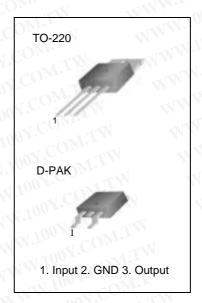


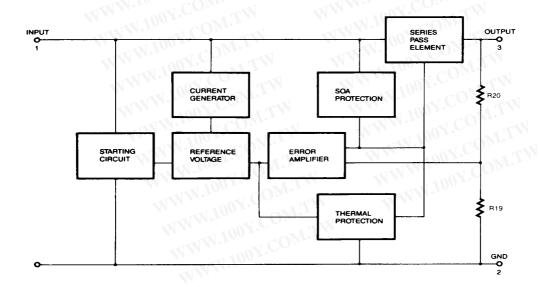
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

www.fairchildsemi.com

MC78MXX/LM78MXX


3-terminal 0.5A positive voltage regulator

Features


- Output Current up to 0.5A
- Output Voltages of 5, 6, 8, 10, 12, 15, 18, 20, 24V
- Thermal Overload Protection
- · Short Circuit Protection
- Output Transistor Safe Operating area (SOA)Protection

Description

The MC78MXX/LM78MXX series of three-terminal positive regulators are available in the TO-220/D-PAK package with several fixed output voltages making it useful in a wide range of applications.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V) (for V _O = 24V)	VI VI	35 40	V V
Thermal Resistance Junction-Cases	R _θ JC	5	°C/W
Thermal Resistance Junction-Air (TO-220 Package)	RθJA	65 KN	°C/W
Operating Temperature Range MC78MXX/LM78MXX	Topr	0~ + 125	°C
Storage Temperature Range	TSTG	-65~ + 150	°C

Electrical Characteristics (MC78M05/LM78M05)

(Refer to the test circuits, $0 \le T_J \le +125$ °C, $I_O=350$ mA, $V_I=10$ V, unless otherwise specified, $C_I=0.33\mu F$, $C_O=0.1\mu F$)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
MAN TOWN		TJ=+25°C	4.8	5	5.2	Mr.
Output Voltage	Vo	I _O = 5 to 350mA V _I = 7 to 20V	4.75	5	5.25	WA.
Line Degulation	11/0	I _O = 200mA	-11	W -	100	m)/
Line Regulation	ΔVο	TJ =+25°C V _I = 8 to 25V	- <	MA	50	mV
Land Datablation of COM.	11/0	I _O = 5mA to 0.5A, T _J =+25°C	-	-V	100	(CO)
Load Regulation	ΔVο	IO = 5mA to 200mA, TJ =+25 °C	-	- TVV	50	mV
Quiescent Current	IQ	T _J =+25°C	-	4.0	6	mA
MM. 1001.Co	WIN	IO = 5mA to 350mA	-	3/1	0.5	00 1.
Quiescent Current Change	ΔlQ	I _O = 200mA V _I = 8 to 25V		-11	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA T _J = 0 to +125°C	TY.	-0.5	WWW	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz	T.T.W	40	MA	μV
Ripple Rejection	RR	f = 120Hz, IO = 300mA VI = 8 to 18V	62	- N	MA	dB
Dropout Voltage	VD	TJ =+25°C, IO = 500mA	OM^{T}	2	- 1	V
Short Circuit Current	Isc	TJ=+25°C, VI= 35V	M.	300	-	mA
Peak Current	IPK	TJ =+25°C	- 1	700	-	mA

^{*}Load and line regulation are specified at constant junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M06)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=11V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	COMP	onditions	Min.	Тур.	Max.	Unit
COMIT	M.100.	TJ=+25°C	I. WWW.	5.75	6	6.25	
Output Voltage	Vo	I _O = 5 to 350 V _I = 8 to 21V	mA WWW	5.7	6	6.3	V
Line Deculation	11/0	I _O = 200mA	V _I = 8 to 25V	TOOY	Co	100	mV
Line Regulation	ΔVο	TJ =+25°C	V _I = 9 to 25V	M . 5	$I.C_{O_{P}}$	50	mv
Lood Degulation	11/0	IO = 5mA to 0	0.5A, TJ =+25°C	Mira	V.EO	120	ma\/
Load Regulation	ΔVO	$I_O = 5mA \text{ to } 2$	200mA, TJ =+25°C	MA:10	3 ≥ 7 C(60	mV
Quiescent Current	IQ	TJ=+25°C	M.IM	1.W.L	4.0	6	mA
1001.00	41.44	$I_O = 5mA \text{ to } 3$	350mA	N VI	1001.	0.5	LA
Quiescent Current Change	ΔlQ	IO = 200mA VI = 9 to 25V	COM.TW	MANA	1001	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	25°C	WW	- 0.5	N.CO	mV/°C
Output Noise Voltage	VN	f = 10Hz to 1	00KHz	-111	45	07-	μV
Ripple Rejection	RR	f = 120Hz, IO VI = 9 to 19V		59	WW.	007.C	dB
Dropout Voltage	VD	T _J =+25°C, lo	O = 500mA	-	2	700,	V
Short Circuit Current	Isc	TJ= +25°C, \	/i= 35V	-	300	N.190	mA
Peak Current	IPK	T _J =+25°C	TIONY CONTENT	_	700	700	mA

^{*}Load and line regulation are specified at constant, junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Electrical Characteristics (MC78M08)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=14V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
CONCIL	M.100	TJ=+25 °C	MAIN	7.7	8	8.3	
Output Voltage	Vo	I _O = 5 to 350mA V _I = 10.5 to 23V		7.6	8	8.4	V
Line Regulation	41/0	I _O = 200mA	V _I = 10.5 to 25V	100-Y.	, O - N /	100	mV
Line Regulation	ΔVο	TJ =+25°C	VI = 11 to 25V	Y Oo	$Co_{n_{s}}$	50	IIIV
Lood Degulation	41/0	IO = 5mA to 0.5	A, TJ =+25°C	1.10	I.COD	160	ma\/
Load Regulation	ΔVο	Io = 5mA to 200	OmA, T _J =+25°C	W.100	<1 C.C	80	mV
Quiescent Current	lQ	TJ=+25°C	U.L.	W-10	4.0	6	mA
THE TOTAL TOTAL TWO	MM	IO = 5mA to 350	DmA	- x <u>1</u> 1	001.	0.5	W
Quiescent Current Change	ΔIQ	IO = 200mA V _I = 10.5 to 25V	OM.TW V	WW.	100X	0.8	mA
Output Voltage Drift	RR	IO = 5mA T _J = 0 to +125°	C W.TW	WWW	-0.5	Y.CO	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	KHz	MM	52	01.0	μV
Ripple Rejection	RR	f = 120Hz, I _O = V _I = 9 to 19V	300mA	56	NN.	00¥.C	dB
Dropout Voltage	VD	T _J =+25°C, l _O =	= 500mA	- 77	2	100,3	V
Short Circuit Current	Isc	TJ =+25°C, VI=	35V	- 1	300	1.1007	mA
Peak Current	IPK	T _J =+25°C	100 Y.CO. LAN	-	700	1 100	mA

^{*}Load and line regulation are specified at constant, junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M12)

(Refer to the test circuits, $0 \le T_J \le 125^{\circ}$ C, $I_{O} = 350$ mA, $V_{I} = 19$ V, unless otherwise specified, $C_{I} = 0.33\mu$ F, $C_{O} = 0.1\mu$ F)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
COM.	M.100	TJ=+25°C	11.5	12	12.5	
Output Voltage	Vo	I _O = 5 to 350mA V _I = 14.5 to 27V	11.5	12	12.6	V
Line Regulation	4)/0	I _O = 200mA	100Y		100	mV
Line Regulation	ΔVο	TJ =+25°C VI = 16 to 30V	-00	COM	50	IIIV
Lood Degulation	41/0	IO = 5mA to 0.5A, TJ =+25°C	11.100	V.CO	240	mV
Load Regulation	ΔVο	I _O = 5mA to 200mA, T _J =+25°C	11-10	~1-CC	120	IIIV
Quiescent Current	IQ	TJ=+25°C	W.W.	4.1	6	mA
TION CONTRACTOR	W	IO = 5mA to 350mA	TAN .	007	0.5	N.
Quiescent Current Change	ΔlQ	IO = 200mA VI = 14.5 to 30V		100X	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +125°C	WEW	- 0.5	Y.CO	mV/°C
Output Noise Voltage	VN VN	f = 10Hz to 100KHz	AN	75	01.0	μV
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 15 to 25V	55	NVI.	00Y.C	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA	- 1	2	100 3	CVA
Short Circuit Current	Isc	TJ= +25°C, VI= 35V	-	300	1.100	mA
Peak Current	IPK	T _J = +25°C	-	700	× 100	mA

^{*}Load and line regulation are specified at constant, junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M15)

(Refer to the test circuits, $0 \le TJ \le +125^{\circ}C$, IO=350mA, VI=23V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
COMIT	M.100.	TJ=+25°C	WW.	14.4	15	15.6	
Output Voltage	Vo	I _O = 5 to 350 V _I = 17.5 to 3		14.25	15	15.75	V
Line Deculation	11/0	I _O = 200mA	V _I = 17.5 to 30V	100	A.Co.	100	m) /
Line Regulation	ΔVο	TJ =+25°C	VI = 20 to 30V	M.	N.CO	50	mV
Land De COM.	WW.	IO = 5mA to 0	0.5A, TJ =+25°C	MA . 10	N.C	300	N
Load Regulation	ΔVο	$I_O = 5mA \text{ to } 2$	200mA, T _J =+25°C	WW.	00 =	150	mV
Quiescent Current	IQ	TJ=+25°C	WIII A	-	4.1	6	mA
AM. TOOY.CO.	MAN	$I_O = 5mA \text{ to } 3$	350mA	MA	1 100 X	0.5	LA
Quiescent Current Change	ΔlQ	IO = 200mA V _I = 17.5 to 3	30V	MM	W.100	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	25°C	-W	-1	001-CO	mV/°C
Output Noise Voltage	N VN	f = 10Hz to 1	00KHz	- 1	100	1007.0	μV
Ripple Rejection	RR	f = 120Hz, IO V _I = 18.5 to 2		54	AN A	1.100Y.	dB
Dropout Voltage	VD	T _J =+25°C, I ₀	O = 500mA	-	2	W.100.	V
Short Circuit Current	Isc	TJ= +25°C, \	/i= 35V	-	300	100°	mA
Peak Current	IPK	T _J = + 25°C	100Y.CO	N -	700	110	mA

^{*}Load and line regulation are specified at constant, junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Electrical Characteristics (MC78M18)

(Refer to the test circuits, $0 \le TJ \le +125^{\circ}C$, IO=350mA, VI=26V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	COM. CO	onditions	Min.	Тур.	Max.	Unit
COMIT	ZNW.100	TJ=+25°C	TINN 100	17.3	18	18.7	
Output Voltage	Vo	I _O = 5 to 350m/ V _I = 20.5 to 33V		17.1	18	18.9	V
Line Regulation	4)/0	Io = 200mA	V _I = 21 to 33V	1007.0	-11	100	m\/
Line Regulation	ΔVο	TJ =+25°C	VI = 24 to 33V	Toux.	$C\bar{O}_{2a}$	50	- mV
Load Degulation	11/0	IO = 5mA to 0.5	5A, TJ =+25°C	1.10-	$^{\circ}C_{O_{\overline{D}}}$	360	ms\/
Load Regulation	ΔVΟ	Io = 5mA to 20	0mA, T _J =+25°C	1700	«1 C'O	180	mV
Quiescent Current	IQ	TJ =+25°C	W.T.	TW. 100	4.2	6	mΑ
TI TOOY.CO.	W	IO = 5mA to 35	0mA	W 10	0.1.	0.5	LAN.
Quiescent Current Change	ΔlQ	IO = 200mA VI = 21 to 33V	OM.TW W	UMAN.	00X.	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO =5mATJ =0	to 125°C	WW	-1.1	J GO	mV/°C
Output Noise Voltage	VN	f=10Hz to 100K	Hz		100	7.70	μV
Ripple Rejection	RR	f=120Hz, IO=30	00mA , V _I =22 to 32V	53	W-10	25.	dB
Dropout Voltage	VD	T _J =+25°C, l _O =	500mA	17	2	007.	V
Short Circuit Current	Isc	TJ =+25°C, VI=	35V	-W	300	1007	mA
Peak Current	lpk	TJ =+25°C	CON. COM	- 17	700	4.507	mA

^{*}Load and line regulation are specified at constant, junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M20)

(Refer to the test circuits, $0 \le TJ \le +125^{\circ}C$, IO=350mA, VI=29V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	COM	onditions	Min.	Тур.	Max.	Unit
COMIT	M.100	TJ= +25°C	NWW.	19.2	20	20.8	
Output Voltage	Vo	I _O = 5 to 350 V _I = 23 to 35 ¹	T	19	20	21	V
Line Regulation	11/0	I _O = 200mA	V _I = 23 to 35V	100	T.Co.	100	mV
Line Regulation	ΔVO	TJ =+25°C	V _I = 24 to 35V	1111-	N.CO	50	mv
Lood Regulation	41/0	IO = 5mA to	0.5A, TJ =+25°C	MATTE	N-CC	400	√ mV
Load Regulation	ΔVO	$I_0 = 5mA to$	200mA, T _J =+25°C	TWW.	57 C	200	mv
Quiescent Current	IQ	TJ=+25°C	OMITA	- TW	4.2	6	mA
TION CONTENT	MA	$I_O = 5mA$ to	350mA	MA	700x.	0.5	LA
Quiescent Current Change	ΔlQ	IO = 200mA VI = 23 to 35	VOMIN	MM	N.100)	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	25°C	-WV	-1.1	OY.CO	mV/°C
Output Noise Voltage	√V VN	f = 10Hz to 1	00KHz	- W	110	001.0	μV
Ripple Rejection	RR	f = 120Hz, IC V _I = 24 to 34		53	MAN	100X.	dB
Dropout Voltage	VD	T _J =+25°C, I	O = 500mA	-	2	1.100 x	V
Short Circuit Current	Isc	T _J = +25°C,	V _I = 35V	_	300	W.100	mA
Peak Current	IPK	T _J = +25°C	1100Y.CO	N -	700	-x110	mA

^{*}Load and line regulation are specified at constant, junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Electrical Characteristics (MC78M24)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=33V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Symbol	COM	onditions	Min.	Тур.	Max.	Unit
M.100	TJ=+25°C	WWW	23	24	25	
Vo	2 () ())))	-T V	22.8	24	25.2	V
41/0	Io = 200mA	V _I = 27 to 38V	-10	Y.Co.	100	mV
ΔνΟ	TJ =+25°C	VI = 28 to 38V	MAG	WY-CC	50	mv
41/0	IO = 5mA to	0.5A, TJ =+25°C	MAN'T	V.C	480	N m)/
ΔVΟ	$I_O = 5mA$ to	200mA, T _J =+25°C	W.	100	240	mV
lQ	TJ=+25°C	OMITY	N TO	4.2	6	mA
MA	$I_O = 5mA$ to	350mA	MA	M 190 A	0.5	IN
ΔlQ	- 1110	BYOMTW	WW.	N.100	0.8	mA
ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	25°C	- 1/	- 1.2	007 ¹ .CC	mV/°C
√ VN	f = 10Hz to 1	00KHz	- 1	170	100-11-6	μV
RR			50	NAN	1.100Y	dB
V _D	T _J =+25°C,	O = 500mA	_	2	M.700.3	VM
Isc	TJ= +25 °C,	V _I = 35V	· -	300	W-100	mA
IPK	T _J =+25°C	TI 100 Y. COM	W -	700	-3110	mA
	VO ΔVO ΔVO IQ ΔIQ ΔIQ ΔV/ΔT VN RR VD ISC	$\begin{array}{c} \text{TJ=+25°C} \\ \text{VO} & \text{IO} = 5 \text{ to } 350 \\ \text{V}_{\text{I}} = 27 \text{ to } 38 \\ \text{AVO} & \text{IO} = 200 \text{mA} \\ \text{TJ} = +25°C \\ \text{AVO} & \text{IO} = 5 \text{mA to} \\ \text{IO} = 200 \text{mA} \\ \text{VI} = 27 \text{ to } 38 \\ \text{AV/AT} & \text{IO} = 5 \text{mA} \\ \text{TJ} = 0 \text{ to } +12 \\ \text{VN} & \text{f} = 10 \text{Hz to } 10 \\ \text{RR} & \text{f} = 120 \text{Hz, IO} \\ \text{VI} = 28 \text{ to } 38 \\ \text{VD} & \text{TJ} = +25°C, IO \\ \text{ISC} & \text{TJ} = +25°C, IO \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{O} = \frac{\text{T_J=+25}^{\circ}\text{C}}{\text{IO} = 5 \text{ to } 350 \text{mA}} $ $V_{I} = 27 \text{ to } 38 \text{V} $ 22.8 $\Delta V_{O} = \frac{\text{IO} = 200 \text{mA}}{\text{T_J =+25}^{\circ}\text{C}} = \frac{\text{VI} = 27 \text{ to } 38 \text{V}}{\text{VI} = 28 \text{ to } 38 \text{V}} = \frac{\text{VI} = 28 \text{ to } 38 \text{V}}{\text{VI} = 28 \text{ to } 38 \text{V}} = \frac{\text{VI} = 28 \text{ to } 38 \text{V}}{\text{VI} = 28 \text{ to } 38 \text{V}} = \frac{\text{VI} = 28 \text{ to } 38 \text{V}}{\text{IO} = 5 \text{mA}} = \frac{\text{IO} = 5 \text{mA}}{\text{IO} = 5 \text{mA}} = \frac{\text{IO} = 5 \text{mA}}{\text{IO} = 200 \text{mA}} = \frac{\text{IO} = 5 \text{mA}}{\text{VI} = 27 \text{ to } 38 \text{V}} = \frac{\text{IO} = 5 \text{mA}}{\text{T_J} = 0 \text{ to } +125^{\circ}\text{C}} = \frac{\text{IO} = 5 \text{mA}}{\text{T_J} = 0 \text{ to } +125^{\circ}\text{C}} = \frac{\text{IO} = 5 \text{mA}}{\text{VI} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 300 \text{mA}}{\text{VI} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 200 \text{mA}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 500 \text{mA}}{\text{IO} = 28 \text{ to } 38 \text{V}} = \frac{\text{IO} = 200 \text{mA}}{\text{IO} = 200 \text{mA}}} = \frac{\text{IO} = 200 \text{mA}}{\text{IO} = 200 \text{mA}}} = \frac{\text{IO} = 200 \text{mA}}{\text{IO} = 200 \text{mA}} = \frac{\text{IO} = 200 \text{mA}}{\text{IO} = 200 \text{mA}} = \frac{\text{IO} = 200 \text{mA}}{\text{IO} = 200 \text{mA}}} = \frac{\text{IO} = 200 \text{mA}}{\text{IO} = 200 \text{mA}}} = \frac{\text{IO} = 200 \text{mA}}{\text{IO} = 200 \text{mA}} = \frac{\text{IO} = 200 \text{mA}}{\text{IO} = 200 \text{mA}}} = \frac{\text{IO} = 200 \text{mA}}{\text{IO}$	TJ=+25°C 23 24 VO IO = 5 to 350mA VI = 27 to 38V 22.8 24 ΔVO IO = 200mA VI = 27 to 38V - ΔVO IO = 5mA to 0.5A, TJ = +25°C - IQ = 5mA to 200mA, TJ = +25°C - - IQ = 5mA to 350mA - - ΔV/ΔT IO = 5mA - - - ΔV/ΔT IO = 5mA - </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*}Load and line regulation are specified at constant, junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

W.100Y.COM.TW **Typical Applications**

V.100Y.COM.TW

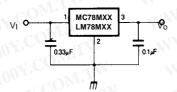


Figure 1. Fixed Output Regulator

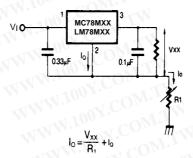
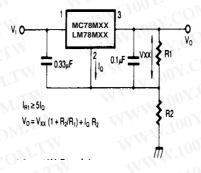
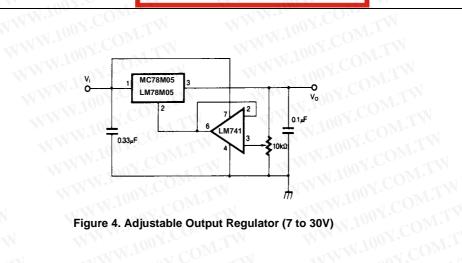



Figure 2. Constant Current Regulator

- 1. To specify an output voltage, substitute voltage value for "XX"
- 2. Although no output capacitor is needed for stability, it does improve transient response.
- 3. Required if regulator is located an appreciable distance from power Supply filter

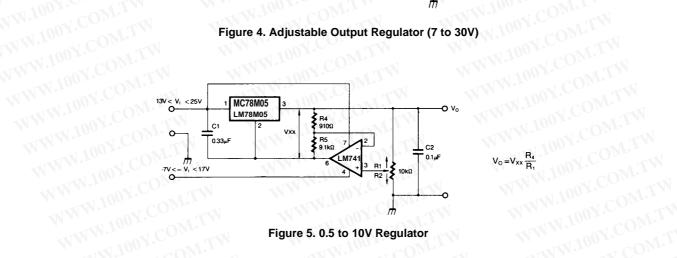


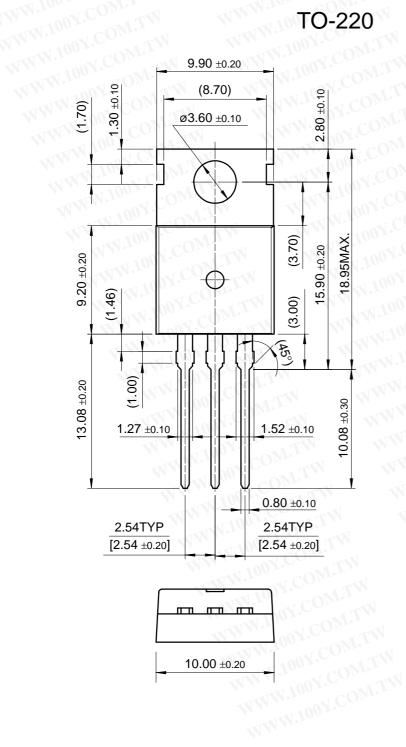
WW.100Y.COM.TW Figure 3. Circuit for Increasing Output Voltage WWW.100Y.COM.TW

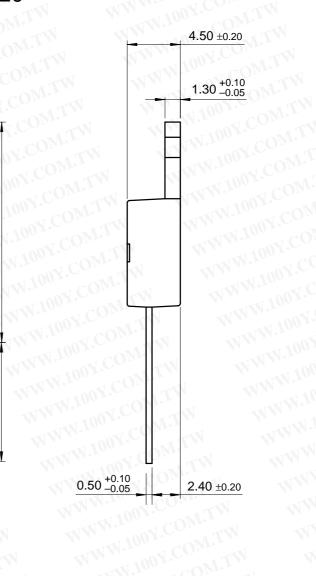
NW.100X.COM

WW.100Y.COM.T

Http://www.100y.com.tw




Figure 5. 0.5 to 10V Regulator WWW.100Y.COM

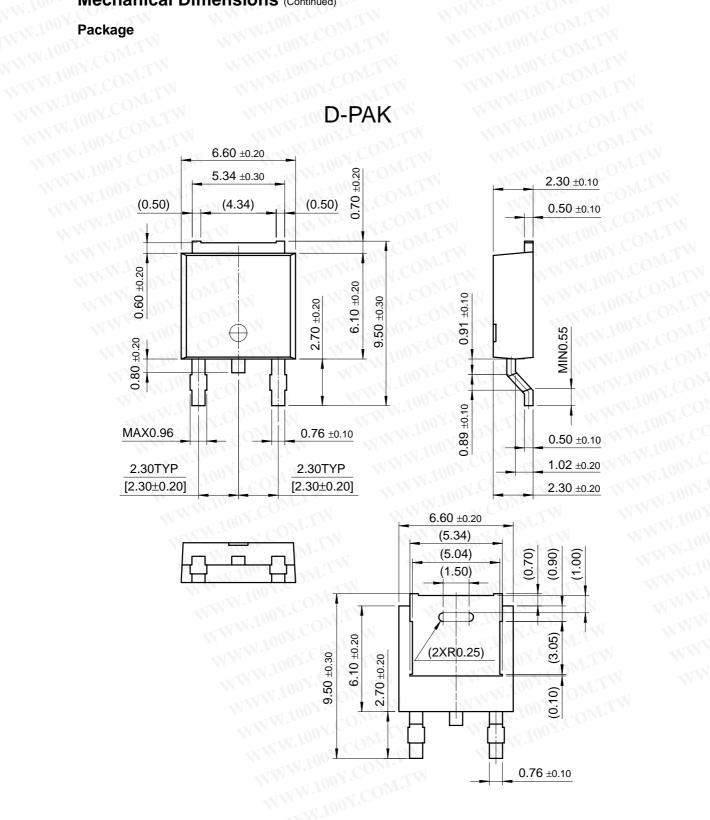

W.100Y.COM.TW **Mechanical Dimensions** WWW.100Y.COM.TW

Package WWW.100Y.COM.TW

V.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW


WWW.100Y.COM.TW

WWW.100Y

W.100Y.COM.TW Mechanical Dimensions (Continued)

Package

V.100Y.COM.TW

Http://www.100y.com.tw

WW.100Y.COM.TW

V.100Y.COM.TW MC78MXX/LM78MXX

Ordering Information

	112	<u> </u>
Product Number	Package	Operating Temperatu
LM78M05CT	TO-220	0 ~ + 125°C

WW.100Y.COM.T

Product Number MC78M05CT	Package TO-220	Operating Temperatur
MC78M06CT	- 10-220	
MC78M08CT	W	
MC78M12CT	N VI	
MC78M15CT	VI C	
MC78M18CT		0 ~ + 125°C
MC78M20CT	- XX	
MC78M24CT		
MC78M05CDT	D-PAK	
MC78M08CDT	TIN.	
MC78M12CDT	WILL	

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

WWW.100Y.COM.TW

WWW.100Y.COM.T

WWW.100Y.CO!

WWW.100Y.C

WWW.100Y.COM

WWW

V.100Y.COM.TW

W.100Y.COM.TW

W.YOOY.CON

MC78MXX/LM78MXX

WW.100Y.COM.TW V.100Y.COM.TW MC78MXX/LM78MXX

WWW.100Y.CO

WWW.100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com