
# **Three-Terminal Positive Voltage Regulators**

These voltage regulators are monolithic integrated circuits designed as fixed–voltage regulators for a wide variety of applications including local, on–card regulation. These regulators employ internal current limiting, thermal shutdown, and safe–area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 A. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.

- Output Current in Excess of 1.0 A
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage Offered in 2% and 4% Tolerance
- Available in Surface Mount D<sup>2</sup>PAK and Standard 3–Lead Transistor Packages

#### MAXIMUM RATINGS (T<sub>A</sub> = 25°C, unless otherwise noted.)

| Rating                                                                          | Symbol                               | Value                 | Unit         |
|---------------------------------------------------------------------------------|--------------------------------------|-----------------------|--------------|
| Input Voltage (5.0 – 18 V)<br>(24 V)                                            | VI                                   | 35<br>40              | Vdc          |
| Power Dissipation<br>Case 221A                                                  | T.T.M                                |                       | NWY          |
| T <sub>A</sub> = 25°C                                                           | PD                                   | Internally<br>Limited | W            |
| Thermal Resistance, Junction-to-Ambient<br>Thermal Resistance, Junction-to-Case | R <sub>θJA</sub><br>R <sub>θJC</sub> | 65<br>5.0             | °C/W<br>°C/W |
| Case 936 (D <sup>2</sup> PAK)                                                   | COM.                                 |                       |              |
| T <sub>A</sub> = 25°C                                                           | PD                                   | Internally<br>Limited | W            |
| Thermal Resistance, Junction-to-Ambient                                         | R <sub>θJA</sub>                     | See<br>Figure<br>13   | °C/W         |
| Thermal Resistance, Junction-to-Case                                            | R <sub>0JA</sub>                     | 5.0                   | °C/W         |
| Storage Junction Temperature Range                                              | T <sub>stg</sub>                     | -65 to<br>+150        | °C           |
| Operating Junction Temperature                                                  | Тј                                   | +150                  | °C           |

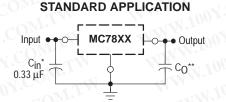


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



#### ON Semiconductor

http://onsemi.com


TO-220 T SUFFIX CASE 221A

Heatsink surface connected to Pin 2

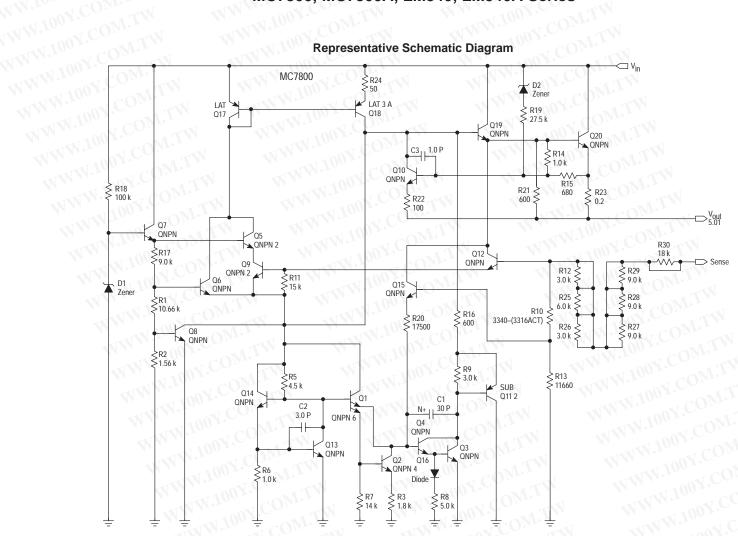
D<sup>2</sup>PAK Pin 1. Input D2T SUFFIX 2. Ground CASE 936 3. Output

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

٦



A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.


- XX, These two digits of the type number indicate nominal voltage.
  - C<sub>in</sub> is required if regulator is located an appreciable distance from power supply filter.
  - \* C<sub>O</sub> is not needed for stability; however, it does improve transient response. Values of less than 0.1 μF could cause instability.

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 16 of this data sheet.

#### DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 18 of this data sheet.



**Representative Schematic Diagram** 

This device contains 22 active transistors.

WWW.100Y.CO 力材料 886-3-5753170 勝 特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.TW

| V.COMMAN WWW.                                                                                                                                                                                                                       | ANY.CO              | WT           | MC7805B     | NN.              | MC7               | 805C/LM34   | 0T–5            |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-------------|------------------|-------------------|-------------|-----------------|-------|
| Characteristic                                                                                                                                                                                                                      | Symbol              | Min          | Тур         | Max              | Min               | Тур         | 🔨 Max           | Unit  |
| Output Voltage (T <sub>J</sub> = 25°C)                                                                                                                                                                                              | Vo                  | 4.8          | 5.0         | 5.2              | 4.8               | 5.0         | 5.2             | Vdc   |
| $\begin{array}{l} Output \mbox{ Voltage } (5.0\mbox{ mA} \leq I_O \leq 1.0\mbox{ A},\mbox{ P}_D \\ \leq 15\mbox{ W}) \\ 7.0\mbox{ Vdc} \leq V_{in} \leq 20\mbox{ Vdc} \\ 8.0\mbox{ Vdc} \leq V_{in} \leq 20\mbox{ Vdc} \end{array}$ | Vo                  | 4.75         | -<br>5.0    | -<br>5.25        | 4.75              | 5.0         | 5.25            | Vdc   |
| Line Regulation (Note 2.)<br>7.5 Vdc $\leq$ V <sub>in</sub> $\leq$ 20 Vdc, 1.0 A<br>8.0 Vdc $\leq$ V <sub>in</sub> $\leq$ 12 Vdc                                                                                                    | Reg <sub>line</sub> | Noxicol      | 5.0<br>1.3  | 100<br>50        | WININ.            | 0.5<br>0.8  | 20<br>10        | mV    |
| Load Regulation (Note 2.)<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.5 A (T <sub>A</sub> = 25°C)                                                                                         | Reg <sub>load</sub> | 100X.C       | 1.3<br>0.15 | 100<br>50        | M-MM              | 1.3<br>1.3  | 25<br>25        | mV    |
| Quiescent Current                                                                                                                                                                                                                   | Ι <sub>Β</sub>      | 1100Y.       | 3.2         | 8.0              | - <u>7</u> ,      | 3.2         | 6.5             | mA    |
|                                                                                                                                                                                                                                     | ΔIB                 | 1005<br>1100 | Y.COM       | 0.5              |                   | 0.3<br>0.08 | 1.0<br>0.8      | mA    |
| Ripple Rejection<br>8.0 Vdc $\leq$ V <sub>in</sub> $\leq$ 18 Vdc, f = 120 Hz                                                                                                                                                        | RR 📢                | WW.10        | 68          | M.FW             | 62                | 83          | 00 <u>7-</u> 02 | dB    |
| Dropout Voltage (I <sub>O</sub> = 1.0 A, T <sub>J</sub> = $25^{\circ}$ C)                                                                                                                                                           | VI – VO             | W            | 2.0         | DW-              |                   | 2.0         | 100-            | Vdc   |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                                                                                                                                                       | Vn                  | NWW<br>N T   | 10          | 0 <sup>1.1</sup> |                   | 10          | 1.100 x.        | μ٧/٧  |
| Output Resistance f = 1.0 kHz                                                                                                                                                                                                       | rO                  | W            | 0.9         | COINT            | - 77              | 0.9         | <u> </u>        | mΩ    |
| Short Circuit Current Limit (T <sub>A</sub> = 25°C)<br>$V_{in}$ = 35 Vdc                                                                                                                                                            | ISC                 | -WW          | 0.2         | I.COM            | WT.               | 0.6         | 141-Jan         | A     |
| Peak Output Current ( $T_J = 25^{\circ}C$ )                                                                                                                                                                                         | Imax                | - 11         | 2.2         | N.Con            | N <sup>P</sup> LA | 2.2 🔨       | -               | A     |
| Average Temperature Coefficient of Output Voltage                                                                                                                                                                                   | TCVO                | - 4          | -0.3        | 00X.CO           | WT.M              | -0.3        | <u> </u>        | mV/°C |

# WW.100Y.COM.TW

**ELECTRICAL CHARACTERISTICS** ( $V_{in}$  = 10 V,  $I_O$  = 1.0 A,  $T_J$  =  $T_{low}$  to  $T_{high}$  [Note 1.], unless otherwise noted.)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W.100 1             | MC78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05AC/LM340               | DAT-5                 | N.100 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------|--|
| Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Symbol              | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Тур                      | Max                   | Unit  |  |
| Output Voltage (T <sub>J</sub> = 25°C)                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vo                  | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0                      | 5.1                   | Vdc   |  |
| Output Voltage (5.0 mA $\leq$ I_O $\leq$ 1.0 A, P_D $\leq$ 15 W) 7.5 Vdc $\leq$ V_in $\leq$ 20 Vdc                                                                                                                                                                                                                                                                                                                                                                      | Vo                  | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0                      | 5.2 🔨                 | Vdc   |  |
| $ \begin{array}{l} \mbox{Line Regulation (Note 2.)} \\ \mbox{7.5 Vdc} \leq V_{in} \leq 25 \mbox{Vdc}, \mbox{I}_{O} = 500 \mbox{ mA} \\ \mbox{8.0 Vdc} \leq V_{in} \leq 12 \mbox{Vdc}, \mbox{I}_{O} = 1.0 \mbox{ A} \\ \mbox{8.0 Vdc} \leq V_{in} \leq 12 \mbox{Vdc}, \mbox{I}_{O} = 1.0 \mbox{ A}, \mbox{T}_{J} = 25^{\circ}\mbox{C} \\ \mbox{7.3 Vdc} \leq V_{in} \leq 20 \mbox{Vdc}, \mbox{I}_{O} = 1.0 \mbox{ A}, \mbox{T}_{J} = 25^{\circ}\mbox{C} \\ \end{array} $ | Reg <sub>line</sub> | 1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1000.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003.<br>1003. | 0.5<br>0.8<br>1.3<br>4.5 | 10<br>12<br>4.0<br>10 | mV    |  |
| Load Regulation (Note 2.)<br>$5.0 \text{ mA} \le I_O \le 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$<br>$5.0 \text{ mA} \le I_O \le 1.0 \text{ A}$<br>$250 \text{ mA} \le I_O \le 750 \text{ mA}$                                                                                                                                                                                                                                                                          | Reg <sub>load</sub> | WN <u>-</u> 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3<br>0.8<br>0.53       | 25<br>25<br>15        | mV    |  |
| Quiescent Current                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ι <sub>Β</sub>      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2                      | 6.0                   | mA    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔI <sub>B</sub>     | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3<br>-<br>0.08         | 0.8<br>0.8<br>0.5     | mA    |  |

1.  $T_{low} = 0^{\circ}C$  for MC78XXAC, C, LM340AT-XX, LM340T-XX  $= -40^{\circ}$ C for MC78XXB

Thigh = +125°C for MC78XXAC, C, LM340AT–XX, LM340T–XX

Http://www. 100y. com. tw

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

|   | 勝特力材料 886-3-5753170       |
|---|---------------------------|
|   | 胜特力电子(上海) 86-21-54151736  |
| 3 | 胜特力电子(深圳) 86-755-83298787 |

# WW.100Y.COM.TW **ELECTRICAL CHARACTERISTICS (continued)** (V<sub>in</sub> = 10 V, I<sub>O</sub> = 1.0 A, T<sub>J</sub> = T<sub>low</sub> to T<sub>high</sub> [Note 1.], unless otherwise noted.)

|                                                                                                    | WW               | MC78                | 0AT-5 |       |                   |
|----------------------------------------------------------------------------------------------------|------------------|---------------------|-------|-------|-------------------|
| Characteristic                                                                                     | Symbol           | Min                 | Тур   | Max   | Unit              |
| Ripple Rejection 8.0 Vdc $\leq$ V <sub>in</sub> $\leq$ 18 Vdc, f = 120 Hz, I <sub>O</sub> = 500 mA | RR               | 68                  | 83    | WT    | dB                |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$ )                                | VI-VO            | M T.                | 2.0   | N=Tra | Vdc               |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                      | V <sub>n</sub>   | MA <del>L</del> M.T | 1000  | WT.M  | μV/V <sub>O</sub> |
| Output Resistance (f = 1.0 kHz)                                                                    | ro               | <u> </u>            | 0.9   | NT.TV | mΩ                |
| Short Circuit Current Limit ( $T_A = 25^{\circ}C$ )<br>V <sub>in</sub> = 35 Vdc                    | I <sub>SC</sub>  | 41<br>10<br>10      | 0.2   | COM.T | A                 |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                        | I <sub>max</sub> | -                   | 2.2   | CON.  | А                 |
| Average Temperature Coefficient of Output Voltage                                                  | TCVO             |                     | -0.3  | -oN   | mV/°C             |

#### ELECTRICAL CHARACTERISTICS ( $V_{in}$ = 11 V, $I_O$ = 500 mA, $T_J$ = $T_{low}$ to $T_{high}$ [Note 1.], unless otherwise noted.)

| WW.IOU COM.                                                                                                                                                                     | NWW.I               | N C        | MC7806B    | N                    | WW.               | MC7806C     | 09.VO      | V     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|------------|----------------------|-------------------|-------------|------------|-------|
| Characteristic                                                                                                                                                                  | Symbol              | Min        | Тур        | Мах                  | Min               | Тур         | Max        | Unit  |
| Output Voltage (T <sub>J</sub> = 25°C)                                                                                                                                          | Vo                  | 5.75       | 6.0        | 6.25                 | 5.75              | 6.0         | 6.25       | Vdc   |
| Output Voltage (5.0 mA $\le$ I <sub>O</sub> $\le$ 1.0 A, P <sub>D</sub> $\le$ 15 W)<br>8.0 Vdc $\le$ V <sub>in</sub> $\le$ 21 Vdc<br>9.0 Vdc $\le$ V <sub>in</sub> $\le$ 21 Vdc | VO                  | - 5.7      | 6.0        | -<br>6.3             | 5.7<br>-          | 6.0<br>-    | 6.3        | Vdc   |
| Line Regulation, $T_J = 25^{\circ}C$ (Note 2.)<br>8.0 Vdc $\leq V_{in} \leq 25$ Vdc<br>9.0 Vdc $\leq V_{in} \leq 13$ Vdc                                                        | Reg <sub>line</sub> | VN.10      | 5.5<br>1.4 | 120<br>60            | V -<br>-          | 0.5<br>0.8  | 24<br>12   | mV    |
| Load Regulation, T <sub>J</sub> = 25°C (Note 2.)<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.5 A                                                                                   | Regload             | WWW        | 1.3        | 120                  |                   | 1.3         | 30         | mV    |
| Quiescent Current ( $T_J = 25^{\circ}C$ )                                                                                                                                       | _ <sup>I</sup> B    | VITTO      | 3.3        | 8.0                  | N.                | 3.3         | 8.0        | mA    |
| Quiescent Current Change<br>8.0 Vdc $\leq$ V <sub>in</sub> $\leq$ 25 Vdc<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A                                                           | ΔlB                 | W III      | M-700      | 0.5                  | N <del>2</del> .1 | 0.3<br>0.08 | 1.3<br>0.5 | mA    |
| Ripple Rejection<br>9.0 Vdc $\leq$ V <sub>in</sub> $\leq$ 19 Vdc, f = 120 Hz                                                                                                    | RR                  | -4         | 65         | 00¥.C                | 58                | 65          | <u>NN</u>  | dB    |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$ )                                                                                                             | VI – VO             | - <        | 2.0        | 105Y.C               |                   | 2.0         |            | Vdc   |
| Dutput Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz ≤ f ≤ 100 kHz                                                                                                             | Vn                  | -          | 10         | 1.100Y               | CO <sup>D</sup>   | 10          | - <        | μV/VO |
| Output Resistance f = 1.0 kHz                                                                                                                                                   | rO                  | -          | 0.9        | 00 <del>1</del> . IN | 105               | 0.9         | -          | mΩ    |
| Short Circuit Current Limit ( $T_A = 25^{\circ}C$ )<br>V <sub>in</sub> = 35 Vdc                                                                                                 | ISC                 | N –        | 0.2        | VN-10                | N. <u>-</u>       | 0.2         | -          | A     |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                                                                                                     | Imax                |            | 2.2        | WAN'T                | - C               | 2.2         | -          | A     |
| Average Temperature Coefficient of Output<br>Voltage                                                                                                                            | TCVO                | <u>TVI</u> | -0.3       | NN.                  | 1003.             | -0.3        | -          | mV/°C |

1.  $T_{low} = 0^{\circ}C$  for MC78XXAC, C, LM340AT–XX, LM340T–XX =  $-40^{\circ}$ C for MC78XXB

Thigh = +125°C for MC78XXAC, C, LM340AT–XX, LM340T–XX

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

| V.COMMIN WWW. OOY.COM                                                                                                                                                                                  | WW WW               | 100Y.        |                   |                   |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|-------------------|-------------------|-------------------|
| Characteristic                                                                                                                                                                                         | Symbol              | Min          | Тур               | 📢 Max             | Unit              |
| Output Voltage (T <sub>J</sub> = $25^{\circ}$ C)                                                                                                                                                       | Vo                  | 5.88         | 6.0               | 6.12              | Vdc               |
| Output Voltage (5.0 mA $\le$ I <sub>O</sub> $\le$ 1.0 A, P <sub>D</sub> $\le$ 15 W)<br>8.6 Vdc $\le$ V <sub>in</sub> $\le$ 21 Vdc                                                                      | Vo                  | 5.76         | 6.0               | 6.24              | Vdc               |
| Line Regulation (Note 2.)<br>8.6 Vdc $\leq$ V <sub>in</sub> $\leq$ 25 Vdc, I <sub>O</sub> = 500 mA<br>9.0 Vdc $\leq$ V <sub>in</sub> $\leq$ 13 Vdc, I <sub>O</sub> = 1.0 A                             | Reg <sub>line</sub> | N.W-W.L      | 5.0<br>1.4        | 12<br>15          | mV                |
| Load Regulation (Note 2.)<br>$5.0 \text{ mA} \le I_O \le 1.5 \text{ A}, \text{ T}_J = 25^{\circ}\text{C}$<br>$5.0 \text{ mA} \le I_O \le 1.0 \text{ A}$<br>$250 \text{ mA} \le I_O \le 750 \text{ mA}$ | Reg <sub>load</sub> | PLAN<br>MUNI | 1.3<br>0.9<br>0.2 | 25<br>25<br>15    | mV                |
| Quiescent Current                                                                                                                                                                                      | IB.                 | 100          | 3.3               | 6.0               | mA                |
|                                                                                                                                                                                                        | Δl <sub>B</sub>     | - 14         | NN.100            | 0.8<br>0.8<br>0.5 | mA                |
| Ripple Rejection<br>9.0 Vdc $\leq$ V <sub>in</sub> $\leq$ 19 Vdc, f = 120 Hz, I <sub>O</sub> = 500 mA                                                                                                  | RR                  | 58           | 65                | 100 <u>7</u> .C   | dB                |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}C$ )                                                                                                                                           | VI – VO             | -            | 2.0               | 100-              | Vdc               |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                                                                                                                          | Vn                  |              | 10                | N.100             | μV/V <sub>C</sub> |
| Output Resistance (f = 1.0 kHz)                                                                                                                                                                        | ro                  | T            | 0.9               | M                 | mΩ                |
| Short Circuit Current Limit (T <sub>A</sub> = 25°C)<br>V <sub>in</sub> = 35 Vdc                                                                                                                        | ISC                 | WT.M         | 0.2               | N.N-10            | A)                |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                                                                                                                            | Imax                | WEIN         | 2.2               |                   | A                 |
| Average Temperature Coefficient of Output Voltage                                                                                                                                                      | TCVO                | 0            | -0.3              | N.L.              | mV/°C             |

# WW.100Y.COM.

#### **ELECTRICAL CHARACTERISTICS** ( $V_{in}$ = 14 V, $I_O$ = 500 mA, $T_J$ = $T_{low}$ to $T_{high}$ [Note 1.], unless otherwise noted.)

|                                                                                                                                                                                   | 2                   | A.M.        | MC7808E    |           | NT.N               | MC7808C    |            | 1100× |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|------------|-----------|--------------------|------------|------------|-------|
| Characteristic                                                                                                                                                                    | Symbol              | Min         | Тур        | Max       | Min                | Тур        | Max        | Unit  |
| Output Voltage (T <sub>J</sub> = $25^{\circ}$ C)                                                                                                                                  | Vo                  | 7.7         | 8.0        | 8.3       | 7.7                | 8.0        | 8.3        | Vdc   |
| Output Voltage (5.0 mA $\le$ I <sub>O</sub> $\le$ 1.0 A, P <sub>D</sub> $\le$ 15 W)<br>10.5 Vdc $\le$ V <sub>in</sub> $\le$ 23 Vdc<br>11.5 Vdc $\le$ V <sub>in</sub> $\le$ 23 Vdc | Vo                  | _<br>7.6    | _<br>8.0   | 8.4       | 7.6                | 8.0        | 8.4<br>_   | Vdc   |
| Line Regulation, $T_J = 25^{\circ}C$ , (Note 2.)<br>10.5 Vdc $\leq V_{in} \leq 25$ Vdc<br>11 Vdc $\leq V_{in} \leq 17$ Vdc                                                        | Reg <sub>line</sub> |             | 6.0<br>1.7 | 160<br>80 | COM                | 6.0<br>1.7 | 32<br>16   | mV    |
| Load Regulation, T <sub>J</sub> = 25°C (Note 2.) 5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.5 A                                                                                        | Regload             | N -         | 1.4        | 160       | oy. <del>C</del> O | 1.4        | 35         | mV    |
| Quiescent Current                                                                                                                                                                 | ΙB                  | <u>[]</u>   | 3.3        | 8.0       | 00 <u>7</u> .0     | 3.3        | 8.0        | mA    |
| Quiescent Current Change<br>10.5 Vdc $\leq$ V <sub>in</sub> $\leq$ 25 Vdc<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A                                                            | ΔlB                 | 17 <u>1</u> | -          | _<br>0.5  |                    |            | 1.0<br>0.5 | mA    |

1.  $T_{Iow} = 0^{\circ}C$  for MC78XXAC, C, LM340AT–XX, LM340T–XX =  $-40^{\circ}$ C for MC78XXB

Thigh = +125°C for MC78XXAC, C, LM340AT-XX, LM340T-XX

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

WW.100Y.COM.TW **ELECTRICAL CHARACTERISTICS (continued)** ( $V_{in}$  = 14 V,  $I_O$  = 500 mA,  $T_J$  =  $T_{low}$  to  $T_{high}$  [Note 1.], unless

| Y.COM WWW 100Y.                                                                 | TIM     | MC7808B     |      |          | N.CC    | MC7808C | ;        |                   |
|---------------------------------------------------------------------------------|---------|-------------|------|----------|---------|---------|----------|-------------------|
| Characteristic                                                                  | Symbol  | Min         | Тур  | Max      | Min     | Тур     | Max      | Unit              |
| Ripple Rejection<br>11.5 Vdc $\leq$ V <sub>in</sub> $\leq$ 18 Vdc, f = 120 Hz   | RR      | LA <u>.</u> | 62   | W TAY    | 56      | 62      | - 17     | dB                |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$ )             | VI – VO | T.I         | 2.0  | <u> </u> | 100x.   | 2.0     | 1.1      | Vdc               |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz   | Vn      | N.TW        | 10   | WZW.     | N.1007  | 10      | T.T.     | μV/V <sub>C</sub> |
| Output Resistance f = 1.0 kHz                                                   | ro      | DV-L        | 0.9  | -        | W-100   | 0.9     | <u> </u> | mΩ                |
| Short Circuit Current Limit ( $T_A = 25^{\circ}C$ )<br>V <sub>in</sub> = 35 Vdc | ISC     | 01.1        | 0.2  | <u>N</u> | NN.10   | 0.2     | T III    | A                 |
| Peak Output Current (T <sub>J</sub> = 25°C)                                     | Imax    | COM.        | 2.2  |          | M-W.    | 2.2     | 02       | A                 |
| Average Temperature Coefficient of Output Voltage                               | TCVO    | CON         | -0.4 | -        | W Bring | -0.4    | COM.     | mV/°C             |

**ELECTRICAL CHARACTERISTICS** ( $V_{in}$  = 14 V,  $I_O$  = 1.0 A,  $T_J$  =  $T_{low}$  to  $T_{high}$  [Note 1.], unless otherwise noted.)

|                                                                                                                                                                                                                         | NTO ON              | 1                     | MC7808AC           |                   | VTI   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------------|-------------------|-------|
| Characteristic                                                                                                                                                                                                          | Symbol              | Min                   | Тур                | Max               | Unit  |
| Output Voltage (T <sub>J</sub> = 25°C)                                                                                                                                                                                  | Vo                  | 7.84                  | 8.0                | 8.16              | Vdc   |
| Output Voltage (5.0 mA $\le$ I <sub>O</sub> $\le$ 1.0 A, P <sub>D</sub> $\le$ 15 W)<br>10.6 Vdc $\le$ V <sub>in</sub> $\le$ 23 Vdc                                                                                      | Vo                  | 7.7                   | 8.0                | 8.3               | Vdc   |
| Line Regulation (Note 2.)<br>10.6 Vdc $\leq V_{in} \leq 25$ Vdc, I <sub>O</sub> = 500 mA<br>11 Vdc $\leq V_{in} \leq 17$ Vdc, I <sub>O</sub> = 1.0 A<br>10.4 Vdc $\leq V_{in} \leq 23$ Vdc, T <sub>J</sub> = 25°C       | Reg <sub>line</sub> | L.T.W<br>M.FW         | 6.0<br>1.7<br>5.0  | 15<br>18<br>15    | mV    |
| Load Regulation (Note 2.)<br>$5.0 \text{ mA} \le I_O \le 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$<br>$5.0 \text{ mA} \le I_O \le 1.0 \text{ A}$<br>$250 \text{ mA} \le I_O \le 750 \text{ mA}$                          | Reg <sub>load</sub> | DM.1<br>DM.TV<br>CM.T | 1.4<br>1.0<br>0.22 | 25<br>25<br>15    | mV    |
| Quiescent Current                                                                                                                                                                                                       | IB 00Y              |                       | 3.3                | 6.0               | mA    |
| Quiescent Current Change<br>11 Vdc $\leq V_{in} \leq 25$ Vdc, I <sub>O</sub> = 500 mA<br>10.6 Vdc $\leq V_{in} \leq 23$ Vdc, I <sub>O</sub> = 1.0 A, T <sub>J</sub> = 25°C<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A | ΔlB                 | X.COM                 | 1.TU<br>1.TU<br>TW | 0.8<br>0.8<br>0.5 | mA    |
| Ripple Rejection<br>11.5 Vdc $\leq$ V <sub>in</sub> $\leq$ 21.5 Vdc, f = 120 Hz, I <sub>O</sub> = 500 mA                                                                                                                | RR                  | 56                    | 62                 | - <               | dB    |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}C$ )                                                                                                                                                            | VI – VO             | INGY.C                | 2.0                | -                 | Vdc   |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                                                                                                                                           | Vn                  | N.100Y.C              | 10                 | N -               | μV/VO |
| Output Resistance f = 1.0 kHz                                                                                                                                                                                           | rO                  | X00t.Kr               | 0.9                |                   | mΩ    |
| Short Circuit Current Limit (T <sub>A</sub> = 25°C)<br>V <sub>in</sub> = 35 Vdc                                                                                                                                         | ISC                 | NW.100                | 0.2                | -                 | A     |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                                                                                                                                             | I <sub>max</sub>    | -                     | 2.2                | -                 | A     |
| Average Temperature Coefficient of Output Voltage                                                                                                                                                                       | TCVO                | -                     | -0.4               | _                 | mV/°C |

 $T_{IOW} = 0^{\circ}C$  for MC78XXAC, C, LM340AT–XX, LM340T–XX = -40°C for MC78XXB

T<sub>high</sub> = +125°C for MC78XXAC, C, LM340AT–XX, LM340T–XX

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.



#### http://onsemi.com

| O.Yoo WWW                                                                                                                               | WT                  | I                  | MC7809B    | T_100              | 1.00           |                 |            |      |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|------------|--------------------|----------------|-----------------|------------|------|
| Characteristic                                                                                                                          | Symbol              | 📢 Min              | Тур        | Max                | Min            | Тур             | Max        | Unit |
| Output Voltage (T <sub>J</sub> = $25^{\circ}$ C)                                                                                        | Vo                  | 8.65               | 9.0        | 9.35               | 8.65           | 9.0             | 9.35       | Vdc  |
| Output Voltage (5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A, P <sub>D</sub> $\leq$ 15 W)<br>11.5 Vdc $\leq$ V <sub>in</sub> $\leq$ 24 Vdc | Vo                  | 8.55               | 9.0        | 9.45               | 8.55           | 9.0             | 9.45       | Vdc  |
| Line Regulation, $T_J = 25^{\circ}C$ (Note 2.)<br>11 Vdc $\leq V_{in} \leq 26$ Vdc<br>11.5 Vdc $\leq V_{in} \leq 17$ Vdc                | Reg <sub>line</sub> | 1. <u>1</u><br>1.1 | 6.2<br>1.8 | 32<br>16           | 100X.          | 6.2<br>1.8      | 32<br>16   | mV   |
| Load Regulation, T <sub>J</sub> = 25°C (Note 2.) 5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.5 A                                              | Regload             | DMT.TV             | 1.5        | 35                 | W. <u>1</u> 00 | 1.5             | 35         | mV   |
| Quiescent Current                                                                                                                       | IB                  | 014.1              | 3.4        | 8.0                | NH.10          | 3.4             | 8.0        | mA   |
| Quiescent Current Change<br>11.5 Vdc $\leq V_{in} \leq 26$ Vdc<br>5.0 mA $\leq I_O \leq 1.0$ A                                          | ΔlB                 | COM:               | <u>14</u>  | 1.0<br>0.5         | NTALIN .       | 10 <u>0</u> 7.0 | 1.0<br>0.5 | mA   |
| Ripple Rejection 11.5 Vdc $\leq V_{in} \leq$ 21.5 Vdc, f = 120 Hz                                                                       | RR                  | 56                 | 61         | -                  | 56             | 61              | L.CON      | dB   |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}C$ )                                                                            | VI – VO             | J-CC               | 2.0        | s -                | WW             | 2.0             | N.EO       | Vdd  |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                                                           | Vn                  | 00 <u>7</u> .C     | 10         | W -                | W              | 10              | ov.co      | μV/V |
| Output Resistance f = 1.0 kHz                                                                                                           | ro                  | Your               | 1.0        | LA <del>T</del>    | - 1            | 1.0             | 100×.C     | mΩ   |
| Short Circuit Current Limit (T <sub>A</sub> = 25°C)<br>V <sub>in</sub> = 35 Vdc                                                         | ISC                 | N.1005             | 0.2        | 171                |                | 0.2             | .100Y.     | A    |
| Peak Output Current ( $T_J = 25^{\circ}C$ )                                                                                             | Imax                | 00 T.V.            | 2.2        | $T_{\overline{L}}$ | -              | 2.2             | N.100      | Α    |
| Average Temperature Coefficient of Output Voltage                                                                                       | TCVO                | - 10               | -0.5       | 17-1               | _              | -0.5            | 200        | mV/ª |

# WW.100Y.COM.TW

### ELECTRICAL CHARACTERISTICS (Vin = 19 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1.], unless otherwise noted.)

| WY TALLON. TW                                                                                                                                                                                                                                                                                           |                     | N       | MC7812B         | COM.            | MC78            | 12C/LM34    | 0T–12             | 00 -1 ( |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|-----------------|-----------------|-----------------|-------------|-------------------|---------|
| Characteristic                                                                                                                                                                                                                                                                                          | Symbol              | Min     | Тур             | Max             | Min             | Тур         | Max               | Unit    |
| Output Voltage (T <sub>J</sub> = 25°C)                                                                                                                                                                                                                                                                  | V Vo                | 11.5    | 12              | 12.5            | 11.5            | 12          | 12.5              | Vdc     |
| $\begin{array}{l} \mbox{Output Voltage (5.0 mA \le I_O \le 1.0 A, P_D \le 15 W)} \\ \mbox{14.5 Vdc} \le V_{in} \le 27 \mbox{Vdc} \\ \mbox{15.5 Vdc} \le V_{in} \le 27 \mbox{Vdc} \end{array}$                                                                                                           | Vo                  | -       | -<br>12         | _<br>12.6       | 11.4            | 12<br>-     | 12.6              | Vdc     |
| Line Regulation, $T_J = 25^{\circ}C$ (Note 2.)<br>14.5 Vdc $\leq V_{in} \leq 30$ Vdc<br>16 Vdc $\leq V_{in} \leq 22$ Vdc<br>14.8 Vdc $\leq V_{in} \leq 27$ Vdc, $I_O = 1.0$ A                                                                                                                           | Reg <sub>line</sub> | - 1     | 7.5<br>2.2<br>- | 240<br>120<br>- | co <u>M</u> .T  | 3.8<br>0.3  | 24<br>24<br>48    | mV      |
| Load Regulation, $T_J = 25^{\circ}C$ (Note 2.)<br>5.0 mA $\leq I_O \leq 1.5$ A                                                                                                                                                                                                                          | Regload             | -       | 1.6             | 240             | K.CON           | 8.1         | 60                | mV      |
| Quiescent Current                                                                                                                                                                                                                                                                                       | ΙB                  | - N     | 3.4             | 8.0             | N.CO            | 3.4         | 6.5               | mA      |
| $ \begin{array}{l} \mbox{Quiescent Current Change} \\ \mbox{14.5 Vdc} \leq \mbox{V}_{in} \leq \mbox{30 Vdc}, \mbox{ I}_{O} = \mbox{1.0 A}, \mbox{ T}_{J} = \mbox{25^{\circ}C} \\ \mbox{15 Vdc} \leq \mbox{V}_{in} \leq \mbox{30 Vdc} \\ \mbox{5.0 mA} \leq \mbox{I}_{O} \leq \mbox{1.0 A} \end{array} $ |                     | <u></u> | <br>            | -<br>1.0<br>0.5 | 00 <u>7</u> .C4 | -<br>-<br>- | 0.7<br>0.8<br>0.5 | mA      |
| Ripple Rejection<br>15 Vdc $\leq$ V <sub>in</sub> $\leq$ 25 Vdc, f = 120 Hz                                                                                                                                                                                                                             | RR                  | U.L.    | 60              | -               | 55              | 60          | -                 | dB      |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$ )                                                                                                                                                                                                                                     | VI – VO             | -       | 2.0             | -               | -               | 2.0         | -                 | Vdc     |

1.  $T_{IOW} = 0^{\circ}C$  for MC78XXAC, C, LM340AT–XX, LM340T–XX =  $-40^{\circ}$ C for MC78XXB

Thigh = +125°C for MC78XXAC, C, LM340AT-XX, LM340T-XX

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

7

胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

勝特力材料 886-3-5753170

WW.100Y.COM.TW **ELECTRICAL CHARACTERISTICS (continued)** ( $V_{in}$  = 19 V,  $I_O$  = 500 mA,  $T_J$  =  $T_{low}$  to  $T_{high}$  [Note 1.], unless

| N.CO. TW WW 100Y.                                                               | TIM              |             | MC7812E | 3 10     | MC78   | 12C/LM34 | IOT-12     |                   |
|---------------------------------------------------------------------------------|------------------|-------------|---------|----------|--------|----------|------------|-------------------|
| Characteristic                                                                  | Symbol           | Min         | Тур     | Max      | Min    | Тур      | Max        | Unit              |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz   | Vn               | LA <u>.</u> | 10      | W TAY    | 1007.C | 10       | - 17       | μV/V <sub>O</sub> |
| Output Resistance f = 1.0 kHz                                                   | rO               | 17          | 1.1     | <u> </u> | 100X.  | 1.1      | <u>tri</u> | mΩ                |
| Short Circuit Current Limit ( $T_A = 25^{\circ}C$ )<br>V <sub>in</sub> = 35 Vdc | ISC              | N.TW        | 0.2     | A ZA     | N.1007 | 0.2      | T.I        | A                 |
| Peak Output Current (TJ = 25°C)                                                 | I <sub>max</sub> | DWEIL       | 2.2     | -        | W-Jor  | 2.2      | <u> </u>   | A                 |
| Average Temperature Coefficient of Output Voltage                               | TCVO             | T.H.        | -0.8    | -24.     | 16     | -0.8     | M-T        | mV/°C             |

# ELECTRICAL CHARACTERISTICS (Vin = 19 V, IO = 1.0 A, TJ = Tlow to Thigh [Note 1.], unless otherwise noted.)

| WW.100 COM.1                                                                                                                                                                                                      | DM.                 | MC781                 | 2AC/LM340         | )AT-12            | W     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|-------------------|-------------------|-------|
| Characteristic                                                                                                                                                                                                    | Symbol              | Min                   | Тур               | Max               | Unit  |
| Output Voltage (TJ = 25°C)                                                                                                                                                                                        | Vo                  | 11.75                 | 12                | 12.25             | Vdc   |
| Output Voltage (5.0 mA $\le$ I <sub>O</sub> $\le$ 1.0 A, P <sub>D</sub> $\le$ 15 W)<br>14.8 Vdc $\le$ V <sub>in</sub> $\le$ 27 Vdc                                                                                | Vo                  | 11.5                  | 12                | 12.5              | Vdc   |
| Line Regulation (Note 2.)<br>14.8 Vdc $\leq V_{in} \leq 30$ Vdc, I <sub>O</sub> = 500 mA<br>16 Vdc $\leq V_{in} \leq 22$ Vdc, I <sub>O</sub> = 1.0 A<br>14.5 Vdc $\leq V_{in} \leq 27$ Vdc, T <sub>J</sub> = 25°C | Reg <sub>line</sub> | 1.1 <u>1</u><br>1.11  | 3.8<br>2.2<br>6.0 | 18<br>20<br>120   | O mV  |
| Load Regulation (Note 2.) 5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.5 A, T <sub>J</sub> = 25°C 5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A                                                                              | Reg <sub>load</sub> | N.T.N                 | - 47              | 25<br>25          | mV    |
| Quiescent Current                                                                                                                                                                                                 | IB                  | M.F.M.                | 3.4               | 6.0               | mA    |
| Quiescent Current Change<br>15 Vdc $\leq V_{in} \leq 30$ Vdc, I <sub>O</sub> = 500 mA<br>14.8 Vdc $\leq V_{in} \leq 27$ Vdc, T <sub>J</sub> = 25°C<br>5.0 mA $\leq I_O \leq 1.0$ A, T <sub>J</sub> = 25°C         | ΔlB                 | COPILITY              | - V               | 0.8<br>0.8<br>0.5 | mA    |
| Ripple Rejection<br>15 Vdc $\leq$ V <sub>in</sub> $\leq$ 25 Vdc, f = 120 Hz, I <sub>O</sub> = 500 mA                                                                                                              | RR                  | 55                    | 60                | MM                | dB    |
| Dropout Voltage (I <sub>O</sub> = 1.0 A, $T_J$ = 25°C)                                                                                                                                                            | VI-VO               | N.C                   | 2.0               | -4/               | Vdc   |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                                                                                                                                     | Vn                  | 007 <u>.</u> CO       | 10                | - 1               | μ٧/٧Ο |
| Output Resistance (f = 1.0 kHz)                                                                                                                                                                                   | rO                  | 700 <u>7</u> .        | 1.1               | -                 | mΩ    |
| Short Circuit Current Limit (T <sub>A</sub> = 25°C)<br>V <sub>in</sub> = 35 Vdc                                                                                                                                   | ISC                 | 1.10 <sup>0</sup> Y.C | 0.2               | -<br>N            | A     |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                                                                                                                                       | Imax                | N.10                  | 2.2               | - N               | A     |
| Average Temperature Coefficient of Output Voltage                                                                                                                                                                 | TCVO                | W.100 ×               | -0.8              | -                 | mV/°C |

1.  $T_{low} = 0^{\circ}C$  for MC78XXAC, C, LM340AT-XX, LM340T-XX  $T_{high} = +125^{\circ}C$  for MC78XXAC, C, LM340AT-XX, LM340T-XX = -40°C for MC78XXB

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

| COM WWW. OOY.C                                                                                                                                                                                                                                                                              | WT                  |                       | MC7815E          | 3               | MC78                | 15C/LM34                                 | 40T–15            |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|------------------|-----------------|---------------------|------------------------------------------|-------------------|------|
| Characteristic                                                                                                                                                                                                                                                                              | Symbol              | Min                   | Тур              | Max             | Min                 | Тур                                      | Max               | Unit |
| Output Voltage (TJ = 25°C)                                                                                                                                                                                                                                                                  | Vo                  | 14.4                  | 15               | 15.6            | 14.4                | 15                                       | 15.6              | Vdc  |
| $\begin{array}{l} \mbox{Output Voltage (5.0 mA \leq I_O \leq 1.0 \mbox{ A}, \mbox{ P}_D \leq 15 \mbox{ W}) \\ \mbox{17.5 Vdc} \leq V_{in} \leq 30 \mbox{ Vdc} \\ \mbox{18.5 Vdc} \leq V_{in} \leq 30 \mbox{ Vdc} \end{array}$                                                               | Vo                  | _<br>14.25            | -<br>15          | _<br>15.75      | 14.25               | 15                                       | 15.75             | Vdo  |
| Line Regulation, $T_J = 25^{\circ}C$ (Note 2.)<br>17.9 Vdc $\leq V_{in} \leq 30$ Vdc<br>20 Vdc $\leq V_{in} \leq 26$ Vdc                                                                                                                                                                    | Reg <sub>line</sub> | W <del>2</del> .M     | 8.5<br>3.0       | 300<br>150      | N.1 <del>9</del> 07 | 8.5<br>3.0                               | 30<br>28          | mV   |
| Load Regulation, T <sub>J</sub> = 25°C (Note 2.) 5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.5 A                                                                                                                                                                                                  | Regload             | WF.                   | 1.8              | 300             | 10                  | 1.8                                      | 55                | mV   |
| Quiescent Current                                                                                                                                                                                                                                                                           | ΙB                  |                       | 3.5              | 8.0             |                     | 3.5                                      | 6.5               | mA   |
| $ \begin{array}{l} \mbox{Quiescent Current Change} \\ 17.5 \mbox{ Vdc} \leq V_{in} \leq 30 \mbox{ Vdc} \\ 17.5 \mbox{ Vdc} \leq V_{in} \leq 30 \mbox{ Vdc}, \mbox{ I}_{O} = 1.0 \mbox{ A}, \mbox{ T}_{J} = 25^{\circ}\mbox{C} \\ 5.0 \mbox{ mA} \leq I_{O} \leq 1.0 \mbox{ A} \end{array} $ | ΔIB                 | CON<br>1.C <u>D</u> M | 1.1 <u>4</u> 1.1 | _<br>1.0<br>0.5 | N N N N             | 10 <u>07.</u> (<br>1.1 <del>0</del> 07.( | 0.8<br>0.7<br>0.5 | mA   |
| Ripple Rejection 18.5 Vdc $\leq V_{in} \leq$ 28.5 Vdc, f = 120 Hz                                                                                                                                                                                                                           | RR                  | NOY.CC                | 58               | - N             | 54                  | 58                                       | N.CON             | dB   |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}C$ )                                                                                                                                                                                                                                | VI-VO               | O.Tool                | 2.0              | - 14            | -11                 | 2.0                                      | 001 <u>-</u> CC   | Vdc  |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                                                                                                                                                                                                               | Vn                  | 100Y.                 | 10               | LM.             | - 4                 | 10                                       | 007.0             | μV/V |
| Output Resistance f = 1.0 kHz                                                                                                                                                                                                                                                               | rO                  | × 100Y                | 1.2              | TT.             | - 1                 | 1.2                                      | 1001.             | mΩ   |
| Short Circuit Current Limit ( $T_A = 25^{\circ}C$ )<br>V <sub>in</sub> = 35 Vdc                                                                                                                                                                                                             | ISC                 | W.100                 | 0.2              | WT.N            | -                   | 0.2                                      | N.100Y            | A    |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                                                                                                                                                                                                                 | I <sub>max</sub>    | 10                    | 2.2              | ON-L            | -                   | 2.2                                      | W-100             | Α    |
| Average Temperature Coefficient of Output Voltage                                                                                                                                                                                                                                           | TCVO                |                       | -1.0             | The             | - 1                 | -1.0                                     | 10                | mV/º |

# WW.100Y.COM.TW

#### ELECTRICAL CHARACTERISTICS (Vin = 23 V, IO = 1.0 A, TJ = Tlow to Thigh [Note 1.], unless otherwise noted.)

| WW.100X. COM.1                                                                                                                                                                                                            | W.100               | MC781            | 15AC/LM340        | AT-15             | . Voc |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|-------------------|-------------------|-------|
| Characteristic                                                                                                                                                                                                            | Symbol              | Min              | Тур               | Max               | Unit  |
| Output Voltage (TJ = 25°C)                                                                                                                                                                                                | Vo                  | 14.7             | 15                | 15.3              | Vdc   |
| Output Voltage (5.0 mA $\le$ I <sub>O</sub> $\le$ 1.0 A, P <sub>D</sub> $\le$ 15 W)<br>17.9 Vdc $\le$ V <sub>in</sub> $\le$ 30 Vdc                                                                                        | Vo                  | 14.4             | 15                | 15.6              | Vdc   |
| Line Regulation (Note 2.)<br>17.9 Vdc $\leq V_{in} \leq 30$ Vdc, I <sub>O</sub> = 500 mA<br>20 Vdc $\leq V_{in} \leq 26$ Vdc<br>17.5 Vdc $\leq V_{in} \leq 30$ Vdc, I <sub>O</sub> = 1.0 A, T <sub>J</sub> = 25°C         | Regline             | 100 <u>7</u> .CO | 8.5<br>3.0<br>7.0 | 20<br>22<br>20    | mV    |
| Load Regulation (Note 2.)<br>$5.0 \text{ mA} \le I_O \le 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$<br>$5.0 \text{ mA} \le I_O \le 1.0 \text{ A}$<br>$250 \text{ mA} \le I_O \le 750 \text{ mA}$                            | Reg <sub>load</sub> | N.100X.          | 1.8<br>1.5<br>1.2 | 25<br>25<br>15    | mV    |
| Quiescent Current                                                                                                                                                                                                         | IB 🔨                | M.M.             | 3.5               | 6.0               | mA    |
| Quiescent Current Change<br>17.5 Vdc $\leq V_{in} \leq 30$ Vdc, I <sub>O</sub> = 500 mA<br>17.5 Vdc $\leq V_{in} \leq 30$ Vdc, I <sub>O</sub> = 1.0 A, T <sub>J</sub> = 25°C<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A | ΔIB                 | -<br>-<br>-      |                   | 0.8<br>0.8<br>0.5 | mA    |

1.  $T_{IOW} = 0^{\circ}C$  for MC78XXAC, C, LM340AT–XX, LM340T–XX = -40°C for MC78XXB

Thigh = +125°C for MC78XXAC, C, LM340AT-XX, LM340T-XX

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

http://onsemi.com

# WW.100Y.COM.TW WWW.100XCOM.T ELECTRICAL CHARACTERISTICS (continued) ( $V_{in}$ = 23 V, $I_O$ = 1.0 A, $T_J$ = $T_{low}$ to $T_{high}$ [Note 1.], unless otherwise noted.)

|                                                                                                | WW      | MC781 | 5AC/LM340 | DAT-15              |                   |
|------------------------------------------------------------------------------------------------|---------|-------|-----------|---------------------|-------------------|
| Characteristic                                                                                 | Symbol  | Min   | Тур       | Max                 | Unit              |
| Ripple Rejection<br>18.5 Vdc ≤ V <sub>in</sub> ≤ 28.5 Vdc, f = 120 Hz, I <sub>O</sub> = 500 mA | RR      | 60    | 80        | TVI                 | dB                |
| Dropout Voltage (I <sub>O</sub> = 1.0 A, T <sub>J</sub> = 25°C)                                | VI – VO |       | 2.0       | N.T.2               | Vdc               |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                  | Vn      | NWW.  | 10        | OM. <del>T</del> W  | μV/V <sub>O</sub> |
| Output Resistance f = 1.0 kHz                                                                  | rO      | N INT | 1.2       | 01.                 | mΩ                |
| Short Circuit Current Limit ( $T_A = 25^{\circ}C$ )<br>V <sub>in</sub> = 35 Vdc                | ISC     | WW.   | 0.2       | CO <sup>4</sup> 1.1 | A                 |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                    | Imax    | 100-  | 2.2       | COM                 | A                 |
| Average Temperature Coefficient of Output Voltage                                              | TCVO    |       | -1.0      | - CON               | mV/°C             |

#### **ELECTRICAL CHARACTERISTICS** ( $V_{in} = 27 V$ , $I_O = 500 mA$ , $T_J = T_{Iow}$ to $T_{high}$ [Note 1.], unless otherwise noted.)

| WWW.Low COM. TW                                                                                                                                                                                                  | NWW.L                            | N.CL           | MC7818E        | 5          | WW        | MC78180    | Y.CO.      | WT 1  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|----------------|------------|-----------|------------|------------|-------|
| Characteristic                                                                                                                                                                                                   | Symbol                           | Min            | Тур            | Max        | Min       | Тур        | Max        | Unit  |
| Output Voltage (TJ = 25°C)                                                                                                                                                                                       | Vo                               | 17.3           | 18             | 18.7       | 17.3      | 18         | 18.7       | Vdc   |
| $\begin{array}{l} \text{Output Voltage (5.0 mA \leq I_O \leq 1.0 A, P_D \leq 15 W)} \\ \text{21 Vdc} \leq \text{V}_{in} \leq 33 \text{ Vdc} \\ \text{22 Vdc} \leq \text{V}_{in} \leq 33 \text{ Vdc} \end{array}$ | VO                               | -<br>17.1      | 18             | _<br>18.9  | 17.1      | 18         | 18.9<br>_  | Vdc   |
| Line Regulation, (Note 2.)<br>21 Vdc $\leq$ V <sub>in</sub> $\leq$ 33 Vdc<br>24 Vdc $\leq$ V <sub>in</sub> $\leq$ 30 Vdc                                                                                         | Reg <sub>line</sub>              | N/ <u>1</u> 10 | 9.5<br>3.2     | 360<br>180 | -         | 9.5<br>3.2 | 50<br>25   | mV    |
| Load Regulation, (Note 2.) 5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.5 A                                                                                                                                             | Regload                          | WW.            | 2.0            | 360        | W_        | 2.0        | 55         | mV    |
| Quiescent Current                                                                                                                                                                                                | IB                               | N AN           | 3.5            | 8.0        | PT        | 3.5 🔨      | 6.5        | mA    |
| Quiescent Current Change<br>21 Vdc $\leq$ V <sub>in</sub> $\leq$ 33 Vdc<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A                                                                                             | ΔIB                              | A.M.           | 00 <u>±</u> .W | _<br>0.5   | LTW<br>MT |            | 1.0<br>0.5 | mA    |
| Ripple Rejection<br>22 Vdc $\leq$ V <sub>in</sub> $\leq$ 33 Vdc, f = 120 Hz                                                                                                                                      | RR                               | -71            | 57             | NOT.CC     | 53        | 57         | 41         | dB    |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$ )                                                                                                                                              | V <sub>il</sub> – V <sub>O</sub> | - 1            | 2.0            | 002.0      | 1.17      | 2.0        | _7/        | Vdc   |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz ≤ f ≤ 100 kHz                                                                                                                                              | Vn                               | - <            | 10             | .100Y.     | COM       | 10         | - 1        | μV/VO |
| Output Resistance f = 1.0 kHz                                                                                                                                                                                    | rO                               | -              | 1.3            | N.100,     | 100N      | 1.3        | -          | mΩ    |
| Short Circuit Current Limit (T <sub>A</sub> = 25°C)<br>V <sub>in</sub> = 35 Vdc                                                                                                                                  | ISC                              | -<br>N         | 0.2            | W.100      | N.CO      | 0.2        | -          | A     |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                                                                                                                                      | Imax                             |                | 2.2            | M. M.      | O.T.C     | 2.2        | -          | A     |
| Average Temperature Coefficient of Output Voltage                                                                                                                                                                | TCVO                             |                | -1.5           | N-N-       | 00 -      | -1.5       | -          | mV/°C |

1.  $T_{low} = 0^{\circ}C$  for MC78XXAC, C, LM340AT-XX, LM340T-XX  $T_{high} = +125^{\circ}C$  for MC78XXAC, C, LM340AT-XX, LM340T-XX = -40°C for MC78XXB

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

|                                                                                                                                                                                                                                                                                                                            | M WW.               | 100Y.C                                                      | MC7818AC                 |                        |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------|--------------------------|------------------------|------|
| Characteristic                                                                                                                                                                                                                                                                                                             | Symbol              | Min                                                         | Тур                      | Max 🔨                  | Uni  |
| Output Voltage ( $T_J = 25^{\circ}C$ )                                                                                                                                                                                                                                                                                     | Vo                  | 17.64                                                       | 18                       | 18.36                  | Vdc  |
| Output Voltage (5.0 mA $\leq$ I_O $\leq$ 1.0 A, P_D $\leq$ 15 W) 21 Vdc $\leq$ V_{in} $\leq$ 33 Vdc                                                                                                                                                                                                                        | VO                  | 17.3                                                        | 18                       | 18.7                   | Vdo  |
| Line Regulation (Note 2.)<br>21 Vdc $\leq V_{in} \leq 33$ Vdc, I <sub>O</sub> = 500 mA<br>24 Vdc $\leq V_{in} \leq 30$ Vdc, I <sub>O</sub> = 1.0 A<br>24 Vdc $\leq V_{in} \leq 30$ Vdc, I <sub>O</sub> = 1.0 A, T <sub>J</sub> = 25°C<br>20.6 Vdc $\leq V_{in} \leq 33$ Vdc, I <sub>O</sub> = 1.0 A, T <sub>J</sub> = 25°C | Regline             | 11-11-1<br>11-1-11-1<br>11-1-11-1<br>11-1-11-1<br>11-1-11-1 | 9.5<br>3.2<br>3.2<br>8.0 | 22<br>25<br>10.5<br>22 | mV   |
| Load Regulation (Note 2.)<br>$5.0 \text{ mA} \le I_O \le 1.5 \text{ A}, \text{ T}_J = 25^{\circ}\text{C}$<br>$5.0 \text{ mA} \le I_O \le 1.0 \text{ A}$<br>$250 \text{ mA} \le I_O \le 750 \text{ mA}$                                                                                                                     | Reg <sub>load</sub> | -MA-<br>                                                    | 2.0<br>1.8<br>1.5        | 25<br>25<br>15         | mV   |
| Quiescent Current                                                                                                                                                                                                                                                                                                          | IB N                |                                                             | 3.5                      | 6.0                    | mA   |
| Quiescent Current Change<br>21 Vdc $\leq$ V <sub>in</sub> $\leq$ 33 Vdc, I <sub>O</sub> = 500 mA<br>21.5 Vdc $\leq$ V <sub>in</sub> $\leq$ 30 Vdc, T <sub>J</sub> = 25°C<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A                                                                                                      | Δl <sub>B</sub>     | - 1                                                         | NWW.20                   | 0.8<br>0.8<br>0.5      | mA   |
| Ripple Rejection 22 Vdc $\leq$ V <sub>in</sub> $\leq$ 32 Vdc, f = 120 Hz, I <sub>O</sub> = 500 mA                                                                                                                                                                                                                          | RR                  | 53                                                          | 57                       | 1001.                  | dB   |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}C$ )                                                                                                                                                                                                                                                               | VI – VO             | - N                                                         | 2.0                      | N.J                    | Vdd  |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                                                                                                                                                                                                                                              | VnOV                | WT                                                          | 10                       | W.LO                   | μV/V |
| Output Resistance f = 1.0 kHz                                                                                                                                                                                                                                                                                              | ro                  | N=T                                                         | 1.3 🔨                    | - 10                   | mΩ   |
| Short Circuit Current Limit (T <sub>A</sub> = 25°C)<br>$V_{in} = 35 \text{ Vdc}$                                                                                                                                                                                                                                           | ISC                 | WT.WO                                                       | 0.2                      | WN.                    | 00XA |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                                                                                                                                                                                                                                                | Imax                | NT.TV                                                       | 2.2                      |                        | A    |
| Average Temperature Coefficient of Output Voltage                                                                                                                                                                                                                                                                          | TCVO                | - 1                                                         | -1.5                     | ANT.                   | mV/° |

# WW.100Y.COM.TW

### ELECTRICAL CHARACTERISTICS (Vin = 33 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1.], unless otherwise noted.)

|                                                                                                                                                                               | En                  |                                       | MC7824B     | ))<br>()   | M.L.               | MC7824C    |            | W.100 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------|-------------|------------|--------------------|------------|------------|-------|
| Characteristic                                                                                                                                                                | Symbol              | Min                                   | Тур         | Max        | Min                | Тур        | Max        | Unit  |
| Dutput Voltage (T <sub>J</sub> = 25°C)                                                                                                                                        | VO                  | 23 📢                                  | 24          | 25         | 23                 | 24         | 25         | Vdc   |
| Dutput Voltage (5.0 mA $\le$ I <sub>O</sub> $\le$ 1.0 A, P <sub>D</sub> $\le$ 15 W)<br>27 Vdc $\le$ V <sub>in</sub> $\le$ 38 Vdc<br>28 Vdc $\le$ V <sub>in</sub> $\le$ 38 Vdc | VO                  | _<br>22.8                             | - 24        | _<br>25.2  | 22.8               | 24         | 25.2<br>-  | Vdc   |
| ine Regulation, (Note 2.)<br>27 Vdc $\leq$ V <sub>in</sub> $\leq$ 38 Vdc<br>30 Vdc $\leq$ V <sub>in</sub> $\leq$ 36 Vdc                                                       | Reg <sub>line</sub> | 8 <u>-</u>                            | 11.5<br>3.8 | 480<br>240 | V.CO               | 2.7<br>2.7 | 60<br>48   | mV    |
| oad Regulation, (Note 2.)<br>5.0 mA $\leq$ IO $\leq$ 1.5 A                                                                                                                    | Regload             | -117                                  | 2.1         | 480        | 00 <del>7</del> .C | 4.4        | 65         | mV    |
| Quiescent Current                                                                                                                                                             | IB                  | $\overline{x}\overline{\overline{x}}$ | 3.6         | 8.0        | -                  | 3.6        | 6.5        | mA    |
| Quiescent Current Change<br>27 Vdc $\leq$ V <sub>in</sub> $\leq$ 38 Vdc<br>5.0 mA $\leq$ I <sub>O</sub> $\leq$ 1.0 A                                                          | ΔlB                 | 1.TW                                  | -           | _<br>0.5   |                    | _          | 1.0<br>0.5 | mA    |

1.  $T_{IOW} = 0^{\circ}C$  for MC78XXAC, C, LM340AT–XX, LM340T–XX =  $-40^{\circ}$ C for MC78XXB

Thigh = +125°C for MC78XXAC, C, LM340AT-XX, LM340T-XX

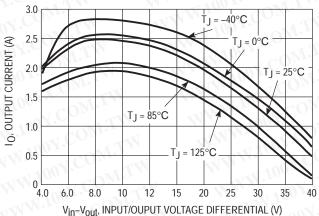
特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

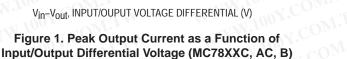
Http://www. 100y. com. tw

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

WW.100Y.COM.TW **ELECTRICAL CHARACTERISTICS (continued)** ( $V_{in}$  = 33 V,  $I_O$  = 500 mA,  $T_J$  =  $T_{low}$  to  $T_{high}$  [Note 1.], unless

| X.COM TW WWW 100X                                                               | TIM     | MC7824B           |      |          | N.CC    |      |          |                   |
|---------------------------------------------------------------------------------|---------|-------------------|------|----------|---------|------|----------|-------------------|
| Characteristic                                                                  | Symbol  | Min               | Тур  | Max      | Min     | Тур  | Max      | Unit              |
| Ripple Rejection<br>28 Vdc $\leq$ V <sub>in</sub> $\leq$ 38 Vdc, f = 120 Hz     | RR      | LM.               | 54   | M.M.     | 50      | 54   | - N      | dB                |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$ )             | VI – VO | 17.               | 2.0  | <u> </u> | 1001.   | 2.0  | <u> </u> | Vdc               |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz   | Vn      | W <sup>T</sup> .I | 10   | 21 M     | N.1005  | 10   | TN       | μV/V <sub>O</sub> |
| Output Resistance f = 1.0 kHz                                                   | ro      | DVEL              | 1.4  | -        | W-100   | 1.4  | <u> </u> | mΩ                |
| Short Circuit Current Limit (T <sub>A</sub> = 25°C)<br>V <sub>in</sub> = 35 Vdc | ISC     | 0171.7            | 0.2  | <u>N</u> | NN.10   | 0.2  | 1-1/1    | A                 |
| Peak Output Current (TJ = 25°C)                                                 | Imax    | COM.              | 2.2  |          | M-W.    | 2.2  | 02       | A                 |
| Average Temperature Coefficient of Output Voltage                               | TCVO    | NGO.              | -2.0 | -        | W Bring | -2.0 | COM.     | mV/°C             |


**ELECTRICAL CHARACTERISTICS** ( $V_{in}$  = 33 V,  $I_O$  = 1.0 A,  $T_J$  =  $T_{low}$  to  $T_{high}$  [Note 1.], unless otherwise noted.)


|                                                                                                                                                                                                | CONTRACT            |                 | MC7824AC                 |                      | WT                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|--------------------------|----------------------|-------------------|
| Characteristic                                                                                                                                                                                 | Symbol              | Min             | Тур                      | Max                  | Unit              |
| Output Voltage (T <sub>J</sub> = 25°C)                                                                                                                                                         | Vo                  | 23.5            | 24                       | 24.5                 | Vdc               |
| Output Voltage (5.0 mA $\leq$ IO $\leq$ 1.0 A, PD $\leq$ 15 W) 27.3 Vdc $\leq$ Vin $\leq$ 38 Vdc                                                                                               | Vo                  | 23.2            | 24                       | 25.8                 | Vdc               |
|                                                                                                                                                                                                | Reg <sub>line</sub> | N.T.W<br>M.T.W  | 11.5<br>3.8<br>3.8<br>10 | 25<br>28<br>12<br>25 | mV<br>7.00        |
| Load Regulation (Note 2.)<br>$5.0 \text{ mA} \le I_O \le 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$<br>$5.0 \text{ mA} \le I_O \le 1.0 \text{ A}$<br>$250 \text{ mA} \le I_O \le 750 \text{ mA}$ | Reg <sub>load</sub> | CO <u>N</u> .TV | 2.1<br>2.0<br>1.8        | 15<br>25<br>15       | mV                |
| Quiescent Current                                                                                                                                                                              | IB                  | COM.            | 3.6                      | 6.0                  | mA                |
|                                                                                                                                                                                                | ΔIB                 | DY.COM          | N.T.V                    | 0.8<br>0.8<br>0.5    | mA                |
| Ripple Rejection 28 Vdc $\leq$ V <sub>in</sub> $\leq$ 38 Vdc, f = 120 Hz, I <sub>O</sub> = 500 mA                                                                                              | RR                  | 45              | 54                       | -                    | dB                |
| Dropout Voltage ( $I_O = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$ )                                                                                                                            | VI – VO             | 1.100           | 2.0                      | × -                  | Vdc               |
| Output Noise Voltage (T <sub>A</sub> = 25°C)<br>10 Hz $\leq$ f $\leq$ 100 kHz                                                                                                                  | Vn                  | N.100X          | CC <sup>10</sup>         | - 17                 | μV/V <sub>O</sub> |
| Output Resistance (f = 1.0 kHz)                                                                                                                                                                | ro 🔨                | W               | 1.4                      | -                    | mΩ                |
| Short Circuit Current Limit (T <sub>A</sub> = 25°C)<br>V <sub>in</sub> = 35 Vdc                                                                                                                | ISC V               | MMT00           | 0.2                      | -                    | A                 |
| Peak Output Current (T <sub>J</sub> = 25°C)                                                                                                                                                    | Imax                | -               | 2.2                      | -                    | A                 |
| Average Temperature Coefficient of Output Voltage                                                                                                                                              | TCVO                | -               | -2.0                     | -                    | mV/°C             |

1.  $T_{IOW} = 0^{\circ}C$  for MC78XXAC, C, LM340AT–XX, LM340T–XX = -40°C for MC78XXB

Thigh = +125°C for MC78XXAC, C, LM340AT–XX, LM340T–XX

2. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.





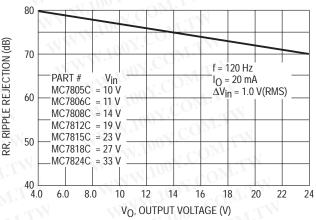
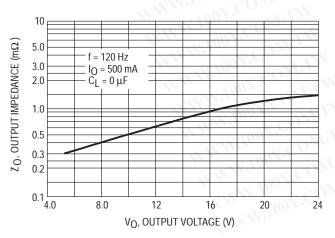
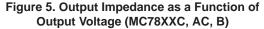





Figure 2. Ripple Rejection as a Function of Output Voltages (MC78XXC, AC, B)



Figure 3. Ripple Rejection as a Function of Frequency (MC78XXC, AC, B)





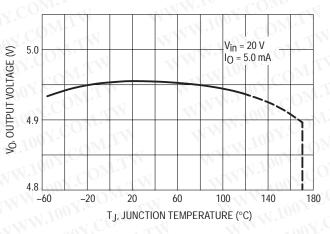
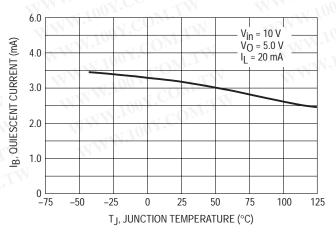



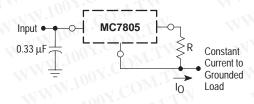

Figure 4. Output Voltage as a Function of Junction Temperature (MC7805C, AC, B)







http://onsemi.com 13


### **APPLICATIONS INFORMATION**

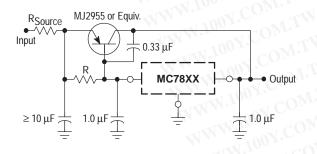
## 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

#### **Design Considerations**

The MC7800 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe–Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high–frequency characteristics to insure stable operation under all load conditions. A 0.33  $\mu$ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

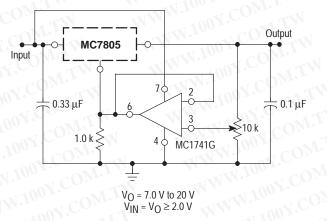



The MC7800 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:

$$I_{O} = \frac{5.0 \text{ V}}{\text{R}} + I_{B}$$

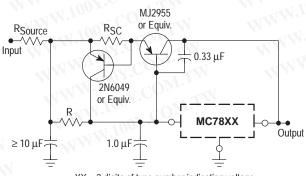
 $I_B \cong 3.2 \text{ mA}$  over line and load changes.

For example, a 1.0 A current source would require R to be a 5.0  $\Omega,$  10 W resistor and the output voltage compliance would be the input voltage less 7.0 V.


#### Figure 7. Current Regulator



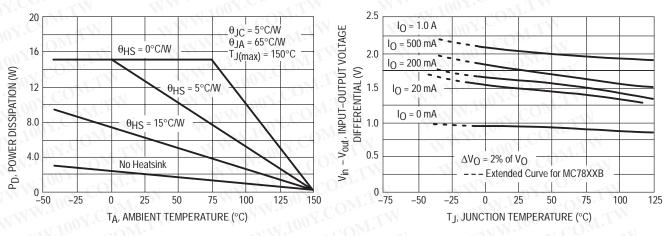
XX = 2 digits of type number indicating voltage

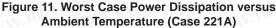

The MC7800 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 A. Resistor R in conjunction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input/output differential voltage minimum is increased by VBE of the pass transistor.

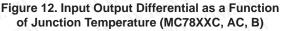
#### Figure 9. Current Boost Regulator

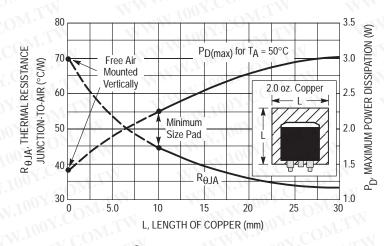


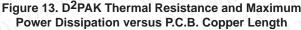
The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 V greater than the regulator voltage.


#### Figure 8. Adjustable Output Regulator





XX = 2 digits of type number indicating voltage.


The circuit of Figure 9 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor,  $R_{SC}$ , and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.


#### **Figure 10. Short Circuit Protection**











#### DEFINITIONS

**Line Regulation** – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

**Load Regulation** – The change in output voltage for a change in load current at constant chip temperature.

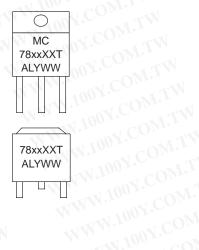
**Maximum Power Dissipation** – The maximum total device dissipation for which the regulator will operate within specifications.

**Quiescent Current** – That part of the input current that is not delivered to the load.

**Output Noise Voltage** – The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

**Long Term Stability** – Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

# WWW.100Y.C MC7800, MC7800A, LM340, LM340A Series W.100Y.COM.TW WWW.100Y.


|                         |                | ORDERING INFORMA                                         | TION    |                      |                            |
|-------------------------|----------------|----------------------------------------------------------|---------|----------------------|----------------------------|
| COMIT                   | WWW            | CON'T A                                                  | WW.100  | Shi                  | pping                      |
| Device                  | Output Voltage | Temperature Range                                        | Package | Rails<br>(No Suffix) | Tape & Reel<br>(R4 Suffix) |
| MC7805.2CT              | WWW I          | NT. COM TW                                               | TO-220  | MY.COF               | - 12                       |
| MC7805ACD2T/R4          | Terra I        |                                                          | D2PAK   | LOONL.               | 800 Units/Reel             |
| MC7805ACT               |                |                                                          | TO-220  | .100 r. COM          | -                          |
| MC7805CD2T/R4           | LM MW          | $T_{J} = 0^{\circ} \text{ to } +125^{\circ}\text{C}$     | D2PAK   | N 100Y.C             | 800 Units/Reel             |
| MC7805CT                | 5.0 V          |                                                          | WW      | 1007.00              | WTN                        |
| LM340T-5                |                |                                                          | TO-220  | W.ICON.CO            | WIT                        |
| LM340AT-5               | A.TW           | 1001. COM.1                                              |         | NW.100               | ON.L                       |
| MC7805BD2T/R4           | WILL           | TJ = −40° to +125°C                                      | D2PAK   | N.100X.C             | 800 Units/Reel             |
| MC7805BT                | W. T.          | 19 10 10 1120 0                                          | V V     | W 100Y.              | WILL                       |
| MC7806ACT               | OM.            | T <sub>J</sub> = 0° to +125°C                            | TO-220  | VWW.LOOV             | COM-TW                     |
| MC7806CT                | 6.0 V          | 1.10 CON                                                 |         | WW.100               | CONF                       |
| MC7806BD2T/R4           |                | $T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$   | D2PAK   | W 1,100              | 800 Units/Reel             |
| MC7806BT                | WT NO.         |                                                          | WTI     | WW 10                | N TY                       |
| MC7808ABT               | V CONT.        |                                                          | TO-220  | WWW.L                | N.COM                      |
| MC7808ACT               | COMIT          | T <sub>J</sub> = 0° to +125°C                            | OM. I   | .WW.J                | COM.                       |
| MC7808CD2T/R4           | 8.0 V          | .1007.0                                                  | D2PAK   |                      | 800 Units/Reel             |
| MC7808CT                | on V.COm TN    | YOOT WWW                                                 | TO-220  | WW                   | 1007.0                     |
| MC7808BD2T/R4           | CONT.          | $T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$   | D2PAK   | WWV                  | 800 Units/Reel             |
| MC7808BT                | 100 r. COM.1   | J. 100                                                   | TO-220  | WW                   | 19.10° - CO                |
| MC7809ACT               | 100Y. OM.      |                                                          | M.I.    | 50 Units/Rail        | W.1001. CO                 |
| MC7809CD2T/R4           | 9.0 V          | $T_{J} = 0^{\circ} \text{ to } +125^{\circ}\text{C}$     | D2PAK   | N 11                 | 800 Units/Reel             |
| MC7809CT                | W.10 N.COM     | WWW.                                                     | TO-220  | W W                  | N. Took                    |
| MC7809BT                | NN.100 CON     | $T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$   | COM.    | A Mar                | NW.                        |
| MC7812ACD2T/R4          | W.1001.C       |                                                          | D2PAK   |                      | 800 Units/Reel             |
| MC7812ACT               | 1007.0         |                                                          | TO-220  | I.TW                 |                            |
| MC7812CD2T/R4           | NMM. CONC      | $T_{J} = 0^{\circ} \text{ to } +125^{\circ}\text{C}$     | D2PAK   | WILL                 | 800 Units/Reel             |
| MC7812CT                | 12 V           |                                                          | TO OCO  | WT                   | WWW.L                      |
| LM340T-12               | W.1001         |                                                          | TO-220  | DW.                  | WW.I                       |
| LM340AT-12              | WW 1008        | NITH N                                                   | DODALI  | N.I.W                |                            |
| MC7812BD2T/R4           | WWW.           | $T_{\rm J} = -40^{\circ}$ to +125°C                      | D2PAK   | WIM                  | 800 Units/Reel             |
| MC7812BT                | N.W.W.         | N.COM.                                                   | TO-220  | NT NOO.              |                            |
| MC7815ACD2T/R4          | V 10           |                                                          | D2PAK   | COM.                 | 800 Units/Reel             |
| MC7815ACT               | WW             |                                                          | TO-220  | COM.TW               |                            |
| MC7815CD2T/R4           | WWW.           | $T_{\rm J} = 0^{\circ} \text{ to } +125^{\circ}\text{C}$ | D2PAK   | DY.C.                | 800 Units/Reel             |
| MC7815CT                | 15 V           |                                                          | TO 000  | MY.COM               |                            |
| LM340T-15<br>LM340AT-15 |                |                                                          | TO-220  | 0.0                  | -                          |

| CONT             | WWW.P          | N.COM.                                                 | WWW.    | Ship                 | pping                     |  |
|------------------|----------------|--------------------------------------------------------|---------|----------------------|---------------------------|--|
| Device Output Vo | Output Voltage | Temperature Range                                      | Package | Rails<br>(No Suffix) | Tape & Ree<br>(R4 Suffix) |  |
| MC7818ACT        | NW.            | TW.COMETW                                              | TO-220  | TIM YOUNG            | · _                       |  |
| MC7818CD2T/R4    | 18 V           | $T_J = 0^\circ$ to +125°C                              | D2PAK   | ON.COM               | 800 Units/Re              |  |
| MC7818CT         | - 18 V         |                                                        | WW      | LOO COM.             |                           |  |
| MC7818BT         | U 11           | $T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$ | TO-220  | 1001. OM             | -                         |  |
| MC7824ACT        | NN NN          | ТЈ = 0° to +125°С                                      | WW      | 50 Units/Rail        | - VI.                     |  |
| MC7824CD2T       |                |                                                        | D2PAK   |                      | WT.                       |  |
| MC7824CT         | 24 V           |                                                        | TO-220  | W.IU CO              |                           |  |
| MC7824BD2T/R4    | N.T.W          | $T_{1} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$ | D2PAK   | W.1001.              | 800 Units/Re              |  |
| MC7824BT         | WT             | $1 J = -40 \ 10 + 123 \ C$                             | TO-220  | 1001.0               | TIM                       |  |

#### **ORDERING INFORMATION**

WWW.100Y.COM.TW WWW.100Y.COM.TW 100Y.COM.TW 00Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

#### MARKING DIAGRAMS MC7800, MC7800A Series



# MARKING DIAGRAMS LM340, LM340A Series

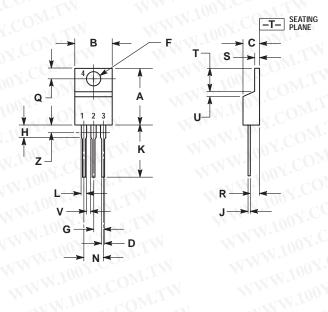


= Voltage Option XX

100Y.COM.TW XX = Appropriate Suffix Options А = Assembly Location WWW.100Y.COM.TW

100Y.COM.TW

= Wafer Lot L


Y = Year

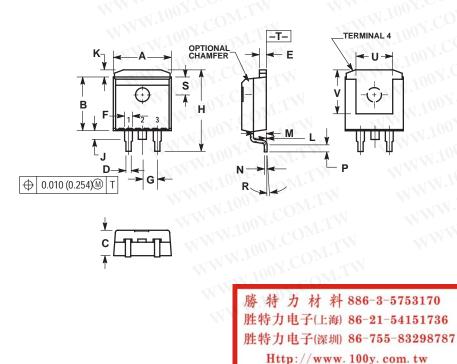
WWW.100Y.COM.TW WW = Work Week WWW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

#### PACKAGE DIMENSIONS

TO-220 **T SUFFIX** CASE 221A-09 **ISSUE AA** 




CONTROLLING DIMENSION: INCH DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE 3. ALLOWED. INCHES MILLIMETERS DIM MIN MAX MIN MAX A 0.570 0.620 14.48 15.75 В 0.380 0.405 9.66 10.28 C 0.160 0.190 4.82 D 0.025 0.035 0.64 0.88 F 0.142 0.147 3.61 3.73 G 0.095 0.105 2.42 2.66 H 0.110 0.155 2.80 3.93 0.018 0.025 0.46 0.64 J К 0.500 0.562 12.70 14.27 0.060 L 0.045 1.15 1.52 5.33 N 0.190 0.210 4.83 Q 0.100 0.120 2.54 3.04 R 0.080 0.110 2.04 2.79 S T 0.045 0.055 1.15 5.97 1.39 0.235 0.255 6.47 **U** 0.000 0.050 0.00 V 0.045 1.15 2.04 0.080

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.

NOTES:

2

D2PAK **D2T SUFFIX** CASE 936-03 **ISSUE B** 



NOTES 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.

- CONTROLLING DIMENSION: INCH 2
- TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K. 3.
- DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4. 4. 5
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.

| Y | 12  | INCHES                     |       | MILLIMETERS |        |
|---|-----|----------------------------|-------|-------------|--------|
|   | DIM | MIN                        | MAX   | MIN         | MAX    |
|   | Α   | 0.386                      | 0.403 | 9.804       | 10.236 |
|   | В   | 0.356                      | 0.368 | 9.042       | 9.347  |
|   | C   | 0.170                      | 0.180 | 4.318       | 4.572  |
|   | D   | 0.026                      | 0.036 | 0.660       | 0.914  |
|   | Ε   | 0.045                      | 0.055 | 1.143       | 1.397  |
|   | É.  | 0.051 REF                  |       | 1.295 REF   |        |
| • | G   | 0.100 BSC                  |       | 2.540 BSC   |        |
|   | H   | 0.539                      | 0.579 | 13.691      | 14.707 |
| đ | J   | 0.125 MAX                  |       | 3.175 MAX   |        |
| 2 | K   | 0.050 REF                  |       | 1.270 REF   |        |
|   | L   | 0.000                      | 0.010 | 0.000       | 0.254  |
|   | Μ   | 0.088                      | 0.102 | 2.235       | 2.591  |
|   | Ν   | 0.018                      | 0.026 | 0.457       | 0.660  |
|   | Р   | 0.058                      | 0.078 | 1.473       | 1.981  |
|   | R   | 5° REF                     |       | 5°REF       |        |
|   | S   | 0.116                      | REF   | 2.946 REF   |        |
|   | U   | U 0.200 MIN<br>V 0.250 MIN |       | 5.080 MIN   |        |
|   | V   |                            |       | 6.350 MIN   |        |

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

**ON Semiconductor** and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights not the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employee.

#### PUBLICATION ORDERING INFORMATION

#### NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

- Email: ONlit-german@hibbertco.com
- French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS\*: 00-800-4422-3781 \*Available from Germany, France, Italy, England, Ireland CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

N.COM.TW