

Micropower Voltage Regulator

The MC78FC00 series voltage regulators are specifically designed for use as a power source for video instruments, handheld communication equipment, and battery powered equipment.

The MC78FC00 series voltage regulator ICs feature a high accuracy output voltage and ultra—low quiescent current. Each device contains a voltage reference unit, an error amplifier, a driver transistor, and resistors for setting output voltage, and a current limit circuit. These devices are available in SOT–89 surface mount packages, and allow construction of an efficient, constant voltage power supply circuit.

MC78FC00 Series Features:

- Ultra-Low Quiescent Current of 1.1 µA Typical
- Ultra-Low Dropout Voltage (100 mV at 10 mA)
- Large Output Current (up to 120 mA)
- Excellent Line Regulation (0.1%)
- Wide Operating Voltage Range (2.0 V to 10 V)
- High Accuracy Output Voltage (±2.5%)
- Wide Output Voltage Range (2.0 V to 6.0 V)
- Surface Mount Package (SOT–89)

ORDERING INFORMATION

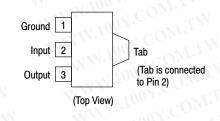
Device	Output Voltage	Operating Temperature Range	Package
MC78FC30HT1	3.0	WW WW	N. Pany
MC78FC33HT1	3.3	T 000 to 10000	OOT OO
MC78FC40HT1	4.0	$T_A = -30^{\circ} \text{ to } +80^{\circ}\text{C}$	SOT-89
MC78FC50HT1	5.0	W. T	MM.In

Other voltages from 2.0 to 6.0 V, in 0.1 V increments, are available upon request. Consult factory for information.

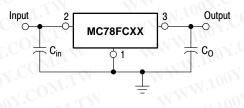
Representative Block Diagram

This device contains 11 active transistors.

MC78FC00 Series


MICROPOWER ULTRA-LOW QUIESCENT CURRENT VOLTAGE REGULATORS

SEMICONDUCTOR TECHNICAL DATA



H SUFFIX PLASTIC PACKAGE CASE 1213 (SOT-89)

PIN CONNECTIONS

Standard Application

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

MAXIMUM RATINGS (T_C = 25°C, unless otherwise noted.)

CO Rating	Symbol	Value	Unit
Input Voltage	V _{CC}	10	Vdc
Power Dissipation and Thermal Characteristics Maximum Power Dissipation Case 1213 (SOT–89) H Suffix Thermal Resistance, Junction–to–Ambient	P _D R ₀ JA	300 333	mW °C/W
Operating Junction Temperature	Tu	125	°C
Operating Ambient Temperature	T _A	-30 to +80	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS (V_{in} = V_O + 1.0 V, I_O = 10 mA, T_J = 25°C [Note 1], unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage $30HT1$ Suffix $(V_{in} = 5.0 \text{ V})$ $33HT1$ Suffix $(V_{in} = 6.0 \text{ V})$ $40HT1$ Suffix $(V_{in} = 7.0 \text{ V})$ $50HT1$ Suffix $(V_{in} = 8.0 \text{ V})$	V _O	2.925 3.218 3.900 4.875	3.0 3.3 4.0 5.0	3.075 3.382 4.100 5.125	V
Line Regulation $V_{in} = [V_O + 1.0] \text{ V to 10 V, } I_O = 10 \text{ mA}$	Reg _{line}	WWW	0.1	M.TN	mV
Load Regulation $V_{in} = [V_O + 1.0], I_O = 1.0 \text{ to } 10 \text{ mA}$	Reg _{load}	VI - VI	40	80	mV
Output Current $30\text{HT1 Suffix } (V_{in} = 5.0 \text{ V})$ $33\text{HT1 Suffix } (V_{in} = 6.0 \text{ V})$ $40\text{HT1 Suffix } (V_{in} = 7.0 \text{ V})$ $50\text{HT1 Suffix } (V_{in} = 8.0 \text{ V})$	lo l	50 65 65 80	80 100 100 120	(.COM.) (Y.COM (Y.COM	mA
Dropout Voltage I _O = 40 mA	$V_{in} - V_{O}$	-	0.5	0.7	V
Quiescent Current 30HT1 Suffix (V_{in} = 5.0 V) 33HT1 Suffix (V_{in} = 5.0 V) 40HT1 Suffix (V_{in} = 6.0 V) 50HT1 Suffix (V_{in} = 7.0 V)	I _{CC}	N _ TN -	1.1 1.1 1.2 1.3	3.3 3.3 3.6 3.9	μΑ
Output Voltage Temperature Coefficient	T _C	TY.	±100	44	ppm/°C

NOTE: 1. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

DEFINITIONS

Dropout Voltage - The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 100 mV below its nominal value (which is measured at 1.0 V differential), dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

Line Regulation – The change in output voltage for a change in input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques

such that average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

Quiescent Bias Current – Current which is used to operate the regulator chip and is not delivered to the load.

> 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

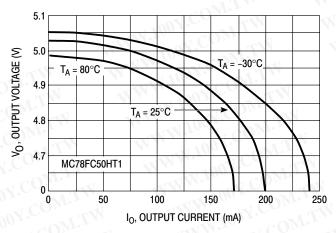


Figure 1. Output Voltage versus Output Current

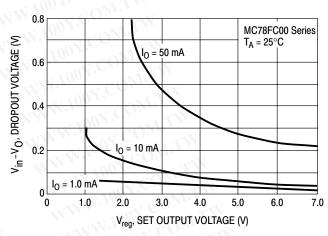


Figure 2. Dropout versus Set Output Voltage

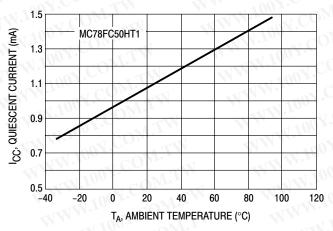


Figure 3. Quiescent Current versus Temperature

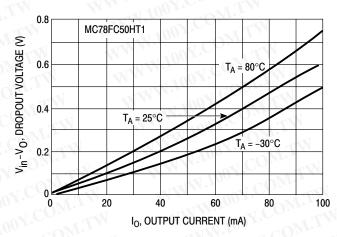


Figure 4. Dropout Voltage versus Output Current

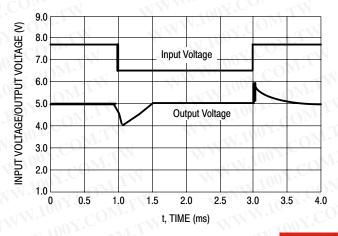


Figure 5. Line Transient Response

力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

APPLICATIONS INFORMATION

Introduction

The MC78FC00 micropower voltage regulators are specifically designed with internal current limiting and low quiescent current making them ideal for battery powered applications. An input bypass capacitor is recommended if the regulator is located an appreciable distance (≥ 4 inches) from the input voltage source. These regulators require 0.1 μ F capacitance between the output terminal and ground for stability. Most types of aluminum, tantalum or multilayer ceramic will perform adequately. Solid tantalums or other appropriate capacitors are recommended for operation below 25°C. The bypass capacitors should be mounted with the shortest possible leads or track lengths directly across the regulator input and output terminals.

With economical electrolytic capacitors, cold temperature operation can pose a serious stability problem. As the electrolyte freezes, around -30°C , the capacitance will decrease and the equivalent series resistance (ESR) will increase drastically, causing the circuit to oscillate. Quality electrolytic capacitors with extended temperature ranges of -40° to $+85^{\circ}\text{C}$ are readily available. Solid tantalum capacitors may be the better choice if small size is a requirement. However, a maximum ESR limit of 3.0 Ω must be observed over temperature to maintain stability.

Figure 6 is a typical circuit application. Figure 7 is a current boost circuit which can deliver more than 600 mA. The circuit has no current limiting and the external transistor must be rated for the expected power dissipation.

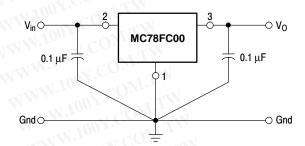
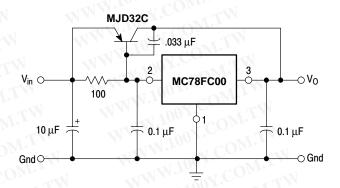
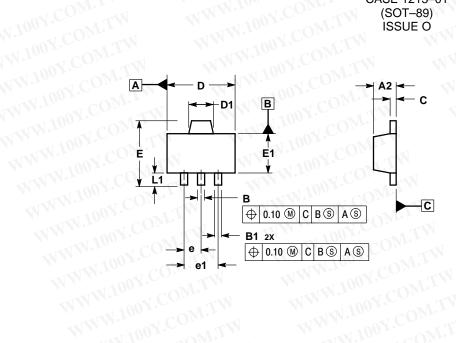


Figure 6. Typical Application




Figure 7. Current Boost Circuit

WWW.100Y.COM.T

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

OOY.COM.TW

PACKAGE DIMENSIONS WW.100Y.COM.TW WWW.100Y.COM.TW (SOT-89) **ISSUE O**

WWW.100Y.COM.TW

WW.100Y.C

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
- WWW.100Y.COM.TW 2. INTERPRET DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
 - 3. DATUM C IS A SEATING PLANE.

DIM	MIN	MAX		
A2	1.40	1.60		
В	0.37	0.57	J	
B1	0.32	0.52		
C	0.30	0.50		
D	4.40	4.60		
D1	1.50	1.70	2.5	
E	V <u></u>	4.25	M.	
E1	2.40	2.60		
e 1	1.50	BSC	- 1	
e1	3.00	BSC) In	
L1	0.80			

WWW.100Y.COM.TW 特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100Y.COM.TW

100Y.COM.TW