勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

General Description

The MAX2611 is a low-voltage, low-noise amplifier for use from DC to microwave frequencies. Operating from a single +5V supply, it has a 3dB bandwidth of 1100MHz. The MAX2611's low noise figure and high drive capability make it ideal for a variety of transmit, receive, and buffer applications.

In a typical application, the only external components needed are input and output blocking capacitors and a V_{CC} series resistor. To improve gain and output power, an RF choke can be added in series to the bias resistor.

The MAX2611 comes in a 4-pin SOT143 package, requiring minimal board space.

Features

- Single +5V Supply Operation
- + 3dB Bandwidth: DC to 1100MHz
- + High Gain: 18dB at 500MHz
- Low Noise Figure: 3.5dB at 500MHz
- High Drive Capability: +3dBm at 16mA ID
- Ultra-Small SOT143 Package

MAX261

Applications Satellite Receivers **TV** Tuners Wireless Local Loops **ISM Radios Global Positioning Systems** Wireless Local-Area Networks Land Mobile Radios Set-Top Boxes

	ion	Ordering	1
RT TEMP. RANGE PIN-PACKAGE	Ê	TEMP. RANGE	RT

PART	TEMP. RANGE	PIN-PACKAGE
MAX2611EUS	-40°C to +85°C	4 SOT143

Vcc TOP VIEW CBYP RBIAS (OPTIONAL) 4 GND LCHOKE OUT (OPTIONAL) MAXIM GND OUT OUT-CBLOCK GND 2 1 IN SOT143 GND IN MAXIM MAX2611 CBLOCK -M/X/M

Typical Operating Circuit

Maxim Integrated Products 1

Pin Configuration

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800 WWW.100Y.COM

DC-to-Microwave, Low-Noise Amplifier

ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MAXIMUM RATINGS	
$\label{eq:loss} \begin{array}{c} I_D & & 40 mA \\ Input Power & & +13 dBm \\ Continuous Power Dissipation (T_A = +70°C) \\ SOT143-4 (derate 4mW/°C above +70°C) & & 320 mW \\ \end{array}$	Operating Temperature Range40°C to +85°C Junction Temperature+150°C Storage Temperature Range65°C to +150°C Lead Temperature (soldering, 10sec)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to NNN.1007.5 absolute maximum rating conditions for extended periods may affect device reliability. WWW.100Y.COM.

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Operating Temperature Range	(Note 1)	-40	<u>N.Y</u>	85	O°C	
Power Gain	f _{IN} = 100MHz	Mr.	19.0			
Power Gain	$f_{IN} = 500MHz$	17.3	18.3	1	CO dB	
Gain Flatness	f _{IN} = 100MHz to 500MHz		±0.3	100 -	dB	
3dB Bandwidth	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	1	1100		MHz	
Input Voltage Standing-Wave Maximum Ratio	f _{IN} = 100MHz to 1500MHz	1	1.9:1	110	Y.CON	
Output Voltage Standing-Wave Maximum Ratio	f _{IN} = 100MHz to 1500MHz	1	1.6:1	W.1	OX.CO.	
Output 1dB Compression Point	WWW.100Y.C.	1	2.9		dBm	
Noise Figure	COMPANY CONT	N	3.5	MM.	dB	
Output IP3	1001. ON.	F C.	13	1	dBm	
Group Delay	A WWW. ONLO	Nr.	210 🔨	NN.	ps	
Putto COM-	N. I. COM	3.5	3.8	4.0	N	
Device Voltage	T _A = T _{MIN} to T _{MAX} (Note 2)	3.25	3.8	4.26	V	
Device Voltage Temperature Coefficient	TW WWW.100Y.CO.	WIN	-6.1	WV	mV/°C	

WW.100Y.COM Note 1: Parts are designed to operate over specified temperature range. Specifications are production tested and guaranteed WWW.100Y.COM.TW at +25°C.

Note 2: Guaranteed by design, not tested. WWW.100Y.

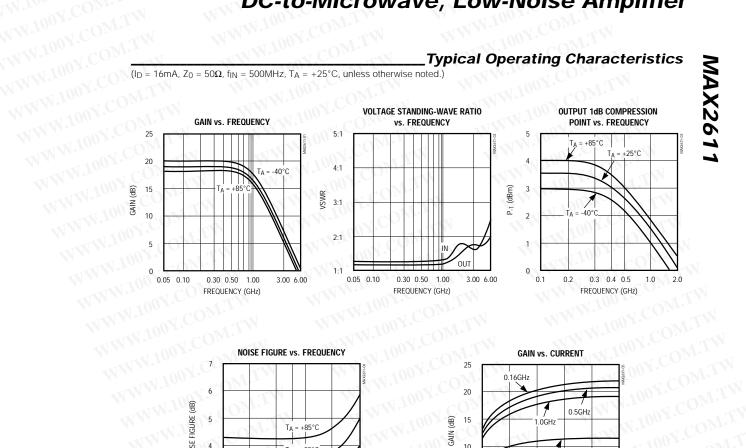
WWW.100Y.C

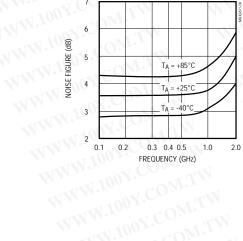
WWW.100Y.COM. 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW

WWW.100Y

M/XI/M

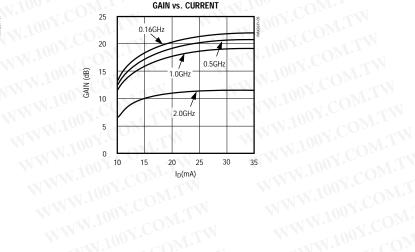

100X.COM.T


WWW.100X.

2

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.T WW.100Y.COM. DC-to-Microwave, Low-Noise Amplifier



WWW.100Y.COM.TW

WWW.100Y.C

100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.C

WW

100Y.COM.TW

WWW.100Y.COM.T

WWW.100Y.COM.

3

M/XI/M

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WW.100Y.COM.TW

DC-to-Microwave, Low-Noise Amplifier

PIN	NAME	FUNCTION
M.T.W	IN	Amplifier Input. Use a series blocking capacitor with less than 3Ω reactance at your lowest operating frequency.
2, 4	GND	Ground Connection. For optimum performance, provide a low-inductance connection to the ground plane.
3	OUT	Amplifier Output. Use a series blocking capacitor with less than 3Ω reactance at your lowest operating frequency. Bias with an external resistor and an optional RF choke.

WWW.1001 **Table 1. Typical Scattering Parameters** ($I_D = 16mA$, $Z_0 = 50\Omega$. $T_A = \pm 25°$ C)

WWW.100Y.COM.TW

WWW.100Y.C

<u>,100</u>¥.COM.TW

WWW.100Y.COM.TW

FREQUENCY (GHz)	S11 (mag)	S11 (ang)	S21 (dB)	S21 (mag)	S21 (ang)	S12 (dB)	S12 (mag)	S12 (ang)	S22 (mag)	S22 (ang)	к
0.1	0.12	-11	19.0	8.90	173	-22.6	0.074	2	0.05	53	1.08
0.2	0.11	-44	18.8	8.73	166	-21.9	0.081	4	0.03	12	1.06
0.3	0.13	-58	18.6	8.53	158	-21.6	0.083	5	0.04	45	1.05
0.4	0.14	-78	18.5	8.43	151	-21.6	0.083	6	0.06	32	1.06
0.5	0.15	-89	18.3	8.26	144	-21.6	0.083	7	0.08	34	1.06
0.6	0.15	77	18.1	7.99	137	-21.6	0.083	9	0.09	26	1.07
0.8	0.13	50	17.4	7.45	123	-21.6	0.083	10	0.10	23	1.10
1.0	0.12	16	16.6	6.79	109	-20.9	0.090	10	0.10	35	1.11
1.5	0.32	-60	14.1	5.07	79	-21.8	0.081	11	0.21	-86	1.29
2.0	0.31	-72	10.3	3.27	59	-22.2	0.078	18	0.22	-72	1.87
2.5	0.32	-76	7.9	2.48	47	-22.6	0.074	25	0.26	-53	2.44
3.0	0.20	-70	5.9	1.98	32	-22.3	0.077	37	0.24	-29	3.10
3.5	0.24	-64	3.0	1.41	13	-21.4	0.086	30	0.19	47	3.83
4.0	0.31	-68	-0.7	0.92	17	-23.0	0.070	35	0.24	82	6.66

WWW.100Y.COM.TW N100Y.COM.IW M/IXI/N WWW.100Y.COM.

WWW.100Y.C

WW

WWW.100Y.COM.

Pin Description

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

DC-to-Microwave, Low-Noise Amplifier

Detailed Description

The MAX2611 is a broadband amplifier with flat gain and 50Ω input and output ports. Its small size and simple bias circuitry make it ideal for applications where board space is limited.

Applications Information

External Components

As shown in the *Typical Operating Circuit*, the MAX2611 is easy to use. Input and output series capacitors may be necessary to block DC bias voltages (generated by the MAX2611) from interacting with adjacent circuitry. These capacitors must be large enough to contribute negligible reactance in a 50 Ω system at the minimum operating frequency. Use the following equation to calculate their minimum value:

$$C_{BLOCK} = \frac{53,000}{f} \quad (pF)$$

where f (in MHz) is the minimum operating frequency.

Bias current is supplied to the MAX2611 through an external resistor and optional RF choke connected between V_{CC} and the OUT pin. A bypass capacitor from V_{CC} to GND may be necessary to isolate the V_{CC} line from other circuitry. The resistor value determines the bias current from the following equation:

$$I_{\rm D} = \frac{V_{\rm CC} - V_{\rm D}}{R_{\rm BIAS}}$$

where V_D is the device voltage, nominally 3.8V

An optional RF choke can be added to improve the MAX2611's gain and output power. The choke should be large enough to reduce the loading effect that the bias resistor has on the amplifier output. This is a function of R_{BIAS}, frequency of operation, and output impedance.

Grounding

MAX26

-

5

Proper grounding of the GND pins is essential. If the PC board uses a topside RF ground, the GND pins should be connected directly to it. For a board where the ground plane is not on the component side, the best technique is to connect the GND pins to it through multiple plated through-holes.

PC Board Layout Example

An example PC board layout is given in Figure 1. It uses FR-4 with 31mil layer thickness between the RF lines and the ground plane. This board satisfies all the above requirements.

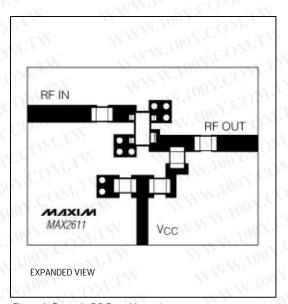
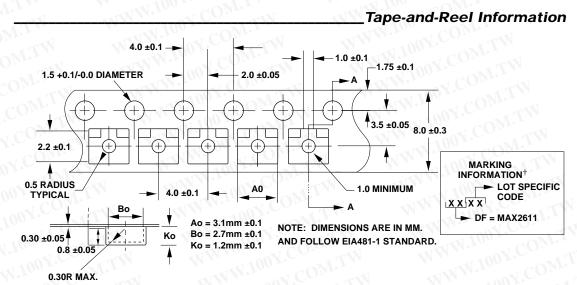
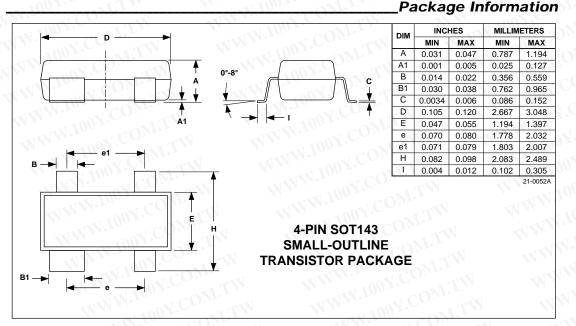


Figure 1. Example PC Board Layout



0


MA

6

DC-to-Microwave, Low-Noise Amplifier

[†]ICs MAY ALSO BE MARKED WITH FULL PART NAME: 2611

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1996 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products.