1522: Rev 3: 3/05

General Description

The MAX4450 single and MAX4451 dual op amps are unity-gain-stable devices that combine high-speed performance with rail-to-rail outputs. Both devices operate from a +4.5V to +11V single supply or from ±2.25V to ±5.5V dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications).

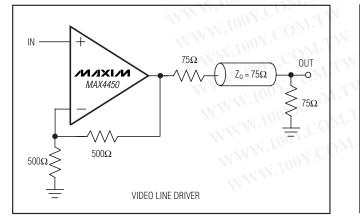
The MAX4450/MAX4451 require only 6.5mA of quiescent supply current per op amp while achieving a 210MHz -3dB bandwidth and a 485V/µs slew rate. Both devices are an excellent solution in low-power/lowvoltage systems that require wide bandwidth, such as video, communications, and instrumentation.

The MAX4450 is available in the ultra-small 5-pin SC70 package, while the MAX4451 is available in spacesaving 8-pin SOT23 and SO packages.

Applications

Set-Top Boxes Surveillance Video Systems **Battery-Powered Instruments** Video Line Driver Analog-to-Digital Converter Interface CCD Imaging Systems Video Routing and Switching Systems **Digital Cameras**

Features


- Ultra-Small SC70-5, SOT23-5, and SOT23-8 Packages
- Low Cost
- High Speed
 - 210MHz -3dB Bandwidth 55MHz 0.1dB Gain Flatness 485V/µs Slew Rate
- Single +4.5V to +11V Operation
- Rail-to-Rail Outputs
- Input Common-Mode Range Extends Beyond VEE
- Low Differential Gain/Phase: 0.02%/0.08°
- Low Distortion at 5MHz -65dBc SFDR -63dB Total Harmonic Distortion

Ordering Information

Pin Configurations

TEMP RANGE	PIN- PACKAGE	TOP MARK		
-40°C to +85°C	5 SC70-5	AAA		
-40°C to +85°C	5 SOT23-5	ADKP		
-40°C to +85°C	8 SOT23-8	AAAA		
-40°C to +85°C	8 SO	00		
	-40°C to +85°C -40°C to +85°C -40°C to +85°C	TEMP RANGE PACKAGE -40°C to +85°C 5 SC70-5 -40°C to +85°C 5 SOT23-5 -40°C to +85°C 8 SOT23-8		

Typical Operating Circuit

TOP VIEW 5 Vcc OUT MAXIM MAX4450 V_{EE} 2 IN+ 3 4 IN-SC70-5/SOT23-5 Pin Configurations continued at end of data sheet.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

W.100Y.COM.TW WWW.100Y.COM.TW Ultra-Small, Low-Cost, 210MHz, Single-Supply **Op Amps with Rail-to-Rail Outputs**

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{CC} to V_{EE}).....+12V IN_-, IN_+, OUT_.....(VEE - 0.3V) to (V_{CC} + 0.3V) Output Short-Circuit Current to V_{CC} or V_{EE}150mA Continuous Power Dissipation ($T_A = +70^{\circ}C$) 5-Pin SC70-5 (derate 2.5mW/°C above +70°C)200mW 5-Pin SOT23-5 (derate 7.1mW/°C above +70°C).......571mW

8-Pin SOT23-8 (derate 5.26mW/°C above +70°C)......421mW 8-Pin SO (derate 5.9mW/°C above +70°C)471mW Operating Temperature Range-40°C to +85°C Storage Temperature Range-65°C to +150°C Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

WWW.100 COM.T NV.COM $(V_{CC} = +5V, V_{EE} = 0V, R_L = \infty$ to $V_{CC}/2, V_{OUT} = V_{CC}/2, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C.$) (Note 1) WW WN

PARAMETER	SYMBOL	CON	MIN	ТҮР	MAX	UNITS		
Input Common-Mode Voltage Range	VCM	Guaranteed by CMR	V _{EE} - 0.20	NW.10	V _{CC} 2.25	V		
Input Offset Voltage (Note 2)	Vos	WWW.	N.COM	V	4	26	mV	
nput Offset Voltage Matching	DNL	WW.	Too COMP.		1.0	Juc Al	mV	
nput Offset Voltage Temperature Coefficient	TCvos	N WWW	.1001.COM.TW		8	1.100×	µV/°C	
nput Bias Current	COIB	(Note 2)	W. S. COM	I	6.5	20	μA	
nput Offset Current	los	(Note 2)	W.Ine CONT.	a l	0.5	4	μΑ	
nput Resistance	RIN	Differential mode (-1)	$V \le V_{IN} \le +1V$)	44	70	.W.1	kΩ	
nput resistance	NIN	Common mode (-0.2)	$V \le V_{CM} \le +2.75V)$	L.N.	3		MΩ	
Common-Mode Rejection Ratio	CMRR	$(V_{EE} - 0.2V) \le V_{CM} \le$	(V _{CC} - 2.25V)	70	95	MAN.	dB	
1. 17.	001.	$0.25V \le V_{OUT} \le 4.75V$	50	60	WW	.100		
Open-Loop Gain (Note 2)	AVOL	$0.5V \le V_{OUT} \le 4.5V$, F	48	58	W. T.	dB		
	J.V.C	$1V \le V_{OUT} \le 4V, R_L =$	WTN	57	A.M.	2100		
VIII	Vout	$R_L = 2k\Omega$	Vcc - Vон	Nr.	0.05	0.20	N.2	
		nL=ZKSZ	V _{OL} - V _{EE}	ON.L	0.05	0.15	VW.10	
		$R_L = 150\Omega$	V _{CC} - V _{OH}	.M.	0.30	0.50	Lav 1	
Output Voltage Swing Note 2)		nL = 13022	V _{OL} - V _{EE}	COM	0.25	0.80	V	
		COM	V _{CC} - V _{OH}	COM	0.5	0.80		
	WW.10	$R_L = 75\Omega$	V _{OL} - V _{EE}	X.CON	0.5	1.75	WWV	
	WW.	D 500	Sourcing	45	70	I		
Dutput Current	IOUT	$R_L = 50\Omega$	Sinking	25	50		- mA	
Dutput Short-Circuit Current	Isc	Sinking or sourcing		001.	±120		mA	
Open-Loop Output Resistance	ROUT	NA COM WWW			8		Ω	
Power-Supply Rejection Ratio (Note 3)	PSRR	Vcc = 5V	$V_{EE} = 0V, V_{CM} = 2V$	46	62		- dB	
	Fonn	VUU = 3V	$V_{EE} = -5V, V_{CM} = 0V$	54	69		UB	
Operating Supply-Voltage Range	VS	V _{CC} to V _{EE}		4.5		11.0	V	
Quiescent Supply Current (per amplifier)	IS				6.5	9.0	mA	

WWW.100Y.COM.TW W.100Y.COM.TV Ultra-Small, Low-Cost, 210MHz, Single-Supply **Op Amps with Rail-to-Rail Outputs**

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V, V_{EE} = 0V, V_{CM} = +2.5V, R_F = 24\Omega, R_L = 100\Omega$ to $V_{CC}/2, V_{OUT} = V_{CC}/2, A_{VCL} = +1V/V, T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CON	MIN	ТҮР	MAX	UNITS			
Small-Signal -3dB Bandwidth	BWSS	$V_{OUT} = 100 m V_{P-P}$	-x1.100	210	W.LA.	MHz			
Large-Signal -3dB Bandwidth	BWLS	Vout = 2VP-P	10	175					
Bandwidth for 0.1dB Gain Flatness	BW _{0.1dB}	V _{OUT} = 100mV _{P-P}	55			MHz			
Slew Rate	SR	V _{OUT} = 2V step	WI.M.		485				
Settling Time to 0.1%	ts	V _{OUT} = 2V step	WT NO.	NN.	16				
Rise/Fall Time	t _R , t _F	$V_{OUT} = 100 \text{mV}_{P-P}$	COMP.	WWW	4	1.CON	ns		
Spurious-Free Dynamic Range	SFDR	fc = 5MHz, Vout = 3	-65			dBc			
Harmonic Distortion	HD	WWW.	2nd harmonic	WV	-65		1710		
		$f_{\rm C} = 5 {\rm MHz},$	3rd harmonic		-58	N.V.	dDa		
		Vout = 2VP-P	Total harmonic distortion		-63	100X.	dBc		
Two-Tone, Third-Order Intermodulation Distortion	IP3	f1 = 4.7MHz, f2 = 4.	66			dBc			
Channel-to-Channel Isolation	CHISO	Specified at DC	102			dB			
Input 1dB Compression Point	N.C.	fc = 10MHz, AvcL =		14	1.10	dBm			
Differential Phase Error	DP	NTSC, $R_L = 150\Omega$	0.08			degrees			
Differential Gain Error	DG	NTSC, $R_L = 150\Omega$	0.02			%			
Input Noise-Voltage Density	en	f = 10kHz	10			nV/√Hz			
Input Noise-Current Density	in	f = 10kHz	1.8			pA/√Hz			
Input Capacitance	CIN	WILL	TW 1 WY			pF			
Output Impedance	Zout	f = 10MHz	The second	1.5	VW	Ω			

Note 1: All devices are 100% production tested at $T_A = +25$ °C. Specifications over temperature limits are guaranteed by design.

Note 3: PSR for single +5V supply tested with VEE = 0V, VCC = +4.5V to +5.5V; PSR for dual \pm 5V supply tested with VEE = -4.5V to -5.5V, VCC = +4.5V to +5.5V. WWW.100Y.COM WWW.100Y.COM.TW

WWW.100Y.COM.TV

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

Typical Operating Characteristics

 $(V_{CC} = +5V, V_{EE} = 0V, V_{CM} = +2.5V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

GAIN FLATNESS vs. FREQUENCY LARGE-SIGNAL GAIN vs. FREQUENCY **SMALL-SIGNAL GAIN vs. FREQUENCY** 0.4 4 0.3 $= 100 \text{mV}_{P-P}$ VOUT 3 $V_{OUT} = 100 \text{mV}_{P-P}$ 3 $V_{OUT} = 2V_{P-P}$ 0.2 2 2 0.1 1 1 0 0 0 GAIN (dB) GAIN (dB) (dB) -0.1 -1 GAIN (-1 -2 -0.2 -2 -0.3 -3 -3 -0.4 -4 -4 -0.5 -5 -5 -0.6 -6 -6 100k 1M 100k 100M 100k 1M 10M 100M 1M 10M 1G 1G FREQUENCY (Hz) FREQUENCY (Hz) **DISTORTION vs. FREQUENCY OUTPUT IMPEDANCE vs. FREQUENCY** 0 0 100 $V_{OUT} = 2V_{P-P}$ $V_{OUT} = 2V_{P-P}$ -10 -10 $A_{VCL} = +1V/V$ $A_{VCL} = +2V/V$ -20 -20 10 -30 -30 DISTORTION (dBc) (dBc) IMPEDANCE (Ω) -40 -40 MIII DISTORTION -50 -50 1 2ND HARMONIC -60 -60 -70 -70 0.1 -80 **3RD HARMONIC** -80 -90 -90 -100 -100 0.01 100k 10M 100M 1M 100k 1M 100M 1M 100k 10M 1G FREQUENCY (Hz) FREQUENCY (Hz) **DISTORTION vs. FREQUENCY DISTORTION vs. RESISTIVE LOAD** 0 0 0 $V_{OUT} = 2V_{P-P}$ $f_0 = 5MHz$ $f_0 = 5MHz$ -10 -10 -10 $A_{VCL} = +5V/V$ $A_{VCL} = +1V/V$ $V_{OUT} = 2V_{P-P}$ -20 -20 -20 $A_{VCL} = +1V/V$ -30 -30 -30 DISTORTION (dBc) DISTORTION (dBc) DISTORTION (dBc) -40 2ND HARMONIC -40

-50

-60

-70

-80

-90

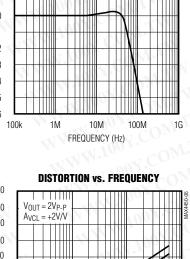
-100

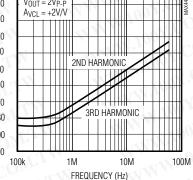
0

200

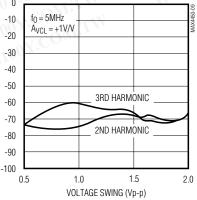
100M

2ND HARMONIC


3RD HARMONIC


 $R_{LOAD}(\Omega)$

800


1000 1200

400 600

DISTORTION vs. VOLTAGE SWING

MIXIM

-50

-60

-70

-80

-90

100k

-100

3RD HARMONIC

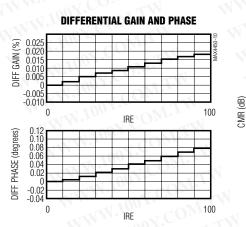
FREQUENCY (Hz)

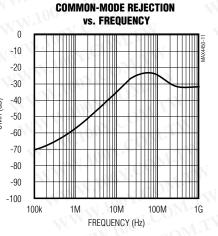
10M

1M

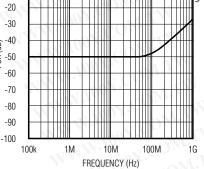
Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

_Typical Operating Characteristics (continued)

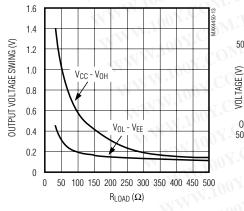

0

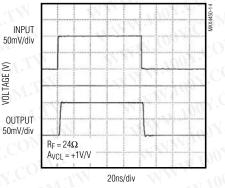

-10

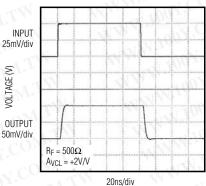
(dB)

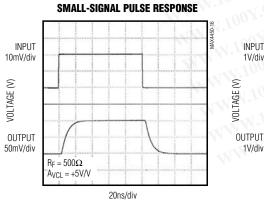

PSR (

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +2.5V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

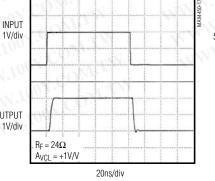



POWER-SUPPLY REJECTION vs. FREQUENCY **MAX4450/MAX445**

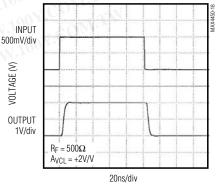

OUTPUT VOLTAGE SWING vs. RESISTIVE LOAD



SMALL-SIGNAL PULSE RESPONSE



SMALL-SIGNAL PULSE RESPONSE



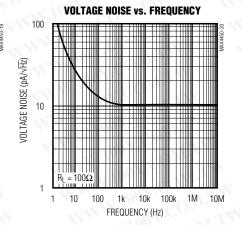
LARGE-SIGNAL PULSE RESPONSE

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

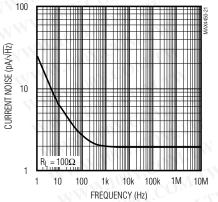
INPUT 1V/div

INPUT 1V/div

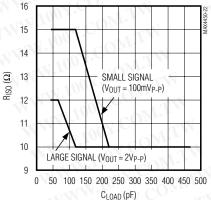
> $R_F = 500\Omega$ $A_{VCL} = +2V/V$

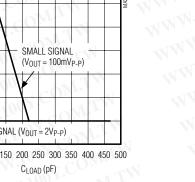

VOLTAGE (V)

Typical Operating Characteristics (continued)

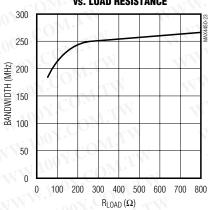

 $(V_{CC} = +5V, V_{EE} = 0, V_{CM} = +2.5V, A_{VCL} = +1V/V, R_F = 24\Omega, R_L = 100\Omega$ to $V_{CC}/2, T_A = +25^{\circ}C$, unless otherwise noted.)

LARGE-SIGNAL PULSE RESPONSE


20ns/div



CURRENT NOISE vs. FREQUENCY


ISOLATION RESISTANCE vs. CAPACITIVE LOAD

OPEN-LOOP GAIN vs. RESISTIVE LOAD 80 70 60 OPEN-LOOP GAIN (dBc) 50 40 30 20 10 0 100 1k 10k $\mathsf{R}_{\text{LOAD}}\left(\Omega\right)$

SMALL-SIGNAL BANDWIDTH vs. LOAD RESISTANCE

MAX4451 CROSSTALK vs. FREQUENCY 60 40 20 0 -20 -40 -60 -80 -100 -120 -140

10M

FREQUENCY (Hz)

100M

1G

1M

0.1M

CROSSTALK (dB)

MIXIM

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

PIN MAX4450 MAX4451 1 —			FUNCTION				
		NAME	FUNCTION				
		OUT	Amplifier Output				
2	4 00 ¹ .4 00 ¹ .CO	VEE	Negative Power Supply or Ground (in single- supply operation)				
3	00. T .CO	IN+	Noninverting Input				
4	. <u>100 -</u> C	IN-	Inverting Input				
5	8	Vcc	Positive Power Supply				
411	100%	OUTA	Amplifier A Output				
	2	INA-	Amplifier A Inverting Input				
- ~	3	INA+	Amplifier A Noninverting Input				
	7	OUTB	Amplifier B Output				
_	6	INB-	Amplifier B Inverting				
_	5	INB+	Amplifier B Noninverting Input				

Pin Description

Detailed Description

The MAX4450/MAX4451 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 485V/µs slew rates and 210MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.

The output voltage swings to within 55mV of each supply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce gain sensitivity to load variations. The input stage permits common-mode voltages beyond the negative supply and to within 2.25V of the positive supply rail.

Applications Information

Choosing Resistor Values

Unity-Gain Configuration

The MAX4450/MAX4451 are internally compensated for unity gain. When configured for unity gain, the devices require a 24Ω resistor (RF) in series with the feedback path. This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

Inverting and Noninverting Configurations

Select the gain-setting feedback (R_F) and input (R_G) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration ($R_F = R_G$) using $1k\Omega$ resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $1k\Omega$ resistors to 100Ω extends the pole frequency to 1.59GHz, but could limit output swing by adding 200Ω in parallel with the amplifier's load resistor. Table 1 lists suggested feedback and gain resistors, and bandwidths for several gain values in the configurations shown in Figures 1a and 1b.

Layout and Power-Supply Bypassing These amplifiers operate from a single +4.5V to +11V power supply or from dual ±2.25V to ±5.5V supplies. For single-supply operation, bypass V_{CC} to ground with a

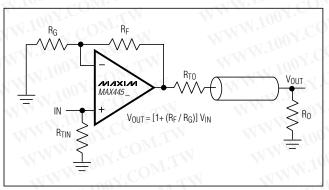


Figure 1a. Noninverting Gain Configuration

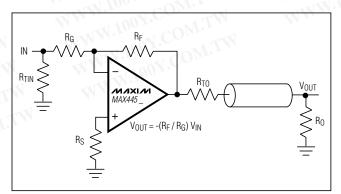


Figure 1b. Inverting Gain Configuration

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

Table 1. Recommended Component Values

1002.00017	GAIN (V/V)									
COMPONENT	+1	17607	+2	-2	+5	-5	+10	-10	+25	-25
$R_F\left(\Omega ight)$	24	500	500	500	500	500	500	500	500	1200
R _G (Ω)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	500	500	250	124	100	56	50	20	50
$R_{S}\left(\Omega\right)$	-211	0	101.0	0	N	0	1.10	0	ONT	0
R _{TIN} (Ω)	49.9	56	49.9	62	49.9	100	49.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	49.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R _{TO} (Ω)	49.9	49.9	49.9	49.9	49.9	49.9	49.9	49.9	49.9	49.9
Small-Signal -3dB Bandwidth (MHz)	210	100	95	50	25	25	11	15	5	10

Note: $R_L = R_O + R_{TO}$; R_{TIN} and R_{TO} are calculated for 50 Ω applications. For 75 Ω systems, $R_{TO} = 75\Omega$; calculate R_{TIN} from the following equation: 75

$$\theta_{\text{TIN}} = \frac{75}{1 - \frac{75}{R_{\text{G}}}} \Omega$$

0.1µF capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a 0.1µF capacitor.

Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier's performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following design guidelines:

- Don't use wire-wrap boards; they are too inductive.
- Don't use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.

Rail-to-Rail Outputs, Ground-Sensing Input

The input common-mode range extends from (V_{EE} - 200mV) to (V_{CC} - 2.25V) with excellent commonmode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup.

The output swings to within 55mV of either power-supply rail with a $2 \text{k} \Omega$ load. The input ground sensing

and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single +5V application, the input can swing 2.95VP-P and the output can swing 4.9VP-P with minimal distortion.

Output Capacitive Loading and Stability The MAX4450/MAX4451 are optimized for AC performance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a circuit that eliminates this problem. Figure 3 is a graph of the optimal isolation resistor (Rs) vs. capacitive load. Figure 4 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ω to 30Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a 27Ω isolation resistor on closed-loop response.

Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line's capacitance.

MAX4450/MAX4451

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

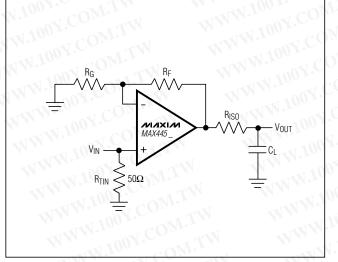


Figure 2. Driving a Capacitive Load Through an Isolation Resistor

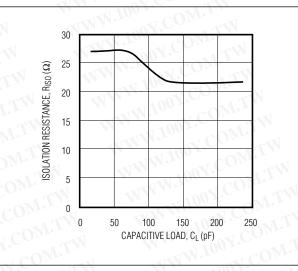


Figure 3. Capacitive Load vs. Isolation Resistance

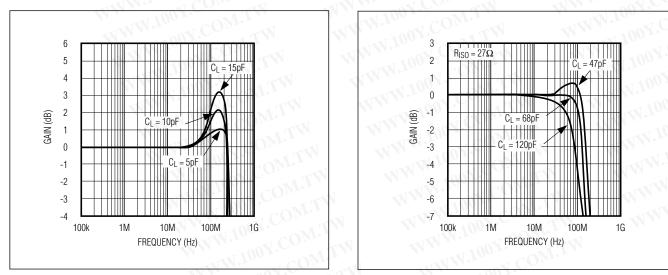
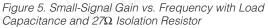



Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor

N.100Y.COM.TW WWW.100Y.COM.TW Ultra-Small, Low-Cost, 210MHz, Single-Supply **Op Amps with Rail-to-Rail Outputs**

00X.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW

MAX4450/MAX445

WW.100Y.COM.T

INA+ 3

V_{EE} 4

OUTA 1

INA- 2

WWW.100<u>7</u>.

MIXIM

MAX4451

SOT23-8/SO

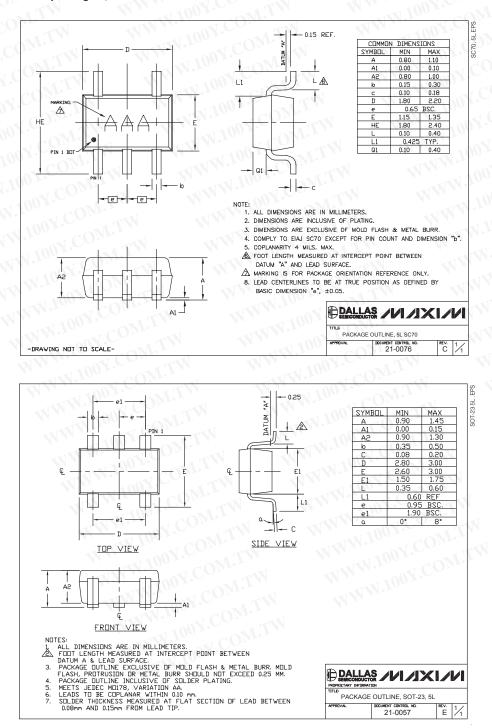
WWW.100Y.COM.TV

8 Vcc

7 OUTB

6 INB-

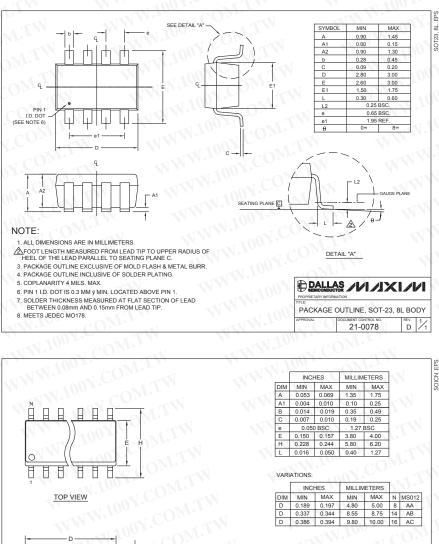
5 INB+

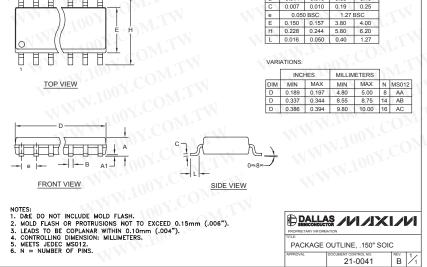

Chip Information

MAX4450 TRANSISTOR COUNT: 86 MAX4451 TRANSISTOR COUNT: 170 WWW.100Y.COM.TW

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)



Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2005 Maxim Integrated Products

Printed USA *MAXIM* is a registered trademark of Maxim Integrated Products, Inc.