PP} at 12.75V, will program that M27W101. A high level \overline{E} input inhibits the other M27W101s from being programmed.

Program Verify

A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with $\overline{\rm E}$ and $\overline{\rm G}$ at V_{IL}, $\overline{\rm P}$ at V_{IH}, V_{PP} at 12.75V and V_{CC} at 6.25V.

On-Board Programming

The M27W101 can be directly programmed in the application circuit. See the relevant Application Note AN620.

Electronic Signature

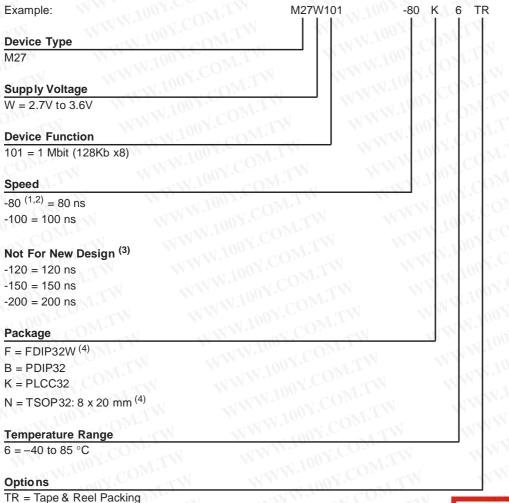
The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ ambient temperature range that is required when programming the M27W101. To activate the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27W101, with VPP = VCC = 5V. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during Electronic Signature mode.

Byte 0 ($A0 = V_{IL}$) represents the manufacturer code and byte 1 ($A0 = V_{IH}$) the device identifier code. For the STMicroelectronics M27W101, these two identifier bytes are given in Table 4 and can be read-out on outputs Q7 to Q0.

Note that the M27W101 and M27C1001 have the same identifier byte.

ERASURE OPERATION (applies to UV EPROM)

The erasure characteristics of the M27W101 is such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å range. Research shows that constant exposure to room level fluorescent lighting could erase a typical M27W101 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27W101 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27W101 window to prevent unintentional erasure. The recommended erasure procedure for the M27W101 is exposure to short wave ultraviolet light which has a wavelength of 2537 Å. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 15 W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 μ W/cm² power rating. The M27W101 should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

W.100Y.COM.TV

WWW.100Y.COM.

WW.100Y.COM.TW

Table 11. Ordering Information Scheme

Note: 1. High Speed, see AC Characteristics section for further information.

2. This speed also guarantees 70ns access time at V_{CC} = 3.0V to 3.6V.

3. These speeds are replaced by the 100ns.

4. Packages option available on request. Please contact STMicroelectronics local Sales Office.

WWW.100Y.COM.

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

Table 12. Revision History

Date	Revision Details	WW.
July 1999	First Issue	WW
04/04/00	FDIP32W Package Dimension, L Max added (Table 13) TSOP32 and PLCC32 Package Dimension changed (Table 16 and 15) 0 to 70°C Temperature Range deleted Programming Time changed	MM
10/15	WWW.100X.COW.TW WWW.100X.COW.TW	47/

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Table 13. FDIP32W - 32 pin Ceramic Frit-seal DIP with window, Package Mechanical Data

Cumb		CO mm		J. P. COM	inches	
Symb	Тур	Min	Max	Тур	Min	Max
Α	W 100	COMITY	5.72	W.100	Mir	0.225
A1	11/10	0.51	1.40	13N 100 1.	0.020	0.055
A2	WW	3.91	4.57	1007.6	0.154	0.180
A3	MMW.	3.89	4.50	100Y	0.153	0.177
В	WWW	0.41	0.56	WWW.	0.016	0.022
B1	1.45	1.100 = COJ	1.1	0.057	N.COJ.	_
C		0.23	0.30	10 July 10	0.009	0.012
D	MA	41.73	42.04	W.10	1.643	1.655
D2	38.10	TOYLE	W.EW	1.500	001 W.I	_
CE	15.24	MM 00.X.	WE	0.600	1001-01	[N -
(E1) N		13.06	13.36	MMM	0.514	0.526
e 01/	2.54	TWA TOO	COM.	0.100	N. Para COA	TW
eA	14.99	A. 100	(O ² /1.1	0.590	M.In- CO	VI. 2
(eB	M.TW	16.18	18.03	N.	0.637	0.710
1067.Cc	WIIM	3.18	4.10	L W	0.125	0.161
SVC	WT	1.52	2.49	IN A	0.060	0.098
Ø	7.11	MAN	TOWN COM	0.280	MM - 1007	7.7
α	COM	4°	11°CO		4°	C 11°
NIOU	COMIT	32	W.100	11.2	32	COM.

Figure 8. FDIP32W - 32 pin Ceramic Frit-seal DIP with window, Package Outline -α B1eΑ D2 eB D Ε E1 FDIPW-a

WWW.100Y.COM.

WWW.100Y.C

EW.100Y.COM.T

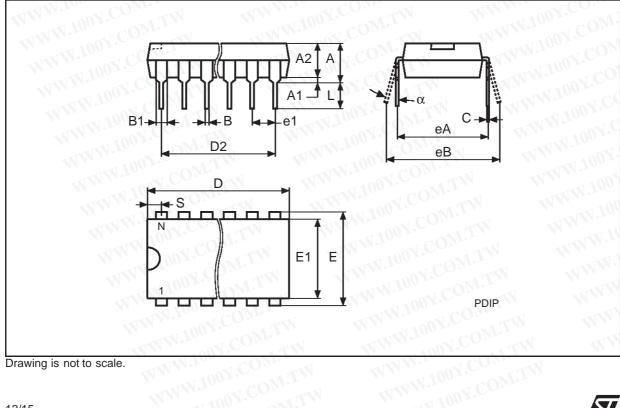
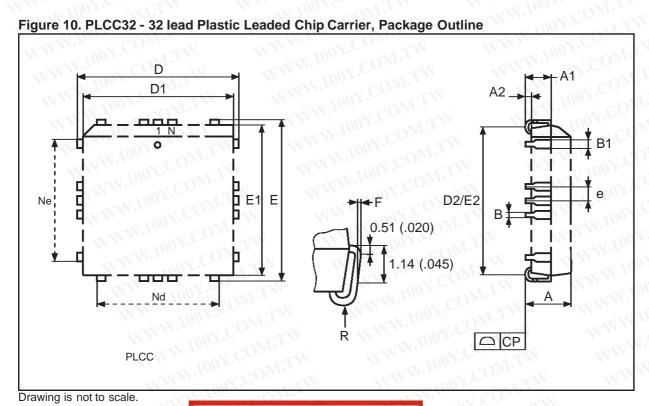

Drawing is not to scale.

Table 14. PDIP32 - 32 lead Plastic DIP, 600 mils width, Package Mechanical Data

N Symb M	WW. COM mm			inches			
Symb	Тур	Min	Max	Тур	Min	Max	
Α	100 ·	COV	5.08	M.In. CO	VI.	0.200	
A1	W.100	0.38		M. Jon Z. C.	0.015	_	
A2	W 10	3.56	4.06	WW.100 1	0.140	0.160	
В	WW.1	0.38	0.51	W.1001.	0.015	0.020	
B1	1.52	1007 OM	CM - 1	0.060	CON	_	
C	MM	0.20	0.30	WW. 100	0.008	0.012	
DTV	MM	41.78	42.04	WW 10	1.645	1.655	
CO D2	38.10	M. 100 Y.CO	MIN	1.500	OY.COM.T	-	
COE	15.24	W. Toox.Co	JAN TAN	0.600	OOX.Co.	<u> </u>	
E1	N W	13.59	13.84	MMM	0.535	0.545	
e1	2.54	MM Too	COM-	0.100	· rook COM	CTVI-	
eA	15.24	MANTION OF	CONT.	0.600	W. To	TI	
eB	17.	15.24	17.78		0.600	0.700	
1005.	1.7.	3.18	3.43	1 -41	0.125	0.135	
1108	M.TW	1.78	2.03	VI VI	0.070	0.080	
α	MITW	0°	10°	LA I	0°	10°	
N	32	MM	1007.00	32	M 1, 100	Mon	

WWW.100Y.COM.

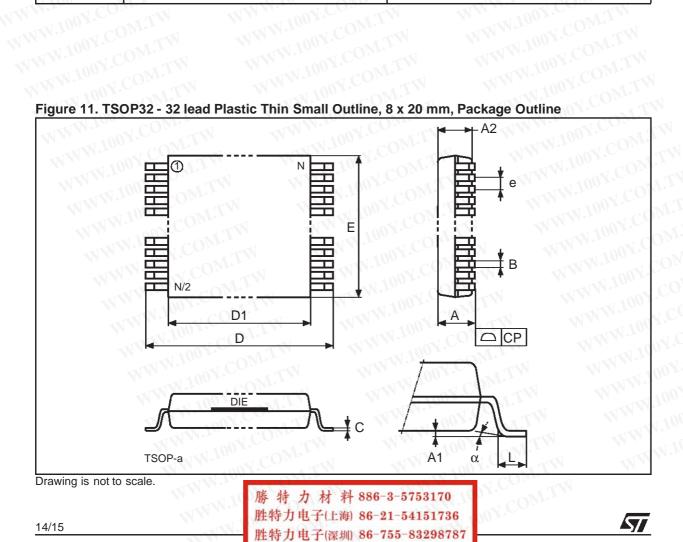


Drawing is not to scale.

_{йМ}.100Ү.СОМ.Т

Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data

Symb	COmm			inches			
	Тур	Min	Max	Тур	Min	Max	
Α	W.10	2.54	3.56	1.100 -1 CC	0.100	0.140	
A1	W 10	1.52	2.41	M.100 1.	0.060	0.095	
A2	MA	0.38	N - N	100x.	0.015	_	
В	MM	0.33	0.53	1007	0.013	0.021	
B1	MMM	0.66	0.81	WW 1005	0.026	0.032	
D	WW	12.32	12.57	MMM	0.485	0.495	
D1	VV	11.35	11.56	MMM	0.447	0.455	
D2	×1 -×1	9.91	10.92	T.WW.I	0.390	0.430	
EM	7	14.86	15.11	WW.	0.585	0.595	
E1 .	In 1	13.89	14.10	WXX	0.547	0.555	
E2	TW	12.45	13.46	MA	0.490	0.530	
e e	1.27	1100	I.C. TIN	0.050	M.1007.	M.TV-	
F.CO	WTI	0.00	0.25		0.000	0.010	
R C	0.89	WAN.	OY.COM	0.035	100X.C	TW	
N	OM.	32	ON CONT	W W	32	COM	
Nd	OM.	7	Too COM.	TW T	7/1/7	COM	
Ne	COMITY	9	VION TOOM	. Y	9	COMP.	
CP	· ONITW	-11	0.10	V.I.A.	A. 100	0.004	


57

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y

Table 16. TSOP32 - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data

Symbol	MW. CO. mm			inch			
	Тур	Min	Max	Тур	Min	Max	
Α	MW.100	COM.	1.200	W.To.	TW	0.0472	
A1	W.100	0.050	0.150	W. Too V.C	0.0020	0.0059	
A2	W.10	0.950	1.050	MM.Ing	0.0374	0.0413	
В	WWW.1	0.150	0.270	WW.100	0.0059	0.0106	
C	W.	0.100	0.210	100 x	0.0039	0.0083	
D	W.	19.800	20.200	W.100	0.7795	0.7953	
D1		18.300	18.500	W. 10	0.7205	0.7283	
е	0.500	N.1007.	MIT	0.0197	M_{II}		
ENT		7.900	8.100		0.3110	0.3189	
Y.CY M.T	N N	0.500	0.700	W.	0.0197	0.0276	
α	TW V	0°	5°		1100°	5°	
СР	W	MMA1 100	0.100	41	W 100Y.	0.0039	
N.CO	TW	32	Y.CO.		32	WILLE	

Http://www. 100y. com. tw

WWW.100Y.C