勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.CO

WWW.100Y.COM.TW

WWW.100Y.C

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WW.100Y.COM.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW MICROCHIP

PIC16F627A/628A/648A **Data Sheet** WWW.100Y.COM.TW **FLASH-Based 8-Bit CMOS Microcontrollers**

W.100Y.COM.TW

Preliminary WW 100Y.COI

V.100Y.COM.TW

WW.100X.COM.TW

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® &-bit MCUS, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

Preliminary

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F627A/628A/648A

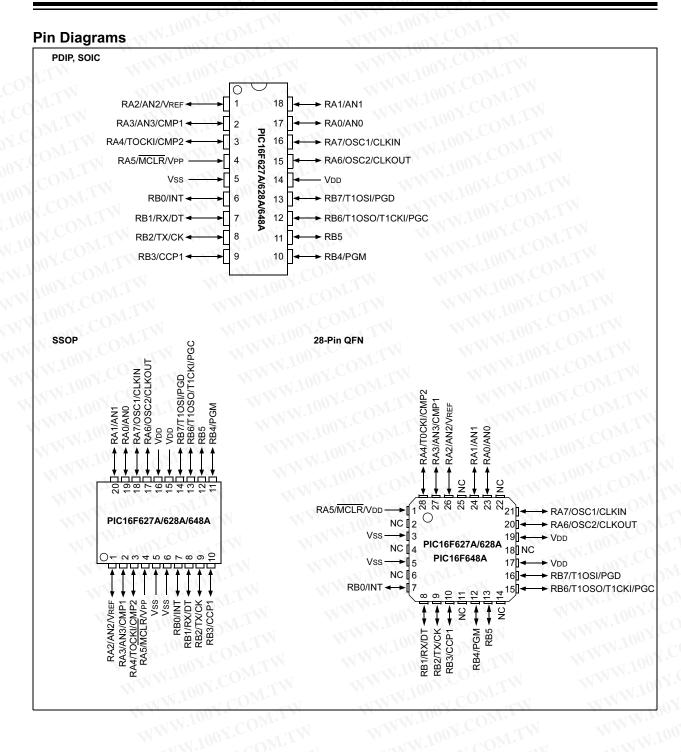
18-pin FLASH-Based 8-Bit CMOS Microcontrollers

High Performance RISC CPU:

- Operating speeds from DC 20 MHz
- Interrupt capability
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- 35 single word instructions
 - All instructions single cycle except branches

Special Microcontroller Features:

- Internal and external oscillator options
 - Precision Internal 4 MHz oscillator factory calibrated to $\pm 1\%$
- Low Power Internal 37 kHz oscillator
- External Oscillator support for crystals and resonators.
- Power saving SLEEP mode
- Programmable weak pull-ups on PORTB
- Multiplexed Master Clear/Input-pin
- Watchdog Timer with independent oscillator for reliable operation
- Low voltage programming
- In-Circuit Serial Programming[™] (via two pins)
- Programmable code protection
- Brown-out Reset
- Power-on Reset
- Power-up Timer and Oscillator Start-up Timer
- Wide operating voltage range. (2.0 5.5V)
- Industrial and extended temperature range
- High Endurance FLASH/EEPROM Cell
- 100,000 write FLASH endurance
- 1,000,000 write EEPROM endurance
- 100 year data retention


Low Power Features:

- Standby Current:
 - 100 nA @ 2.0V, typical
- Operating Current:
 - 12 μA @ 32 kHz, 2.0V, typical
 - 120 μA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current
 1 μA @ 2.0V, typical
- Timer1 oscillator current:
- 1.2 μA @ 32 kHz, 2.0V, typical
- Dual Speed Internal Oscillator:
 - Run-time selectable between 4 MHz and 37 kHz
 - 4 μs wake-up from SLEEP, 3.0V, typical

Peripheral Features:

- 16 I/O pins with individual direction control
- High current sink/source for direct LED drive
- · Analog comparator module with:
 - Two analog comparators
 - Programmable on-chip voltage reference (VREF) module
 - Selectable internal or external reference
 - Comparator outputs are externally accessible
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Timer1: 16-bit timer/counter with external crystal/ clock capability
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Capture, Compare, PWM module
 - 16-bit Capture/Compare
 - 10-bit PWM
- Addressable Universal Synchronous/Asynchronous Receiver/Transmitter USART/SCI

W	Program Memory	Data M	lemory		ССР	CONT		Timers
Device	FLASH (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(PWM)	USART	Comparators	8/16-bit
PIC16F627A	1024	224	128	16	1	Y	2	2/1
PIC16F628A	2048	224	128	16	1	ΥCO	2	2/1
PIC16F648A	4096	256	256	16	1.1	Y	2	2/1

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Table of Contents

1.0	General Description	5
2.0	General Description PIC16F627A/628A/648A Device Varieties	7
3.0	Architectural Overview	9
4.0	Memory Organization	15
5.0	I/O Ports	31
6.0	Timer0 Module	45
7.0	Timer1 Module	48
8.0	Timer2 Module	52
9.0	Capture/Compare/PWM (CCP) Module	55
10.0	Comparator Module	61
11.0	Voltage Reference Module	67
12.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	69
13.0	Data EEPROM Memory	89
14.0	Data EEPROM Memory Special Features of the CPU Instruction Set Summary	93
15.0	Instruction Set Summary	111
16.0	Development Support	125
17.0	Development Support Electrical Specifications	131
18.0	DC and AC Characteristics Graphs and Tables	147
19.0	Packaging Information	149

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

WWW.100Y.C

WWW.100Y.COM.TW 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100v.com.tw

WWW.100Y.COM.TW

100Y.COM.TW

WWW.100X.

WWW.100Y.COM.TW

WWW.100X.

WWW.100Y.COM.T

COM.TW

EW.100Y.COM.TW

WW

WW.100X.COM.TW

1.0 GENERAL DESCRIPTION

The PIC16F627A/628A/648A are 18-Pin FLASHbased members of the versatile PIC16CXX family of low cost, high performance, CMOS, fully-static, 8-bit microcontrollers.

All PICmicro[®] microcontrollers employ an advanced RISC architecture. The PIC16F627A/628A/648A have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available, complemented by a large register set.

PIC16F627A/628A/648A microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC16F627A/628A/648A devices have integrated features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption.

The PIC16F627A/628A/648A has 8 oscillator configurations. The single-pin RC oscillator provides a low cost solution. The LP oscillator minimizes power consumption, XT is a standard crystal, and INTOSC is a selfcontained precision two-speed internal oscillator. The HS is for High-Speed crystals. The EC mode is for an external clock source.

The SLEEP (Power-down) mode offers power savings. Users can wake-up the chip from SLEEP through several external interrupts, internal interrupts and RESETS.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

Table 1-1 shows the features of the PIC16F627A/628A/648A mid-range microcontroller families.

A simplified block diagram of the PIC16F627A/628A/ 648A is shown in Figure 3-1.

The PIC16F627A/628A/648A series fits in applications ranging from battery chargers to low power remote sensors. The FLASH technology makes customizing application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages makes this microcontroller series ideal for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F627A/628A/648A very versatile.

1.1 Development Support

The PIC16F627A/628A/648A family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost in-circuit debugger, a low cost development programmer and a full-featured programmer. A Third Party "C" compiler support tool is also available.

	1001.00	PIC16F627A	PIC16F628A	PIC16F648A	PIC16LF627A	PIC16LF628A	PIC16LF648A
ock	Maximum Frequency of Operation (MHz)	20	20	20	4	4	001.4
	FLASH Program Mem- ory (words)	1024	2048	4096	1024	2048	4096
nory	RAM Data Memory (bytes)	224	224	256	224	224	256
	EEPROM Data Mem- ory (bytes)	128	128	256	128	128	256
	Timer module(s)	TMR0, TMR1, TMR2					
	Comparator(s)	2	2	2	2	2	2
herals	Capture/Compare/ PWM modules	COM.T	1	. WN 100	COM.I	1	WW.100
	Serial Communications	USART	USART	USART	USART	USART	USART
	Internal Voltage Reference	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	10	10	10	10	10	10
	I/O Pins	16	16	16	16	16	16
ires	Voltage Range (Volts)	3.0-5.5	3.0-5.5	3.0-5.5	2.0-5.5	2.0-5.5	2.0-5.5
	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC, 20-pin SSOP, 28-pin QFN					

TABLE 1-1: PIC16F627A/628A/648A FAMILY OF DEVICES

All PICmicro® Family devices have Power-on Reset, selectable Watchdog Timer, selectable Code Protect and high I/O current capability. All PIC16F627A/628A/648A Family devices use serial programming with clock pin RB6 and data pin RB7.

WWW.100

WWW.100Y.COM

WWW.100Y.COM.TW WW.100Y.COM.TW WWW.100Y.COM.TW 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

X.COM.TW

WWW.IO

WWW.100X.

WWW.100Y.COM.T

COM.TW

EW.100Y.COM.TW

WW

WW.100X.COM.TW

2.0 PIC16F627A/628A/648A DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F627A/628A/648A Product Identification System, at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 FLASH Devices

FLASH devices can be erased and re-programmed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically erasable FLASH is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART[®] Plus, or PRO MATE[®] II programmers.

2.2 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are standard FLASH devices but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.3 Serialized Quick-Turnaround-Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

WWW.100Y.

100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.

WWW.100Y.COM.T

COM.TW

EW.100Y.COM.TW

WW

WW.100X.COM.TW

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16F627A/628A/648A family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16F627A/628A/648A uses a Harvard architecture, in which program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single-cycle (200 ns @ 20 MHz) except for program branches.

Table 3-1 lists device memory sizes (FLASH, Data and EEPROM).

TABLE 3-1:	DEVICE MEMORY LIST

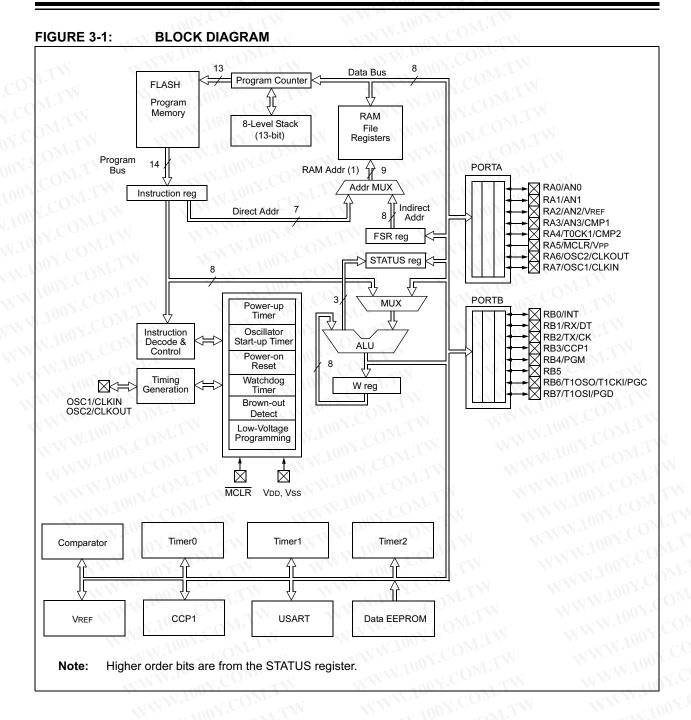
N.100Y.CC		Memory	
Device	FLASH Program	RAM Data	EEPROM Data
PIC16F627A	1024 x 14	224 x 8	128 x 8
PIC16F628A	2048 x 14	224 x 8	128 x 8
PIC16F648A	4096 x 14	256 x 8	256 x 8
PIC16LF627A	1024 x 14	224 x 8	128 x 8
PIC16LF628A	2048 x 14	224 x 8	128 x 8
PIC16LF648A	4096 x 14	256 x 8	256 x 8

The PIC16F627A/628A/648A can directly or indirectly address its register files or data memory. All Special Function Registers, including the program counter, are mapped in the data memory. The PIC16F627A/628A/ 648A have an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16F627A/628A/648A simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16F627A/628A/648A devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.


Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, bit in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, and a description of the device pins in Table 3-2.

Two types of data memory are provided on the PIC16F627A/628A/648A devices. Non-volatile EEPROM data memory is provided for long term storage of data such as calibration values, look up table data, and any other data which may require periodic updating in the field. These data are not lost when power is removed. The other data memory provided is regular RAM data memory. Regular RAM data memory is provided for temporary storage of data during normal operation. Data are lost when power is removed.

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WW.100Y.COM

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Http://www.100y.com.tw

TABLE 3-2: PIC16F627A/628A/648A PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port
	AN0	AN	<u> </u>	Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port
	AN1	AN	- WW	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port
	AN2	AN	_	Analog comparator input
	VREF	NT.TW	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS 📢	Bi-directional I/O port
	AN3	AN		Analog comparator input
	CMP1 — CMOS Comparator 1 output		Comparator 1 output	
A4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port
	TOCKI	ST	T_{M}	Timer0 clock input
V.COMMIN	CMP2	MALCON	OD	Comparator 2 output
A5/MCLR/Vpp	RA5	ST	\overline{V}_{T}	Input port
	MCLR	ST	OM.TW OM.TW	Master clear. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.
	VPP	TOOT	T.T.	Programming voltage input.
A6/OSC2/CLKOUT	RA6 🔨	ST	CMOS	Bi-directional I/O port
	OSC2	1 W W. 100	XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	CLKOUT	MMM.T	CMOS	In RC/INTOSC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port
	OSC1	XTAL	100¥.CO	Oscillator crystal input
	CLKIN	ST	V.V.	External clock source input. RC biasing pin.
30/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software pro- grammed for internal weak pull-up.
	INT	ST 📢	YOOT	External interrupt.
B1/RX/DT	RB1	TTL 📢	CMOS	Bi-directional I/O port. Can be software pro- grammed for internal weak pull-up.
	RX	ST	100	USART receive pin
WWW.Lo	DT	ST	CMOS	Synchronous data I/O.
B2/TX/CK	RB2	THIL	CMOS	Bi-directional I/O port. Can be software pro- grammed for internal weak pull-up.
	TX	A.T.M	CMOS	USART transmit pin
	СК	ST	CMOS	Synchronous clock I/O.
B3/CCP1	RB3	TTL	CMOS	Bi-directional I/O port. Can be software pro- grammed for internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM I/O
egend: O = Output — = Not used TTL = TTL Input	WW.100Y.	I I In	MOS Output put pen Drain Outp	P = Power ST = Schmitt Trigger Input AN = Analog

Name	Function	Input Type	Output Type	Description
RB4/PGM	RB4	OM.TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	PGM	ST	44 - 44 14 - 14 14 - 14	Low voltage programming input pin. When low voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	DY.COM	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/PGC	RB6	100 ³ TTLOM	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T10S0	1001.	XTAL	Timer1 oscillator output.
	T1CKI	ST	W.I.	Timer1 clock input.
	PGC	ST	WT	ICSP Programming Clock.
RB7/T1OSI/PGD	RB7	W.TTL WW.100Y.	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	T1OSI	XTAL	COD.	Timer1 oscillator input.
	PGD	ST	CMOS	ICSP Data I/O
Vss	Vss	Power	Nor.	Ground reference for logic and I/O pins
Vdd	VDD	Power	00X.00	Positive supply for logic and I/O pins
	PGD Vss	ST Power Power CMOS = C I = Ir	CMOS — MOS Output put pen Drain Outp	ICSP Data I/O Ground reference for logic and I/O pins Positive supply for logic and I/O pins P = Power ST = Schmitt Trigger Inpu

PIC16F627A/628A/648A PINOUT DESCRIPTION **TABLE 3-2:**

WWW.100Y.COM 力材料 886-3-5753170 勝 特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW WWW.100Y.COM.

WWW.100

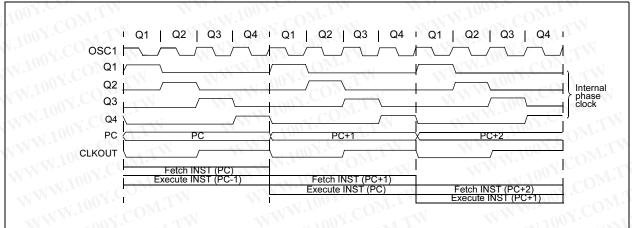
WWW.1001

TN-100Y.COM.TW

WW

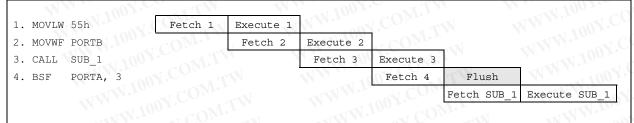
WW.100Y.COM.TW

3.1 Clocking Scheme/Instruction Cycle


The clock input (OSC1/CLKIN/RA7 pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An instruction cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1:	INSTRUCTION PIPELINE FLOW
--------------	---------------------------

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

WWW.100Y.COM.TW 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.1007.

WWW.100Y.COM.T

WWW.100Y.COM.TW

100Y.COM.TW

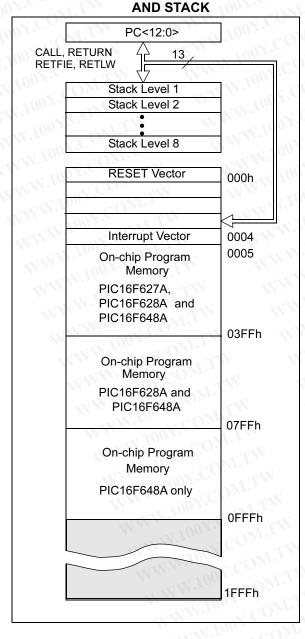
WWW.100Y.COM.TW

COM.TW

EW.100Y.COM.TW

WW

WW.100Y.COM.TW


4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16F627A/628A/648A has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h - 03FFh) for the PIC16F627A, 2K x 14 (0000h - 07FFh) for the PIC16F628A and 4K x 14 (0000h - 0FFFh) for the PIC16F648A are physically implemented. Accessing a location above these boundaries will cause a wraparound within the first 1K x 14 space (PIC16F627A), 2K x 14 space (PIC16F628A) or 4K x 14 space (PIC16F648A). The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1).

FIGURE 4-1:

PROGRAM MEMORY MAP

4.2 Data Memory Organization

The data memory (Figure 4-2 and Figure 4-3) is partitioned into four banks, which contain the general purpose registers and the Special Function Registers (SFR). The SFR's are located in the first 32 locations of each Bank. There are general purpose registers implemented as static RAM in each Bank. Table 4-1 lists the general purpose register available in each of the four banks.

TABLE 4-1:GENERAL PURPOSE STATICRAM REGISTERS

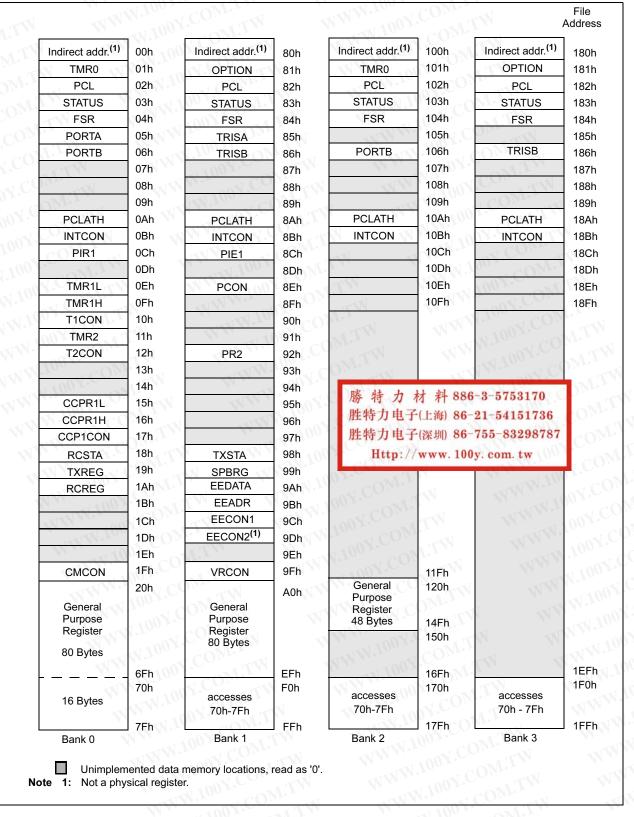
ALL	PIC16F627A/628A	PIC16F648A
Bank0	20-7Fh	20-7Fh
Bank1	A0h-FF	A0h-FF
Bank2	120h-14Fh, 170h-17Fh	120h-17Fh
Bank3	1F0h-1FFh	1F0h-1FFh

Addresses F0h-FFh, 170h-17Fh and 1F0h-1FFh are implemented as common RAM and mapped back to addresses 70h-7Fh.

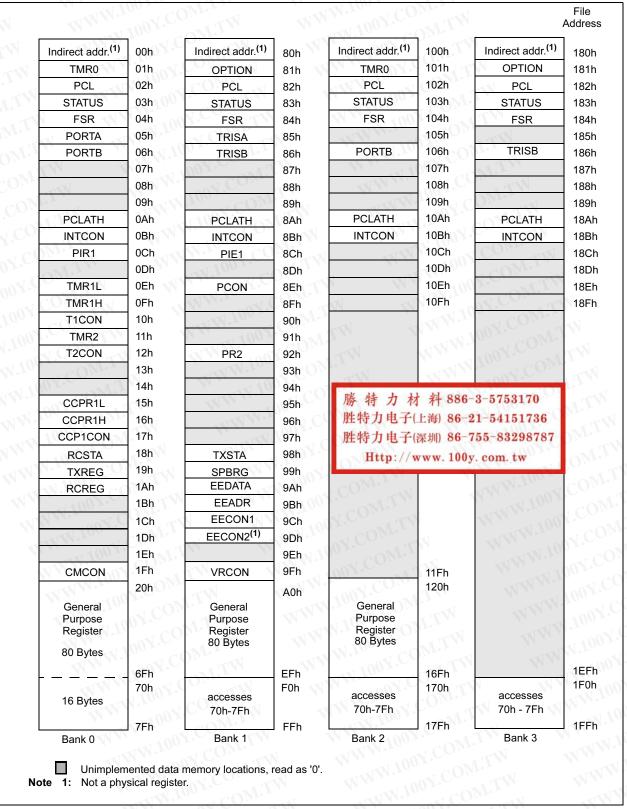
Table 4-2 lists how to access the four banks of registersvia the STATUS Register bits RP1 and RP0.

TABLE 4-2:	ACCESS TO BANKS OF
	REGISTERS

RP1	RP0
0	0
0	V.CG
1.1.10	0
1	1.01
	RP1 0 0 1


4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 224×8 in the PIC16F627A/628A and 256 x 8 in the PIC16F648A. Each is accessed either directly or indirectly through the File Select Register (FSR), See Section 4.4.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.C

FIGURE 4-2: DATA MEMORY MAP OF THE PIC16F627A AND PIC16F628A

FIGURE 4-3: DATA MEMORY MAP OF THE PIC16F648A

© 2002 Microchip Technology Inc.

4.2.2 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and Peripheral functions for controlling the desired operation of the device (Table 4-3). These registers are static RAM.

The special registers can be classified into two sets (core and peripheral). The SFRs associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page	
ank 0	M. 1		and the contraction of the contr									
Oh	INDF				ents of FSR t	to address da	ta memory (not a physic	al register)	XXXX XXXX	28	
1h	TMR0		odule's Regi		A COM			NN VI	<u></u>	XXXX XXXX	45	
2h	PCL	Program	Counter's (P	C) Least Sig	nificant Byte	1.1		M	100-	0000 0000	28	
3h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	22	
4h	FSR	Indirect da	ata memory	address poin	nter)	í.		1.10	xxxx xxxx	28	
5h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	31	
õh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	36	
7h		Unimplem	implemented									
Bh	N.EU		implemented									
9h		Unimplem	nimplemented									
Ah	PCLATH	$-\pi$	— — Write buffer for upper 5 bits of program counter 0 0000 28									
Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	24	
Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	26	
Dh			Unimplemented — —									
Ξh	TMR1L		•			f the 16-bit TI		1		XXXX XXXX	48	
=h	TMR1H	Holding re	egister for th	e Most Signif	ficant Byte of	the 16-bit TM	IR1			XXXX XXXX	48	
Dh	T1CON	1 CO		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	48	
h	TMR2	TMR2 mc	dule's regist	er		100 1.	Mo			0000 0000	52	
h	T2CON	J-CU	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	52	
h	10	Unimplem	nented			N.IV	COM.	-	-1		. d € 0	
4h 🔨		Unimplem	nented		NY	1001		TY			0 <u>> -</u>	
5h	CCPR1L	Capture/C	Compare/PW	/M register (L	SB)	N.	a COm	I		xxxx xxxx	55	
6h	CCPR1H	Capture/C	Compare/PW	/M register (N		100	1	1.1		XXXX XXXX	55	
7h	CCP1CON		CO	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	55	
3h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	69	
9h	TXREG		ransmit data		N	1	001.	TIM	N	0000 0000	76	
Ah	RCREG		eceive data	register		NW.	-1 C	U	-	0000 0000	79	
Bh	<u>+</u> N * '	Unimplem		M.L.Y		N.	100 -	Ma		<u> </u>	N. HUV	
Ch		Unimplem		Are.		NW.	Y.		W			
Dh	_	Unimplem		M.	~1	VIA	1.100	CON		-	10th	
Eh		Unimplem		T			× 100)			- /	1	
Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS nged, x = ur	CM2	CM1	CM0	0000 0000	61	

TABLE 4-3:	SPECIAL REGISTERS SUMMARY BANKO
	of EGIAE REGIOTERO COMMART DANK

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-6 and Table 14-7. WWW.100Y.COM.TW

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 1		N.100				·WW		CO242			
80h	INDF	Addressing register)	this location	uses conte	nts of FSR to	o address da	ita memory	(not a physic	al	XXXX XXXX	28
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	23
82h	PCL	Program C	ounter's (PC)	Least Signi	ificant Byte	NN.	100	1.00	WT	0000 0000	28
83h	STATUS	IRP	RP1	RP0	TO	PD	z	DC	С	0001 1xxx	22
84h	FSR		ta memory ac							XXXX XXXX	28
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	31
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	36
87h	- IA	Unimpleme		1.00%	W.			ANY.		- N	_
88h	_	Unimpleme	ented	100	1.		Win	.1	COME		_
89h	-W_	Unimpleme	ented	1.	WT N.		W	11001.	Ma	- "I	_
8Ah	PCLATH		NVL-	J-f-O	Write buffe	er for upper 5	bits of proc	gram counter	CO.	0 0000	28
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTE	RBIF	0000 000x	24
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	N —	CCP1IE	TMR2IE	TMR1IE	0000 -000	25
8Dh	A	Unimplemented									_
8Eh	PCON		Mr.	1002.	-	OSCF		POR	BOR	1-0x	27
8Fh		Unimpleme	ented	1	COR	M	1	W	N.C	Wn-	_
90h	ALL Y	Unimpleme	ented	x1.100 ×	Mon				00	ON.	
91h		Unimpleme	ented	100	1.00	WT		NN.	1001.	TT T	_
92h	PR2	Timer2 Per	iod Register	1.100	100	1.		WW.	-1	1111 1111	52
93h	-	Unimpleme	ented	-110	11.0	NT.Y		VV .	1 1 0 ¹		_
94h	COM.	Unimpleme	ented	NN.			1	W W			~~
95h	- M	Unimpleme	ented	1.1	10 ×.	M.			1.100	- CON.	
96h	V.CO.	Unimpleme	ented	IN	ANY.C		N	Alv.	- 10	1.0-	TY
97h		Unimpleme	ented	W.	Inc	-011-2			NN.L		
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	71
99h	SPBRG	Baud Rate	Generator R	egister		COnt	- N	-	A M.	0000 0000	71
9Ah	EEDATA	EEPROM of	data register	N.	N 100 '	Mon		4.	AN.	XXXX XXXX	89
9Bh	EEADR	EEPROM a	address regis	ter	100	1.00	WT.	1	NNV .	XXXX XXXX	90
9Ch	EECON1	A.	_		1100	WRERR	WREN	WR	RD	x000	90
9Dh	EECON2	EEPROM of	control registe	er 2 (not a p	hysical regis	ter)	WT		M.		90
9Eh	1.10	Unimpleme	ented	-1	WW.L		Nr.		WIN		COF
9Fh	VRCON	VREN	VROE	VRR	-11	VR3	VR2	VR1	VR0	000- 0000	67

TABLE 4-4: SPECIAL FUNCTION REGISTERS SUMMARY BANK1

W.100Y.COM.TW Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-6 and Table 14-7.

WWW.100Y.COM.TV WWW.100Y.COM 料 886-3-5753170 材 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page	
Bank 2		WIX.	Jon .	ONT.			JN.	AT COS	A and			
100h	INDF	Addressing	g this location	uses conter	nts of FSR t	o address d	ata memory	(not a physic	cal register)	XXXX XXXX	28	
101h	TMR0	Timer0 mo	dule's Regist	er	N/	N	M.A.	N.C.	17.	XXXX XXXX	45	
102h	PCL	Program C	counter's (PC)	Least Signi	ficant Byte		.WIT	No - C	ON	0000 0000	28	
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	C	0001 1xxx	22	
104h	FSR	Indirect da	ta memory ad	dress pointe	er	1	WW.		031	xxxx xxxx	28	
105h		Unimpleme			1.1			1.100	CON.	_	_	
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	36	
107h		Unimpleme	ented	C(Mr.	-1	A N	W.L	TCON		—	
108h	AT T	Unimpleme		001.	The		N.A.	100	1.	1.17	_	
109h	N	Unimpleme		1	ONT		ALC: N	111.	N.CO	1.7	_	
10Ah	PCLATH	_		10072.	Write	buffer for u	pper 5 bits o	of program co	ounter	0 0000	28	
10Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	24	
10Ch		Unimpleme	Unimplemented									
10Dh		Unimpleme	Unimplemented									
10Eh	-07.	Unimpleme	Unimplemented									
10Fh		Unimpleme	ented	-110	1	M.T.			s.100 F	- Al-		
110h	COL	Unimpleme	ented	NN	N.CU	TT.		NW.				
111h	No.	Unimpleme	ented	.W.1	ju ž	M.			N.100	- CON-		
112h	V.CP	Unimpleme	ented		MY.C	T		N.V.	100	Y	TT	
113h		Unimpleme	ented	WW.	-16	-0N			NN.			
114h		Unimpleme	ented		1001.		L.M.	N.			N. L.	
115h	TCC TCC	Unimpleme	ented	AN WIN		COR	IV	N/	N VIII	ANT-UU		
116h	00 2.	Unimpleme	ented		N.1003				W.		N	
117h		Unimpleme	ented	WW	1	I.U.	WT	1	NN.	1007.0	T_{π}	
118h	102	Unimpleme	ented		N.100	-1 CO			WW		Ο <u>ν</u>	
119h	the second se	Unimpleme	ented	N.	110	01.0	WT.M.		N. T.	s 10 ⁰ ¹	At .	
11Ah	N.1	Unimpleme	ented		NW.	J C'	June and	N	WW	-ov		
11Bh	- 1 10 07	Unimpleme	ented	A.	I Im	UU Y.	M.			N.L	AGN.	
11Ch	NY	Unimpleme	ented	1	TAN	. No.		N	NV			
11Dh	100	Unimpleme	ented		WIE	Too	COM.			NV-	-1 CO	
11Eh		Unimpleme	ented		N	1001.	A	TW	N		<u> </u>	
11Fh	A.10	Unimpleme	ented							M T.	N-C	

TABLE 4-5: SPECIAL FUNCTION REGISTERS SUMMARY BANK2

- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = Legend: W.100Y.COM.TW unimplemented.

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-6 and Table 14-7.

WWW.100Y.COM.TW

WW

WWW.100Y.C

WWW.100Y.COM. 特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw

WWW.100Y.COM.TW

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 3		N.10	100	1.		A WALL		COM	In		
180h	INDF	Addressin	g this location	uses conte	nts of FSR	to address o	lata memory	(not a phys	ical register)	XXXX XXXX	28
181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	23
182h	PCL	Program (Counter's (PC) Least Sign	ificant Byte	-	1.10	100	1.	0000 0000	28
183h	STATUS 🔨	IRP	RP1	RP0	то	PD	Z - 10	DC	С	0001 1xxx	22
184h	FSR	Indirect da	ata memory a	ddress point	er	-	NN.	N.CO	a V	XXXX XXXX	28
185h	_	Unimplem		J.M.	L.		LIN.	JU - 1	NI.		_
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	36
187h		Unimplem	ented	COM			WIN.	-16	-ON-		_
188h	- N	Unimplem	ented	1.0	WT N		N. T	1001.	.Ma		
189h		Unimplem	ented		AV.		WWW.	- N	CU	-77-	_
18Ah	PCLATH				Write buff	er for upper	5 bits of pro	gram counte	er and	0 0000	28
18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	24
18Ch		Unimplem	Unimplemented								
18Dh	147	Unimplem	Unimplemented								
18Eh		Unimplem	ented		10 1		-1	MM.	J.CU	Nr.	_
18Fh	YP.	Unimplem	ented	11001.	M	1		-WI			
190h		Unimplem	ented	No.	COr.	Wn	V	IN T	. MAN		
191h	A	Unimplem	ented	N.100	CON		4	WIT	100	OVF.	1
192h		Unimplem	ented	100		WTA	-	N	1001.	T	-
193h	CON.	Unimplem	ented	IN.IO	-1 CO	NI		WW	.L.	COR	- 122
194h		Unimplem	ented	110	01.	VI.I.V			x 100 ·	- A	
195h	COM	Unimplem	ented	N NY.	J.C.		N	WW			
196h		Unimplem	ented	. www.l	00 *	M.			W.W.	. ON	
197h	V.C	Unimplem	ented		. Yoon		N.	N	10	N	1 T
198h		Unimplem	ented	W	.100	COM.		- 1	NW.L	. €ON	
199h	11-	Unimplem	ented	N.	11001.	In	TV	N	1	101 <u>-</u>	N
19Ah	TC	Unimplem	ented	W	1.2	1 COM	In		NN VI	ANT.CO	
19Bh	007.	Unimplem	ented		N1100	100	1.1		NIN.		N-
19Ch		Unimplem	ented	WW		1.00	WT.		NN.	toft.	- 1
19Dh	105	Unimplem	ented		W.IV.		Nr.	1	VIII		OF.
19Eh	the second second	Unimplem	ented	N	11	01.	TIM		N T	<u>100</u> 1	AT
19Fh	1.10	Unimplem	ented								COF

TABLE 4-6: SPECIAL FUNCTION REGISTERS SUMMARY BANK3

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = W.100X.COM.TW unimplemented

Note 1: For the Initialization Condition for Registers Tables, refer to Table 14-6 and Table 14-7.

WWW.100Y.COM. WWW.100Y.COM 勝 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WW.100Y.COM.TW

4.2.2.1 STATUS Register

The STATUS register, shown in Register 4-1, contains the arithmetic status of the ALU; the RESET status and the bank select bits for data memory (SRAM).

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are non-writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the status register as "000uu1uu" (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect any STATUS bit. For other instructions, not affecting any STATUS bits, see the "Instruction Set Summary".

Note 1: The <u>C</u> and <u>DC</u> bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

IRP RP1 RP0 TO PD Z DC C bit 7 bit 7 bit 0 bit 0 bit 0 bit 7 IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - 7Fh) 1 = Bank 1 (80h - FFh) 1 = Bank 3 (180h - 1FFh) 1 = Bank 3 (180h - 1FFh) 1 = Bank 3 (180h - 1FFh) bit 4 TO: Time out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time out occurred bit 3 FD: Power-down bit 1 = After power-up of by the CLRWDT instruction 0 = By execution of the SLEEP instruction 0 = By execution of the SLEEP instruction 0 = By execution of the SLEEP instruction 0 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result 0 = No carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred bit 0 C: Carry/borrow bit (ADD		R/W-0	R/W-0 RP1	R/W-0 RP0	R-1 TO	R-1 PD	R/W-x	R/W-x DC	R/W-x	
 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh) bit 6-5 RP1:RP0: Register Bank Select bits (used for direct addressing) 00 = Bank 0 (00h - 7Fh) 01 = Bank 1 (80h - FFh) 10 = Bank 2 (100h - 17Fh) 11 = Bank 3 (180h - 1FFh) 11 = Bank 3 (180h - 1FFh) bit 4 T0: Time out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time out occurred bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the the oplarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (Rep. RLP) instructions, this bit is loaded with either the high or low order bit of the source register. 		<u></u>	RPT	RPU	10	PD	XOUT N	CON		
 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh) bit 6-5 RP1:RP0: Register Bank Select bits (used for direct addressing) 00 = Bank 0 (00h - 7Fh) 01 = Bank 1 (80h - FFh) 10 = Bank 2 (100h - 17Fh) 11 = Bank 3 (180h - 1FFh) 11 = Bank 3 (180h - 1FFh) bit 4 TO: Time out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time out occurred bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (Repr, RLP) instructions, this bit is loaded with either the high or low order bit of the source register. 	N.1002.		stor Bonk Sol	act bit (uso	d for indiroc	t addrossing)				
 00 = Bank 0 (00h - 7Fh) 01 = Bank 1 (80h - FFh) 10 = Bank 2 (100h - 17Fh) 11 = Bank 3 (180h - 1FFh) 11 = Bank 3 (180h - 1FFh) 11 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time out occurred bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 0 = By execution of the SLEEP instruction 0 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant b	W.100 Dit 7	1 = Bank 2	2, 3 (100h - 1	FFh)		Naturessing)				
bit 4 TO: Time out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time out occurred bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result 0 = No carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.	bit 6-5	00 = Bank 01 = Bank 10 = Bank	k 0 (00h - 7Fh k 1 (80h - FFh k 2 (100h - 17	i) i) 'Fh)	ts (used for	direct addressin	ig)			
 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time out occurred bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the How order bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the How order bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the How order bit of the result occurred 	WWW. OOY			·FN)						
bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result 0 = No carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.	Dit 4	1 = After p	power-up, CLI		ction, or SLI	EEP instruction	1000		The second s	
 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the the high or low order bit of the source register. 	hit 3			ounou						
bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.	Dir G	1 = After p	power-up or b			on COM.TW	四			
 is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. 	bit 2	1 = The re	esult of an arit				1	MMM.	1.100Y.CC	OM.TW
 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. 	bit 1	is reverse 1 = A carr	d) ry-out from the	e 4th low or	der bit of the	e result occurred		(for borrow t	the polarity	
 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. 	bit 0	C: Carry/b	porrow bit (AD	DWF, ADDLW	,SUBLW,S	UBWF instruction	ns)			
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.		1 = A carr	y-out from the	e Most Sign	ificant bit of	the result occur	red			
Legend:		Note:	complement	of the seco	ond operand	d. For rotate (R	RF, RLF)	instructions		
		Legend:	N 100Y.C.	WT.M	N.	100×	M	T.		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			able bit	W = W	/ritable bit	U = Unimple	mented b	oit, read as '	0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown		-n = Value	e at POR	'1' = B	it is set					

4.2.2.2 **OPTION Register**

The OPTION register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0 and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT $(PSA = 1)$ See Section 6.3.1
WWW.100	(PSA = 1). See Section 6.3.1.

N.100Y.CC	interrupt, TMR0/001 p	· · · · · · · · · · · · · · · · · · ·			WWW.	1007.COV
W.100X.C	REGISTER 4-2:	OPTION I	REGISTER	(ADDRES	S: 81h, 18	1h)
NW.1001.		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
100Y		RBPU	INTEDG	TOCS	T0SE	PSA
11/100		bit 7	007.00	N.T.W	W	W.1001.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
	bit 7	01.0	N.T.W	W.	W.1001.	COM.T		bit
t 7	RBPU: POF	RTB Pull-up	Enable bit					
	1 = PORTB	pull-ups ar	e disabled					
	0 = PORTB	pull-ups ar	e enabled b	y individual	port latch valu	ues		
t 6	INTEDG: In	terrupt Edg	e Select bit					
	1 = Interrup	, v						
1.1.	0 = Interrup							
t 5	TOCS: TMR			bit				
	1 = Transitio 0 = Internal			(CLKOUT)				
t 4	TOSE: TMR	0 Source E	dge Select	bit				
				sition on RA4 sition on RA4				
			mont hit					
it 3	PSA: Presc	aler Assign	ment bit					
it 3	PSA : Presc 1 = Prescale			/DT				
it 3	1 = Prescale	er is assign	ed to the W	/DT mer0 module				
	1 = Prescale	er is assign er is assign	ed to the W ed to the Ti	mer0 module				
	1 = Prescale 0 = Prescale PS2:PS0 : P	er is assign er is assign Prescaler Ra	ed to the W ed to the Ti	mer0 module				
it 3 it 2-0	1 = Prescale 0 = Prescale PS2:PS0 : P	er is assign er is assign Prescaler Ra it Value T	ed to the W ed to the Ti ate Select b MR0 Rate	mer0 module its WDT Rate				
	1 = Prescale 0 = Prescale PS2:PS0 : P	er is assign er is assign Prescaler Ra	ed to the W ed to the Ti ate Select b	mer0 module its				

010	1:8	1:4	
011	1:16	1:8	
100	1:32	1:16	
101	1:64	1:32	
110	1 : 128	1:64	
111	1:256	1 : 128	
		W.W. CO	

Legend:	WWW.1003	V.COM.IN	WWW 100Y
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

W.100Y.COM.TW

力材料 886-3-5753170 特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 and Section 4.2.2.5 for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

	R/W-0	R/W-0	R/W-0	R/W-0		R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TOIE	INTE		RBIE	TOIF	INTF	RBIF
	bit 7								bit C
bit 7	GIE: Globa	al Interrupt I	Enable bit						
	1 = Enable		sked interru	pts					
bit 6	PEIE: Peri	pheral Inter	rupt Enable	bit					
			sked periph leral interrup		pts				
bit 5	TOIE: TMR	0 Overflow	Interrupt En	able bit					
		es the TMR(the TMR							
bit 4	INTE: RB0	/INT Extern	al Interrupt	Enable bit					
			NT external INT externa						
bit 3	RBIE: RB I	Port Chang	e Interrupt E	nable bit					
			ort change ir ort change i						
bit 2	TOIF: TMR	0 Overflow	Interrupt Fla	ag bit					
			overflowed not overflow		lear	ed in softwa	are)		
bit 1	INTF: RB0	/INT Extern	al Interrupt	Flag bit					
			rnal interrup rnal interrup			st be cleare	d in softwar	re)	
bit 0			e Interrupt F						
			of the RB7: RB4 pins ha				nust be clea	ared in softw	ware)
	Legend:	TIM	N	WW	10	M.C.	1.1.1	W .	100
	R = Reada	ble bit	W = V	Vritable bit		U = Unimpl	emented b	it, read as '	0'
	-n = Value	at DOD	'1' - E	Bit is set		'0' = Bit is o	loarod	x = Bit is ui	aknown

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

4.2.2.4 PIE1 Register

This register contains interrupt enable bits.

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE
	bit 7							bit 0
bit 7	EEIE: EE V	Write Comp	lete Interrup	t Enable Bit				
			rite complete rite complet					
bit 6	CMIE: Com	nparator Inte	errupt Enab	le bit 🛛 🔨				
			arator interr arator interr					
bit 5	RCIE: USA	RT Receive	e Interrupt E	nable bit				
			RT receive in RT receive i					
bit 4	TXIE: USA	RT Transm	it Interrupt E	Enable bit				
			RT transmit i RT transmit					
bit 3	Unimplem	ented: Rea	d as '0'					
bit 2	CCP1IE: C	CP1 Interru	ipt Enable b	it .				
		s the CCP1 es the CCP						
bit 1	TMR2IE: T	MR2 to PR	2 Match Inte	errupt Enable	bit			
				tch interrupt atch interrupt				
	TMD4IC. T	MR1 Overf	ow Interrup	t Enable bit				
bit 0								
bit 0	1 = Enable	s the TMR1	overflow in					
bit 0	1 = Enable	s the TMR1	overflow in 1 overflow in					

胜特力电子(上海) 86 胜特力电子(深圳) 86 Http://www.10	5-755-83298787	
DY.COM.TW	MMM.100 MMM.100	

勝特力材料 886-3-5753170

'1' = Bit is set

'0' = Bit is cleared

WW.100Y.COM.TW

© 2002 Microchip Technology Inc.

-n = Value at POR

WWW.100Y.COM.TW

x = Bit is unknown

WWW.100Y.COM.TW

4.2.2.5 **PIR1** Register

This register contains interrupt flag bits. WWW.100Y.COM.TW

```
Note:
        Interrupt flag bits get set when an interrupt
        condition occurs regardless of the state of
        its corresponding enable bit or the global
        enable bit, GIE (INTCON<7>). User
        software should ensure the appropriate
        interrupt flag bits are clear prior to enabling
        an interrupt.
```

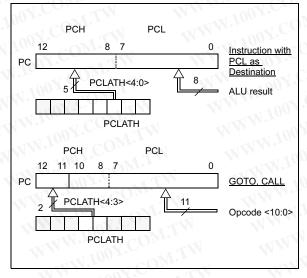
				WW	softwar	e should en t flag bits are	sure the a				
REGISTER 4-5:	PIR1 REGI	STER (AI	DRESS	0Ch) 🚿							
WW.100 COM. ER 4 C.	R/W-0	R/W-0	R-0	R-0	U-0	R/W-0	R/W-0	R/W-0			
	EEIF	CMIF	RCIF	TXIF	WIN WIN	CCP1IF	TMR2IF	TMR1IF			
	bit 7	N.1002.	COM.1	LM.	WWW.	100Y.CO	M.I.W	bit 0			
bit 7	EEIF: EEPF	ROM Write	Operation I	nterrupt Flag	bit						
		1.1.1		l (must be cle mpleted or h							
bit 6	CMIF: Com	parator Inte	errupt Flag b	pit							
		 1 = Comparator output has changed 0 = Comparator output has not changed RCIF: USART Receive Interrupt Flag bit 									
bit 5	RCIF: USAF										
	1 = The USART receive buffer is full 0 = The USART receive buffer is empty										
bit 4	TXIF: USART Transmit Interrupt Flag bit										
	1 = The USART transmit buffer is empty 0 = The USART transmit buffer is full										
bit 3	Unimplemented: Read as '0'										
bit 2	CCP1IF: CCP1 Interrupt Flag bit Capture Mode										
	 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM Mode</u> Unused in this mode 										
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit										
WW	1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred										
bit 0	TMR1IF: TI										
		egister ove	rflowed (mu	ist be cleared	l in software	BM.TW					
	Legend:	Y.COM	WT	WW	11001.	MIN					
	R = Readab	le bit	W = V	Vritable bit	U = Unim	plemented b	it, read as '	0'			
	-n = Value a			Bit is set	'0' = Bit is		x = Bit is u				
	M M M M M M M M M M M M	胜特力电 胜特力电	【子(上海) 8 【子(深圳) 8	86-3-57531 6-21-54151 6-755-8329 00y. com. tv	736	0Y.CONA 00Y.COM 100Y.CON 1.100Y.CO W.100Y.CO	TW I.TW M.TW OM.TW	NA NA			

4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note:	BOR is unknown on Power-on Reset. It must then be set by the user and checked
	on subsequent RESETS to see if BOR is cleared, indicating a brown-out has
	occurred. The BOR STATUS bit is a "don't care" and is not necessarily predictable if
	the brown-out circuit is disabled (by clearing the BOREN bit in the
WW	Configuration word).

	REGISTER 4-6:		GISTER (/	ADDRESS: 8	BEh) 🔨						
		U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-0	R/W-x		
		WW	<u>Juo</u> v (ONL.	—	OSCF	V.CON	POR	BOR		
		bit 7	N.100	COM.	1	NW.IU		VI. I	bit		
	bit 7-4	Unimpleme	ented: Rea	ad as '0'							
	bit 3	OSCF: INT	OSC oscilla	ator frequency	W						
		1 = 4 MHz typical 0 = 37 kHz typical									
	bit 2	Unimplemented: Read as '0'									
	bit 1	POR: Power-on Reset STATUS bit									
		 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) 									
	bit 0	BOR: Brown-out Reset STATUS bit									
		1 = No Brown-out Reset occurred									
		0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)									
		TH	1	100	M	IN	N.	N 1001.	-M.1		
		Legend:									
		R = Reada			itable bit			oit, read as '			
		-n = Value a	at POR	'1' = Bit	is set	`0' = Bit is (cleared	x = Bit is u	nknown		


特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WW.100Y.COM.TW

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any RESET, the PC is cleared. Figure 4-4 shows the two situations for loading the PC. The upper example in Figure 4-4 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 4-4 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-4: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC16F627A/628A/648A family has an 8-level deep x 13-bit wide hardware stack (Figure 4-1). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RET-FIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no STATUS bits to indicate stack overflow or stack underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

4.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the file select register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a nooperation (although STATUS bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-5.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAM	PLE 4-1:	Ind	irect Addressing
01.0	MOVLW	0x20	; initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	;clear INDF register
V.	INCF	FSR	; inc pointer
.100 -	BTFSS	FSR,4	;all done?
100	GOTO	NEXT	;no clear next
N.10-			;yes continue

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

RP1	ister ^{Dir} RP0 6	from opc	code	0				gister RP 7		FSR Register (
V.COM. TW		N	N				100	<u>.</u>	171	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								· · · · · · ·
banl	k select loca	tion select		CON	01	10	11	bank sele	ct	location sele
100 1. COM.1		WW	00h [	→ 00	01	10	11	180h		N
1.100Y. COM.			1	)) . CO	M.L.			1	-OM.1	
100Y.COM			- T 1	001.0	M.TW			100x.		
W. LON. COM				100Y.C	TIM			1 100Y		
W. Too CO	W.		NN.	.Yook	Ow.	N		1.00		
WW.100 CC		RAM File	WW	1.100	COM.	NZ-		W.10		
W.100 Y.C	OM.T.	Registers		W.100 x	COM			WW.10		
NN 100Y.C			NY	N.100		TW		I.W.		
WWW.			W	110	N.CO.	WTA				
WWW.			7Fh	WW.L	OJ.VO	W		1FFh		
W.100				Bank 0	Bank 1	Bank 2	Bank 3	WWW		
WW 100										
WIN .	Note: Fo	or memory i	mand	lotail coo	Figuro 1-3	Figure 4-2	and Eig	uro 1.1		

### FIGURE 4-5: DIRECT/INDIRECT ADDRESSING PIC16F627A/628A/648A

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.T

TN-100Y.COM.TW

WW.100Y.COM.TW

### NOTES:

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.

100Y.COM.TW

WWW.1007.

WWW.100Y.COM.T

COM.TW

W.100Y.COM.TW

WW

WW.100Y.COM.TW

### 5.0 I/O PORTS

The PIC16F627A/628A/648A have two ports, PORTA and PORTB. Some pins for these I/O ports are multiplexed with alternate functions for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

### 5.1 IPORTA and TRISA Registers

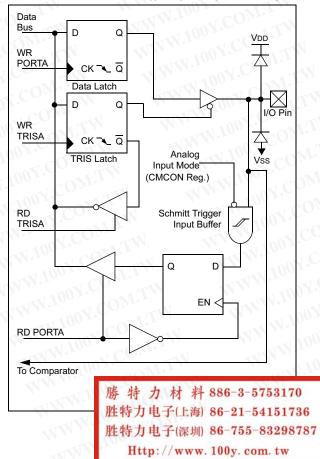
PORTA is an 8-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Port RA4 is multiplexed with the T0CKI clock input. RA5⁽¹⁾ is a Schmitt Trigger input only and has no output drivers. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as input or output.

A '1' in the TRISA register puts the corresponding output driver in a High-impedance mode. A '0' in the TRISA register puts the contents of the output latch on the selected pin(s).

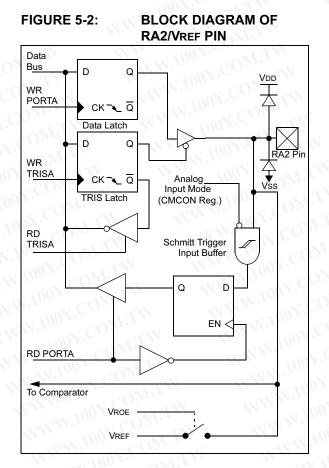
Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control register) register. When selected as a comparator input, these pins will read as '0's.

- Note 1: RA5 shares function with VPP. When VPP voltage levels are applied to RA5, the device will enter Programming mode.
  - 2: On RESET, the TRISA register is set to all inputs. The digital inputs (RA<3:0>) are disabled and the comparator inputs are forced to ground to reduce current consumption.
  - **3:** TRISA<6:7> is overridden by oscillator configuration. When PORTA<6:7> is overridden, the data reads '0' and the TRISA<6:7> bits are ignored.

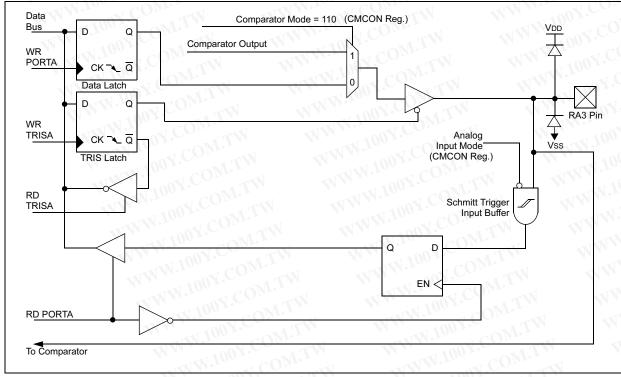

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs. The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very high-impedance output. The user must configure TRISA<2> bit as an input and use high-impedance loads.

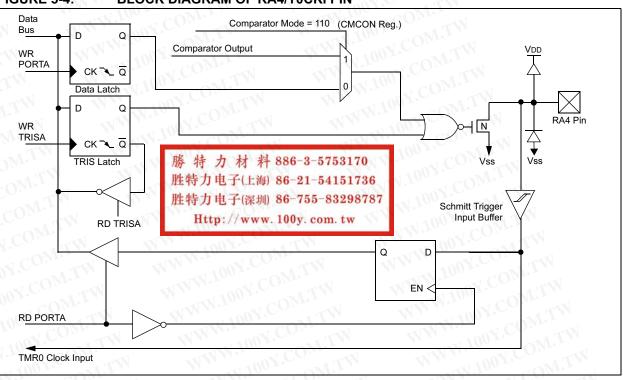
In one of the Comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.


EXAMF	PLE 5-1:	Initializing PORTA
CLRF	PORTA	;Initialize PORTA by ;setting ;output data latches
MOVLW MOVWF	0x07 CMCON	;Turn comparators off and ;enable pins for I/O ;functions
BCF BSF	STATUS, STATUS,	
MOVLW	0x1F	;Value used to initialize ;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs ;TRISA<5> always
W		;read as `1'. ;TRISA<7:6>
IM		;depend on oscillator ;mode



BLOCK DIAGRAM OF RA0/AN0:RA1/AN1 PINS





© 2002 Microchip Technology Inc.





### FIGURE 5-3: BLOCK DIAGRAM OF THE RA3/AN3 PIN





### FIGURE 5-4: BLOCK DIAGRAM OF RA4/T0CKI PIN

**BLOCK DIAGRAM OF THE** 

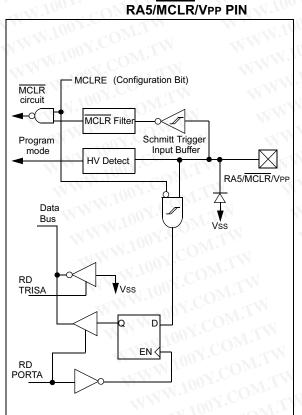



FIGURE 5-6:

### BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN

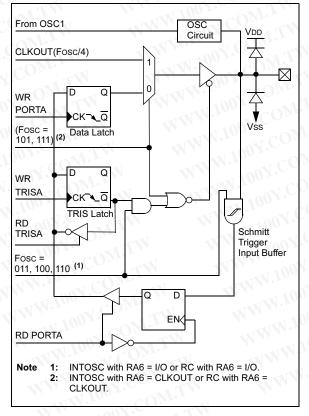
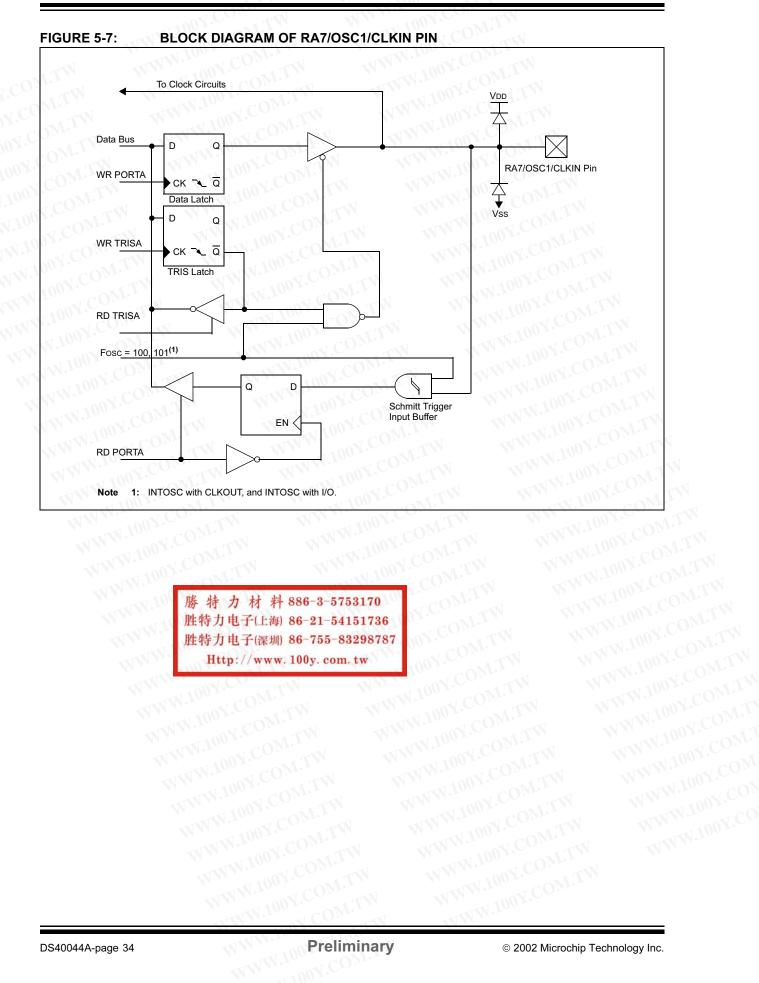




FIGURE 5-5:



Name	Function	Input Type	Output Type	Description		
RA0/AN0	RA0	ST	CMOS	Bi-directional I/O port		
	AN0	AN	- N	Analog comparator input		
RA1/AN1	RA1	ST	CMOS	Bi-directional I/O port		
	AN1	AN	<u></u>	Analog comparator input		
RA2/AN2/VREF	RA2	ST	CMOS	Bi-directional I/O port		
	AN2	AN	1	Analog comparator input		
	VREF		AN	VREF output		
RA3/AN3/CMP1	RA3	ST	CMOS	Bi-directional I/O port		
	AN3	AN	WIT:	Analog comparator input		
	CMP1		CMOS	Comparator 1 output		
RA4/T0CKI/CMP2	RA4	ST	OD	Bi-directional I/O port. Output is open drain type.		
	TOCKI	ST		External clock input for TMR0 or comparator output		
	CMP2	N. <u>-</u> -01	OD	Comparator 2 output		
RA5/MCLR/VPP	RA5	ST	A COM	Input port		
	MCLR	ST	NOX.COM	Master clear. When configured as MCLR, this pin is an active low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.		
	Vpp	HV	100 <u>r.</u> Cl	Programming voltage input.		
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bi-directional I/O port		
	OSC2	Atoma .	XTAL	Oscillator crystal output. Connects to crystal resonator i Crystal Oscillator mode.		
	CLKOUT	NV NV	CMOS	In RC or INTOSC mode. OSC2 pin can output CLKOUT which has 1/4 the frequency of OSC1		
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bi-directional I/O port		
	OSC1	XTAL	WW.10	Oscillator crystal input. Connects to crystal resonator in Crystal Oscillator mode.		
	CLKIN	ST	NTAN.	External clock source input. RC biasing pin.		
Legend: O = Outp — = Not t TTL = TTL	used		= Inp	IOS OutputP= PoweroutST= Schmitt Trigger Inputoen Drain OutputAN= Analog		

#### TABLE 5-1: PORTA FUNCTIONS

WWW.100Y.COM.TW WWW.100Y.COM.TW 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

WWW.100

OM.TW

WW.100Y.COM.TW

WWW.100Y.COM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05h	PORTA	RA7	RA6	RA5 ⁽²⁾	RA4	RA3	RA2	RA1	RA0	xxxx 0000	qqqu 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
9Fh	VRCON	VREN	VROE	VRR	N <del>I</del>	VR3	VR2	VR1	VR0	000- 0000	000- 0000

#### TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA⁽¹⁾

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Shaded bits are not used by PORTA.

2: MCLRE Configuration Bit sets RA5 functionality.

### 5.2 PORTB and TRISB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. A '1' in the TRISB register puts the corresponding output driver in a High-impedance mode. A '0' in the TRISB register puts the contents of the output latch on the selected pin(s).

PORTB is multiplexed with the external interrupt, USART, CCP module and the TMR1 clock input/output. The standard port functions and the alternate port functions are shown in Table 5-3. Alternate port functions may override TRIS setting when enabled.

Reading PORTB register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Each of the PORTB pins has a weak internal pull-up ( $\approx 200 \ \mu A$  typical). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.

Four of PORTB's pins, RB<7:4>, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupt-onchange comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RBIF interrupt (flag latched in INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

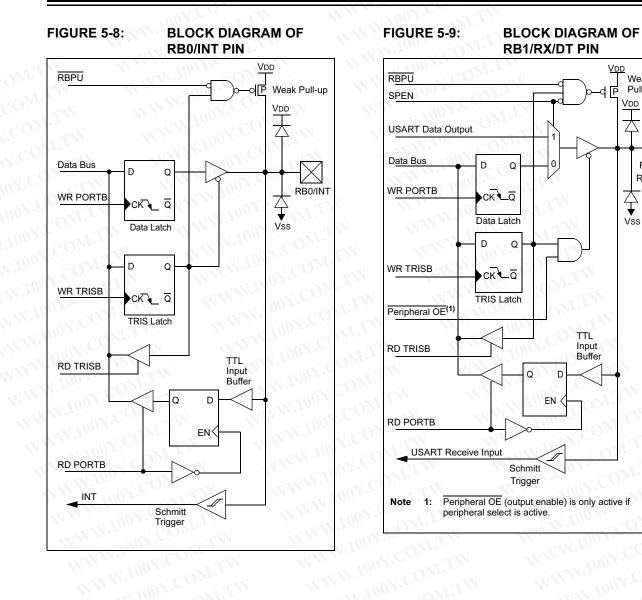
- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552)

Note: If a change on the I/O pin should occur when a read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

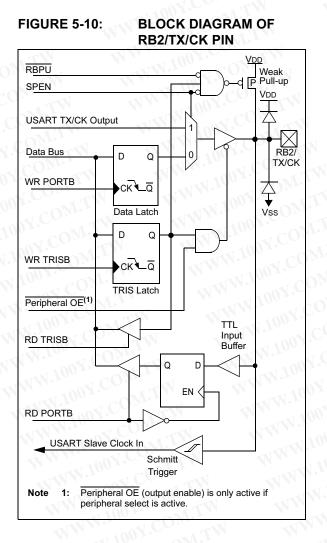
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


Weak

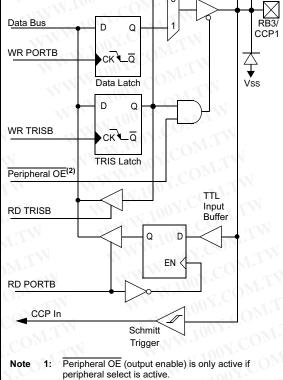
Pull-up

X

RB1/


RX/DT




WWW.100Y.COM.TW WWW.100Y.COM.TW 力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM

WW.100Y.COM.TW



WWW.100Y.COM.T WWW.100Y.COM. FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP1 PIN



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WW.100Y.COM

W.100Y.COM.TW

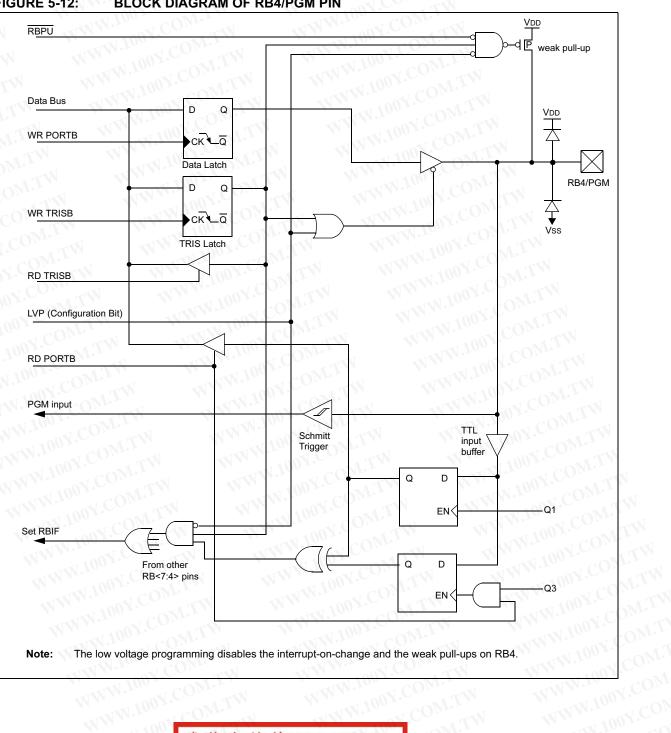
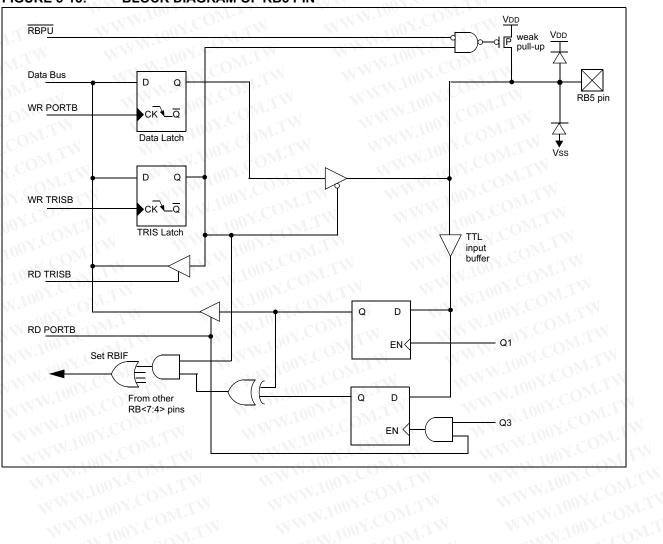




FIGURE 5-12: **BLOCK DIAGRAM OF RB4/PGM PIN** 

> 勝 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM. Http://www.100y.com.tw

WWW.100Y.COM. WW.100Y.COM

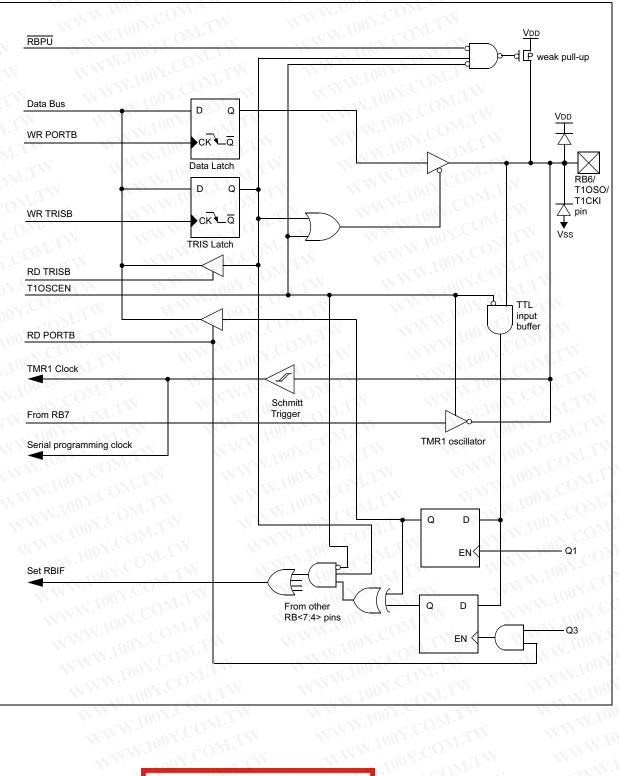


WWW.100Y.

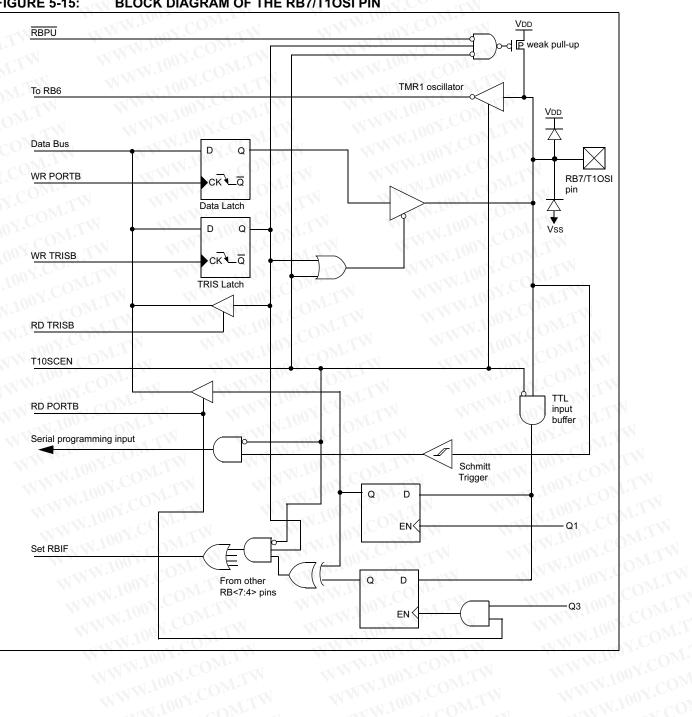
#### **FIGURE 5-13: BLOCK DIAGRAM OF RB5 PIN**

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

WWW.100


WWW.100Y.C

WWW.100Y.COM.TW


WWW.100Y.COM.T

WW.100Y.COM.TW





勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



**FIGURE 5-15: BLOCK DIAGRAM OF THE RB7/T10SI PIN** 

> WWW.100Y.COM.TW LOOX.COM.TW WWW.100Y.COM 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Preliminary 100Y.CO

© 2002 Microchip Technology Inc.

WWW.100Y.COM.TW

Name	Function	Input Type	Output Type	Description
RB0/INT	RB0	TTL	CMOS	Bi-directional I/O port. Can be software programmed internal weak pull-up.
	INT	ST	<u> </u>	External interrupt.
RB1/RX/DT	RB1	TILM	CMOS	Bi-directional I/O port. Can be software programmed internal weak pull-up.
	RX	ST	- the	USART Receive Pin
	DT	ST	CMOS	Synchronous data I/O
RB2/TX/CK	RB2	100TTL	CMOS	Bi-directional I/O port
	TX		CMOS	USART Transmit Pin
	СК	ST	CMOS	Synchronous Clock I/O. Can be software programme for internal weak pull-up.
RB3/CCP1	RB3	TTLOY	CMOS	Bi-directional I/O port. Can be software programmed internal weak pull-up.
	CCP1	ST	CMOS	Capture/Compare/PWM/I/O
RB4/PGM	RB4 🔨	TTL 100	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can software programmed for internal weak pull-up.
	PGM	ST	NOY.COM	Low voltage programming input pin. When low voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/ PGC	RB6	<u>t</u> tra ,	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can software programmed for internal weak pull-up.
	T10SO	-4/11	XTAL	Timer1 Oscillator Output
	T1CKI	ST 🔨	M. Ford	Timer1 Clock Input
100 ···	PGC	ST	NN-100	ICSP Programming Clock
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can software programmed for internal weak pull-up.
	T10SI	XTAL	I. VP	Timer1 Oscillator Input
W . 1001	PGD	ST	CMOS	ICSP Data I/O
Legend: O = Out — = Not TTL = TTL	used	CMC I OD	DS = CMO = Input = Open	

#### TABLE 5-3: PORTB FUNCTIONS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4 ⁽²⁾	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h. 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

© 2002 Microchip Technology Inc.

# 5.3 I/O Programming Considerations

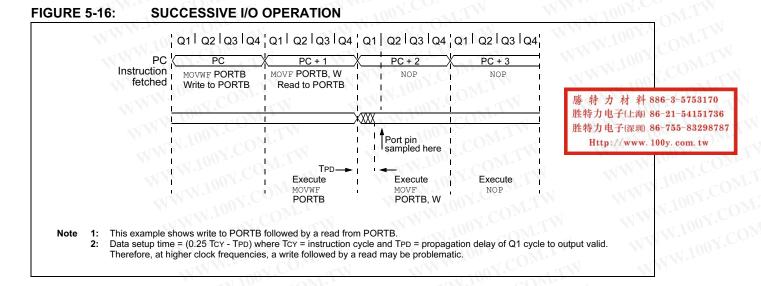
#### 5.3.1 BI-DIRECTIONAL I/O PORTS

Any instruction that writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading a port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (ex.,  ${\tt BCF}, {\tt BSF}, {\tt etc.})$  on an I/O port

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.


#### EXAMPLE 5-2:

#### READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

<pre>;Initial PORT settings:PORTB&lt;7:4&gt; Inputs ;</pre>
;PORTB<7:6> have external pull-up and are
;not connected to other circuitry
; PORT latchPORT Pins
BCF STATUS, RP0 ; BCF PORTB, 7 ;01pp pppp 11pp pppp BSF STATUS, RP0 ;
BCF TRISB, 7;10pp pppp 11pp ppppBCF TRISB, 6;10pp pppp 10pp pppp
; ;Note that the user may have expected the
; pin values to be 00pp pppp. The 2nd BCF ; caused RB7 to be latched as the pin value ; (High).
/ (+ 9/ .

# 5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-16). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/ O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.



# 6.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Read/Write capabilities
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module. Additional information is available in the PICmicro[™] Mid-Range MCU Family Reference Manual, DS33023.

Timer mode is selected by clearing the T0CS bit (OPTION<5>). In Timer mode, the TMR0 register value will increment every instruction cycle (without prescaler). If the TMR0 register is written to, the increment is inhibited for the following two cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit. In this mode the TMR0 register value will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge (T0SE) control bit (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.

The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4,..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

### 6.1 Timer0 Interrupt

Timer0 interrupt is generated when the TMR0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit. The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP.

# 6.2 Using Timer0 with External Clock

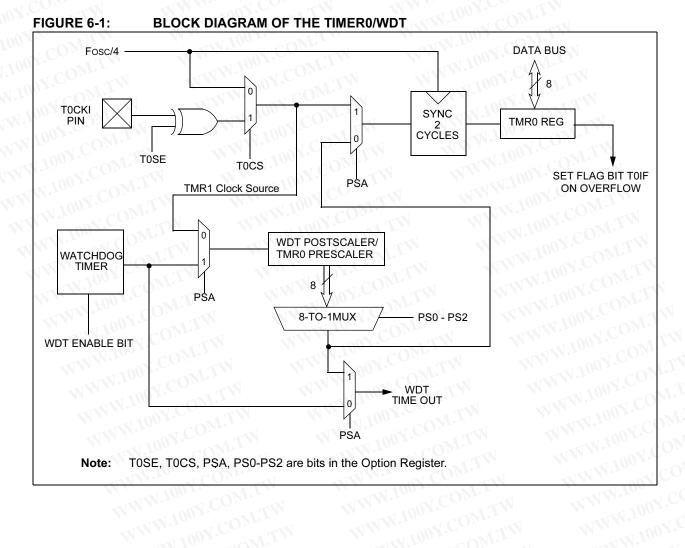
When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

#### 6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-1). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device. See Table 17-9.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


WW.100Y.COM

### 6.3 Timer0 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. A prescaler assignment for the Timer0 module means that there is no postscaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.CO

#### 6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). Use the instruction sequences shown in Example 6-1 when changing the prescaler assignment from Timer0 to WDT, to avoid an unintended device RESET.

#### EXAMPLE 6-1: CHANGING PRESCALER (TIMER0→WDT)

	V.2	
BCF	STATUS, RPO	;Skip if already in
		;Bank 0
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 and
		;Prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	'001011111'b	;These 3 lines
		; (5, 6, 7)
MOVWF	OPTION REG	;are required only
	TIM	;if desired PS<2:0>
		;are
CLRWDT		;000 or 001
MOVLW	'00101xxx'b	;Set Postscaler to
MOVWF	OPTION REG	;desired WDT rate
BCF	STATUS, RPO	;Return to Bank 0
-110		

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

#### EXAMPLE 6-2: **CHANGING PRESCALER** (WDT→TIMER0)

;prescaler BSF STATUS, RP0 MOVLW b'xxxx0xxx' ;Select TMR0, new ;prescale value and ;clock source MOVWF OPTION REG
;prescale value and ;clock source
MOVWE OPTION REG
BCF STATUS, RP0

TABLE 6-1:	REGISTERS	ASSOCIATED	) WITH T	IMER0	
				1 A	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h, 101h	TMR0	Timer0 n	nodule regi	ster	W.100	V CO	1.		WW	XXXX XXXX	uuuu uuuu
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF		RBIF	0000 000x	0000 000u
81h, 181h	OPTION ⁽²⁾	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

> WWW.100Y.COM.TW WWW.100Y.COM.TW

> 特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

> > WWW.100X.COM.TV

# 7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 Interrupt, if enabled, is generated on overflow of the TMR1 register pair which latches the interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the Timer1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

As a timer

As a counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, the TMR1 register pair value increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 9.0). Register 7-1 shows the Timer1 control register.

For the PIC16F627A/628A/648A, when the Timer1 oscillator is enabled (T1OSCEN is set), the RB7/T1OSI and RB6/T1OSO/T1CKI pins become inputs. That is, the TRISB<7:6> value is ignored.

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	- 177	V <del>P</del> V	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON				
	bit 7	WW	W.IC.	COMP	V V	WWW.	WY.COF	bit 0				
	M. J	and a di Da										
bit 7-6	Unimplem			COM.								
bit 5-4				t Clock Pres	cale Select bit	is	1.100 1.	-ONELL				
	11 = 1:8 P					胀生	寺力材	料 886-3-5753170				
	10 = 1:4 P 01 = 1:2 P						1	海) 86-21-54151736				
	00 = 1.2											
bit 3 00				ole Control bi	MT.Mt			圳) 86-755-83298787				
Dir U	T1OSCEN: Timer1 Oscillator Enable Control bit       Http://www. 100y. com. tw         1 = Oscillator is enabled       Http://www. 100y. com. tw											
	0 = Oscilla					<	TANN.	NT.COM				
bit 2				nout Synchro	nization Cont	rol bit						
	T1SYNC: Timer1 External Clock Input Synchronization Control bit TMR1CS = 1											
	1 = Do not synchronize external clock input											
	0 = Synchronize external clock input											
	TMR1CS = 0											
	This bit is i	gnored. Tir	ner1 uses the	e internal clo	ck when TMR	1CS = 0.						
bit 1	TMR1CS:	TMR1CS: Timer1 Clock Source Select bit										
	1 = Externa 0 = Interna		•	10SO/T1CK	(on the rising	g edge)						
bit 0	TMR10N:	Timer1 On	bit									
	1 = Disable	1 = Disables Timer1										
	0 = Stops	Fimer1										
	Note 1: 7	he oscillat	or inverter an	nd feedback	esistor are tu	rned off to e	liminate po	wer drain.				
	Legend:	1001.	M.TN		W.100X	CON.		N.1001.				
	R = Reada	able bit	W = V	Vritable bit	U = Unimp	emented b	it, read as '	0' 1002.				
	-n = Value		( ¹ = E		A North		1					

#### REGISTER 7-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS: 10h)

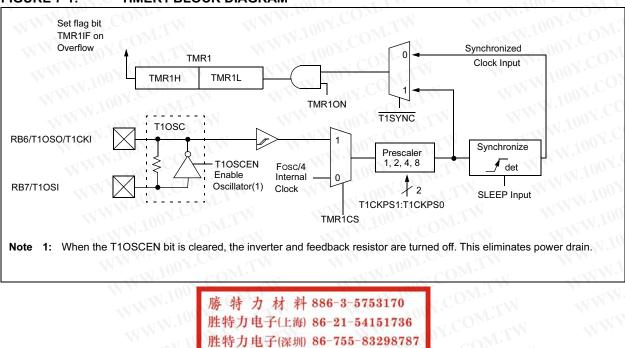
### 7.1 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect since the internal clock is always in sync.

#### 7.2 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode the TMR1 register pair value increments on every rising edge of clock input on pin RB7/T1OSI when bit T1OSCEN is set or pin RB6/T1OSO/T1CKI when bit T1OSCEN is cleared.

If  $\overline{\text{T1SYNC}}$  is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.


In this configuration, during SLEEP mode, the TMR1 register pair value will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however will continue to increment.

#### 7.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in synchronized Counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of the TMR1 register pair value after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the appropriate electrical specifications, parameters 45, 46, and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripplecounter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to the appropriate electrical specifications, parameters 45, 46, and 47.



# FIGURE 7-1: TIMER1 BLOCK DIAGRAM

Http://www. 100y. com. tw

### 7.3 Timer1 Operation in Asynchronous Counter Mode

If control bit  $\overline{T1SYNC}$  (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 7.3.2).

Note:	In Asynchronous Counter mode, Timer1
	cannot be used as a time-base for capture
	or compare operations.

#### 7.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit T1SYNC is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high and low time requirements. Refer to Table 17-9 in the Electrical Specifications Section, timing parameters 45, 46, and 47.

#### 7.3.2 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading the TMR1H or TMR1L register while the timer is running, from an external asynchronous clock, will produce a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 7-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

#### EXAMPLE 7-1: READING A 16-BIT FREE-RUNNING TIMER

;	All inte	rrupts are	disabled
	MOVF	TMR1H, W	;Read high byte
	MOVWF	TMPH	;
	MOVF	TMR1L, W	;Read low byte
	MOVWF	TMPL	3
	MOVF	TMR1H, W	;Read high byte
	SUBWF	TMPH, W	;Sub 1st read with
			;2nd read
	BTFSC	STATUS,Z	;Is result = 0
	GOTO	CONTINUE	;Good 16-bit read
;			WT
;	TMR1L ma	y have roll	ed over between the
;	read of	the high an	d low bytes. Reading
;	the high	and low byt	es now will read a good
;	value.		I.C. M.TW
;			V.COM TW
	MOVF	TMR1H, W	;Read high byte
	MOVWF	TMPH	WT NO.
	MOVF	TMR1L, W	;Read low byte
	MOVWF	TMPL	IN SUCCESSION
;	Re-enabl	e the Inter	rupts (if required)
СС	ONTINUE		;Continue with your
			;code

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

#### 7.4 **Timer1 Oscillator**

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). It will continue to run during SLEEP. It is primarily intended for a 32.768 kHz watch crystal. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper oscillator start-up.

#### CAPACITOR SELECTION FOR **TABLE 7-1:** THE TIMER1 OSCILLATOR

Freq	C1	C2
32.768 kHz	15 pF	15 pF

These values are for design guidance only. Consult AN826 (DS00826) for further information on Crystal/Capacitor Selection.

100 COM-1
勝特力材料 886-3-5753170
胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
Http://www. 100y. com. tw

#### 7.5 Resetting Timer1 Using a CCP **Trigger Output**

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will RESET Timer1.

Note:	The spe	cial event	trigg	ers from tl	he CC	P1
	module	will not	set	interrupt	flag	bit
	TMR1IF	(PIR1<0>	).			

Timer1 must be configured for either timer or synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for Timer1.

#### **Resetting Timer1 Register Pair** 7.6 (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other RESET except by the CCP1 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

#### 7.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

WW.100X.COM

#### **REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER TABLE 7-2:**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	NDV-	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L		Holding	register for th	ne Least Sign	ificant Byte of	the 16-bit T	MR1 registe	r	XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Z.IC	Holding	register for th	he Most Sign	ificant Byte of	the 16-bit T	MR1 registe	r	XXXX XXXX	uuuu uuuu
10h	T1CON		01	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

# 8.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device RESET.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register PR2. The TMR2 register value increments from 00h until it matches the PR2 register value and then resets to 00h on the next increment cycle. The PR2 register is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

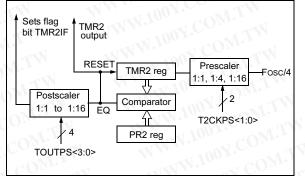
The match output of Timer2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a Timer2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Register 8-1 shows the Timer2 control register.

#### 8.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:


- a write to the TMR2 register
- · a write to the T2CON register
- any device RESET (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset)

The TMR2 register is not cleared when T2CON is written.

### 8.2 TMR2 Output

The TMR2 output (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

#### FIGURE 8-1: TIMER2 BLOCK DIAGRAM



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	00 <u>+</u> 00	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKF
	bit 7	OY.COM!	LW	NU	1001.0	M.TW		b
oit 7	Unimpler	mented: Read	l as '0'					
bit 6-3	TOUTPS	3:TOUTPS0: 1	Timer2 Outp	ut Postscale S	Select bits			
	0000 = 1	:1 Postscale V	/alue					
	0001 <b>= 1</b>	:2 Postscale V	alue					
	•				VIV.IO	CONT		
	• 11 1				勝特フ	力材料8	86-3-5753	170
	• • 1111 = 1	·16 Postscale			勝特 フ 胜特力日	り材料8 电子(上海)8		
	1111 <b>= 1</b>	:16 Postscale				电子(上海) 8	6-21-5415	1736
it 2		:16 Postscale I: Timer2 On bi	COM.I LCOM.T it _z COM.T		胜特力电	A THE COMPANY	6-21-5415 6-755-832	51736 298787
oit 2		l: Timer2 On bi	COMA LCOMAT ity.COMA		胜特力电	电子(上海) 8 电子(深圳) 8	6-21-5415 6-755-832	51736 298787
it 2	TMR2ON	l: Timer2 On bi r2 is on	COMA COMA it _x .COMA		胜特力电	电子(上海) 8 电子(深圳) 8	6-21-5415 6-755-832	51736 298787
	<b>TMR2ON</b> 1 = Timer 0 = Timer	l: Timer2 On bi r2 is on		Prescale Sel	胜特力电 Http	电子(上海) 8 电子(深圳) 8	6-21-5415 6-755-832	51736 298787
	<b>TMR2ON</b> 1 = Timer 0 = Timer <b>T2CKPS</b> ²	l: Timer2 On bi r2 is on r2 is off	imer2 Clock	Prescale Sel	胜特力电 Http	电子(上海) 8 电子(深圳) 8	6-21-5415 6-755-832	51736 298787
bit 2 bit 1-0	<b>TMR2ON</b> 1 = Timer 0 = Timer <b>T2CKPS</b> 00 = 1:1	l: Timer2 On bi r2 is on r2 is off <b>1:T2CKPS0</b> : T	imer2 Clock	Prescale Sel	胜特力电 Http	电子(上海) 8 电子(深圳) 8	6-21-5415 6-755-832	51736 298787

Legend:	100 . CON. I.	W.W.	CON.
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

#### **TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 0000
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	100	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
11h 🔨	TMR2	Timer2 mo	dule's registe	r	WW	Cont	COS	WT.	V	0000 0000	0000 0000
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Pe	riod Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module. WWW.100Y.COM.TW

WW.100Y.COM.TW

WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw WWW.100Y.COM.TW

COW.TW

WWW.100

WWW.100Y.COM

WWW.100X.

WWW.100Y.COM.T

WW.100Y.COM.TW

COM.TW

EW.100Y.COM.TW

WW

WW.100X.COM.TW

#### 9.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 9-1 shows the timer resources of the CCP module modes.

#### **CCP1** Module

WWW.100Y.COM

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

Additional information on the CCP module is available in the PICmicro™ Mid-Range Reference Manual, (DS33023).

#### **TABLE 9-1**: **CCP MODE - TIMER** RESOURCE

W.I	CCP Mode	Timer Resource
	Capture	Timer1
	Compare	Timer1
WW	PWM	Timer2

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

<b>REGISTER 9-1:</b>	CCP1CON	<b>REGIST</b>	ER (ADDR	ESS: 17h)	!
	U-0	U-0	R/W-0	R/W-0	
		WWW.IV	CCP1X	CCP1Y	Γ
	bit 7		00 . CO	W. L	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	WALL	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7	L.W.	001.00	M.L.		W.100	COM.	bit 0
Unimple	mented: Re	ad as '0'					

bit 7-6 CCP1X:CCP1Y: PWM Least Significant bits

Capture Mode: Unused

Compare Mode: Unused

PWM Mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

### WWW.100Y bit 3-0 CCP1M3:CCP1M0: CCPx Mode Select bits

0000 = Capture/Compare/PWM off (resets CCP1 module)

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, set output on match (CCP1IF bit is set)

1001 = Compare mode, clear output on match (CCP1IF bit is set)

1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected) W.100Y.COM

1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1 11xx = PWM mode

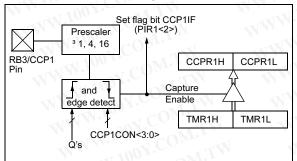
Legend: R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'	CO
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	00X.C
N.CO.T	M WWW	100Y.CO.M.TW	MW.	1004.0

WW.100X.COM.TW

### 9.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1. An event is defined as:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

#### 9.1.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1 is configured as an out-
	put, a write to the port can cause a capture
IN.	condition.

#### FIGURE 9-1: CAPTURE MODE OPERATION BLOCK DIAGRAM



#### 9.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

#### 9.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

### 9.1.4 CCP PRESCALER

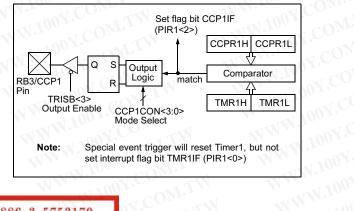
There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 9-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

#### EXAMPLE 9-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON ;Turn CCP module off
MOVLW	NEW_CAPT_PS;Load the W reg with
	; the new prescaler
L.A.	; mode value and CCP ON
MOVWF	CCP1CON ;Load CCP1CON with this
	; value

# 9.2 Compare Mode


In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is:

- Driven High
- Driven Low
- Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.



COMPARE MODE OPERATION BLOCK DIAGRAM



勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

#### 9.2.1 CCP PIN CONFIGURATION

The user must configure the RB3/CCP1 pin as an output by clearing the TRISB<3> bit.

Note:	Clearing the CCP1CON register will force
	the RB3/CCP1 compare output latch to the
	default low level. This is not the data latch.

#### 9.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

#### 9.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

#### 9.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

					2 1								
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on DR	all c	ue on other SETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF 🔨	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	MI	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	ONT.TV	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
86h, 186h	TRISB	PORT	B Data	Direction R	egister	The	N	AN.	100	1111	1111	1111	1111
0Eh	TMR1L	Holdin	g regis	ter for the L	east Signifi	cant Byte of	the 16-bit	TMR1 regi	ster	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holdin	g regis	ter for the M	lost Signific	ant Byte of	the 16-bit T	MR1regis	ter	xxxx	xxxx	uuuu	uuuu
10h	T1CON	<u>. Tr</u>		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Captur	re/Com	pare/PWM	register1 (L	SB)	V.L.		ALL N	xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Captur	re/Com	pare/PWM	register1 (M	ISB)	WT.I.		M.	xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	DIAT.	TH I	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

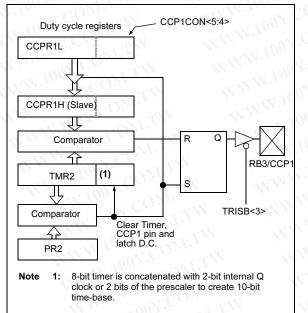
#### TABLE 9-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

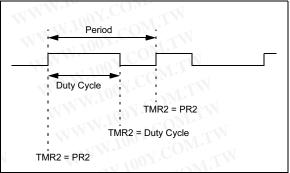
WW.100Y.COM.T

### 9.3 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISB<3> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTB I/O data
	latch.

Figure 9-3 shows a simplified block diagram of the CCP module in PWM mode.


For a step by step procedure on how to set up the CCP module for PWM operation, see Section 9.3.3.



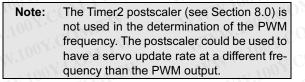


A PWM output (Figure 9-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (frequency = 1/period).





## 9.3.1 PWM PERIOD


The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM period = [(PR2) + 1] \cdot 4 \cdot Tosc \cdot TMR2 prescale$ value

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

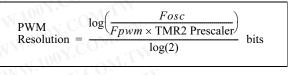


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WW.100Y.CO

#### 9.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:


PWM duty cycle =

(CCPR1L:CCP1CON<5:4>) · *Tosc* · TMR2 prescale value

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitch less PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared. Maximum PWM resolution (bits) for a given PWM frequency:



**Note:** If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

For an example PWM period and duty cycle calculation, see the PICmicro[™] Mid-Range Reference Manual (DS33023).

#### 9.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISB<3> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

### TABLE 9-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	N-1	1	N1	COL
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.5

#### TABLE 9-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
86h, 186h	TRISB	W.r.	J.V.CC	PO	RTB Data D	irection Regi	ster	COM	W	1111 1111	1111 1111
11h	TMR2	NV.	00 - 0	OW.	Timer2 mod	dule's register	N.100	I CON	L. A	0000 0000	0000 0000
92h	PR2		1001.0	Tim	ner2 module	's period regi	ster		N.T.	1111 1111	1111 1111
12h	T2CON	UT.	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	uuuu uuuu
15h	CCPR1L	-IN	N.100	Capture	e/Compare/I	PWM register	1 (LSB)	N.C.	Jus	XXXX XXXX	uuuu uuuu
16h	CCPR1H	N.	W.1003	Capture	e/Compare/F	WM register	1 (MSB)	00 - 1	ON	xxxx xxxx	uuuu uuuu
17h	CCP1CON	A.	00	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.



WWW.100Y.COM.TW WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WW.100Y.COM.TW

COMTW

WWW.100X.

WWW.100Y.COM.T

COM.TW

EW.100Y.COM.TW

WWW.100Y.COM

WWW.10

WW.100X.COM.TW

#### **COMPARATOR MODULE** 10.0

The Comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The onchip Voltage Reference (Section 11.0) can also be an input to the comparators.

The CMCON register, shown in Register 10-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 10-1.

	CMCON RE	GISTER (ADDI	RESS: 01Fh)				
	R-0	R-0 R/W		R/W-0	R/W-0	R/W-0	R/W-0
		C1OUT C2IN	IV C1INV	CIS	CM2	CM1	CM0
	bit 7						bit 0
bit 7	C2OUT: Com	parator 2 Output					
	When C2INV						
	1 = C2 VIN+ >						
	0 = C2 VIN+ <	< C2 VIN-					
	When C2INV	<u>= 1:</u> CO					
	1 = C2 VIN+ <	< C2 VIN-		N. A.	1.100 -	.0M.1	-s1
	0 = C2 VIN+ >	> C2 VIN-		勝	特力材	料 886-3	3-575317
bit 6		parator 1 Output	WT	时	特力电子(	a second a s	
	When C1INV			and the second se	特力电子(ì		
	1 = C1 VIN+ > 0 = C1 VIN+ <			/III.			
					nup.//w	ww. 100y.	com. tw
	When C1INV	= 1:		N	NW T	NY.CO	WTI
	1 = C1 VIN+ <						
	0 = C1 VIN+ >	> C1 VIN-					
bit 5	C2INV: Comp	parator 2 Output	Inversion				
	1 = C2 Outpu						
	0 00 0 1	at not inverted					
bit 4	C1INV: Comp	parator 1 Output	Inversion				
bit 4	<b>C1INV</b> : Comp 1 = C1 Outpu	parator 1 Output at inverted	Inversion				
	<b>C1INV</b> : Comp 1 = C1 Outpu 0 = C1 Outpu	parator 1 Output ut inverted ut not inverted					
bit 4 bit 3	<b>C1INV</b> : Comp 1 = C1 Outpu 0 = C1 Outpu <b>CIS</b> : Compare	parator 1 Output ut inverted ut not inverted ator Input Switch					
	<b>C1INV</b> : Comp 1 = C1 Outpu 0 = C1 Outpu <b>CIS</b> : Compara <u>When CM2:C</u>	parator 1 Output ut inverted ut not inverted ator Input Switch					
	<b>C1INV</b> : Comp 1 = C1 Outpu 0 = C1 Outpu <b>CIS</b> : Compara <u>When CM2:C</u> Then:	parator 1 Output ut inverted ut not inverted ator Input Switch <u>2M0: = 001</u>					
	C1INV: Comp 1 = C1 Outpu 0 = C1 Outpu CIS: Compar <u>When CM2:C</u> Then: 1 = C1 VIN- c	parator 1 Output ut inverted ut not inverted ator Input Switch <u>CM0: = 001</u> connects to RA3					
	C1INV: Comp 1 = C1 Outpu 0 = C1 Outpu CIS: Compar <u>When CM2:C</u> Then: 1 = C1 VIN- c	parator 1 Output ut inverted ut not inverted ator Input Switch <u>2M0: = 001</u>					
	C1INV: Comp 1 = C1 Outpu 0 = C1 Outpu CIS: Compar <u>When CM2:C</u> Then: 1 = C1 VIN- c	barator 1 Output at inverted ator Input Switch <u>CM0: = 001</u> connects to RA3 connects to RA0					
	C1INV: Comp 1 = C1 Outpu 0 = C1 Outpu CIS: Compara <u>When CM2:C</u> Then: 1 = C1 VIN- c 0 = C1 VIN- c <u>When CM2:C</u> Then: <u>When CM2:C</u> Then:	barator 1 Output at inverted at not inverted ator Input Switch CM0: = 001 connects to RA3 connects to RA0 CM0 = 010					
	C1INV: Comp 1 = C1 Outpu 0 = C1 Outpu CIS: Compara <u>When CM2:C</u> Then: 1 = C1 VIN- c 0 = C1 VIN- c <u>When CM2:C</u> Then: 1 = C1 VIN- c	parator 1 Output at inverted at not inverted ator Input Switch CM0: = 001 connects to RA3 connects to RA0 CM0 = 010 connects to RA3					
	C1INV: Comp 1 = C1 Outpu 0 = C1 Outpu CIS: Compara <u>When CM2:C</u> Then: 1 = C1 VIN- c 0 = C1 VIN- c <u>When CM2:C</u> Then: 1 = C1 VIN- c C2 VIN- c	barator 1 Output at inverted at not inverted ator Input Switch CM0: = 001 connects to RA3 connects to RA3 CM0 = 010 connects to RA3 onnects to RA3					
	C1INV: Comp 1 = C1 Outpu 0 = C1 Outpu CIS: Compara <u>When CM2:C</u> Then: 1 = C1 VIN- c 0 = C1 VIN- c <u>When CM2:C</u> Then: 1 = C1 VIN- c C2 VIN- c 0 = C1 VIN- c	barator 1 Output at inverted at not inverted ator Input Switch CM0: = 001 connects to RA3 connects to RA3 CM0 = 010 connects to RA3 onnects to RA3 onnects to RA3 onnects to RA3					
	C1INV: Comp 1 = C1 Outpu 0 = C1 Outpu CIS: Compara <u>When CM2:C</u> Then: 1 = C1 VIN- c <u>When CM2:C</u> Then: 1 = C1 VIN- c C2 VIN- c 0 = C1 VIN- c C2 VIN- c	barator 1 Output at inverted at not inverted ator Input Switch CM0: = 001 connects to RA3 connects to RA3 CM0 = 010 connects to RA3 onnects to RA3					

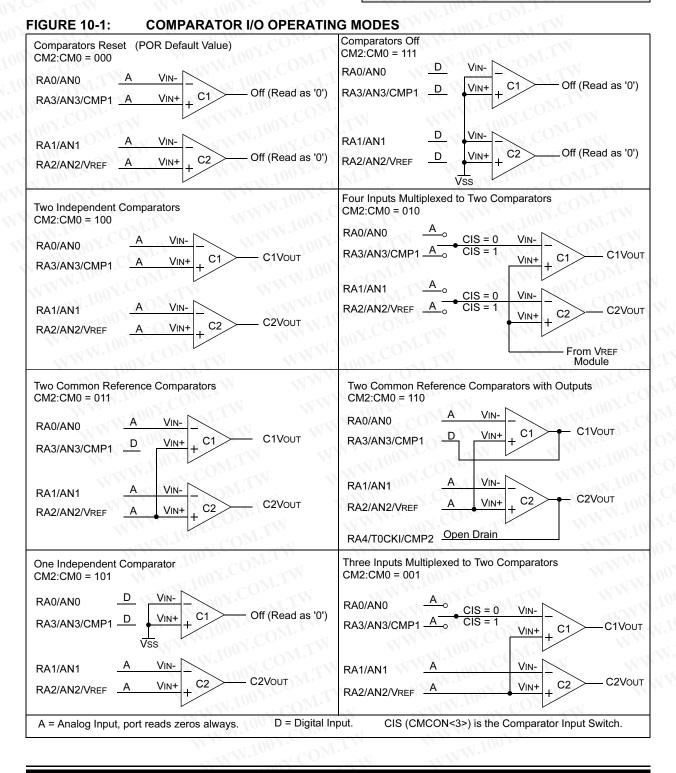
© 2002 Microchip Technology Inc.

-n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown


### **10.1** Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 10-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the Compara-

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

tor mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 17-2.

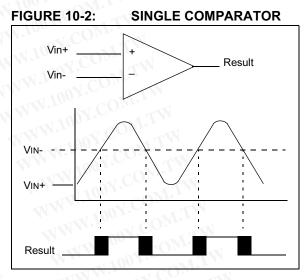
- **Note 1:** Comparator interrupts should be disabled during a Comparator mode change, otherwise a false interrupt may occur.
  - 2: Comparators can have an inverted output. See Figure 10-3.



The code example in Example 10-1 depicts the steps required to configure the Comparator module. RA3 and RA4 are configured as digital output. RA0 and RA1 are configured as the V- inputs and RA2 as the V+ input to both comparators.

EXAMPLE 10-1:	INITIALIZING
	COMPARATOR MODULE

FLAG_RE	G EQU 🔨	0X20
CLRF	FLAG REG	;Init flag register
CLRF	PORTA	;Init PORTA
MOVF	CMCON, W	;Load comparator bits
ANDLW	0xC0	;Mask comparator bits
IORWF	FLAG REG, F	;Store bits in flag register
MOVLW	0x03	;Init comparator mode
MOVWF	CMCON	;CM<2:0> = 011
BSF	STATUS, RPO	;Select Bank1
MOVLW	0x07	;Initialize data direction
MOVWF	TRISA	;Set RA<2:0> as inputs
		;RA<4:3> as outputs
		;TRISA<7:5> always read `0'
BCF	STATUS, RPO	;Select Bank 0
CALL	DELAY10	;10µs delay
MOVF	CMCON, F	;Read CMCONto end change
07.		; condition
BCF	PIR1,CMIF	;Clear pending interrupts
BSF	STATUS, RPO	;Select Bank 1
BSF	PIE1,CMIE	;Enable comparator interrupts
BCF	STATUS, RPO	;Select Bank 0
BSF	INTCON, PEIE	;Enable peripheral interrupts
BSF	INTCON, GIE	;Global interrupt enable


#### 10.2 Comparator Operation

A single comparator is shown in Figure 10-2 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 10-2 represent the uncertainty due to input offsets and response time. See Table 17-2 for Common Mode Voltage.

### 10.3 Comparator Reference

An external or internal reference signal may be used depending on the comparator Operating mode. The analog signal that is present at VIN- is compared to the signal at VIN+, and the digital output of the comparator is adjusted accordingly (Figure 10-2).

WWW.100Y.COA



#### 10.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the Comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD, and can be applied to either pin of the comparator(s).

#### 10.3.2 INTERNAL REFERENCE SIGNAL

The Comparator module also allows the selection of an internally generated voltage reference for the comparators. Section 11.0, Voltage Reference Manual, contains a detailed description of the Voltage Reference Module that provides this signal. The internal reference signal is used when the comparators are in mode CM<2:0>=010 (Figure 10-1). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

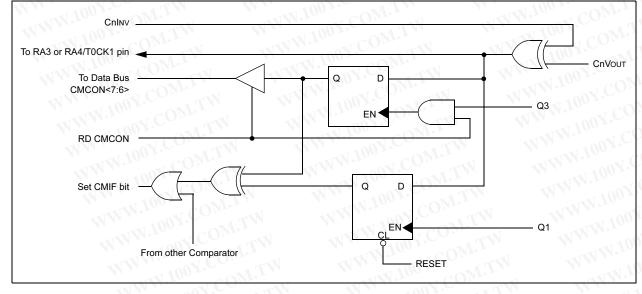
### 10.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output is to have a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Table 17-2).

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

© 2002 Microchip Technology Inc.

# 10.5 Comparator Outputs


The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When the CM<2:0> = 110 or 001, multiplexors in the output path of the RA3 and RA4/T0CK1 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 10-3 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4/T0CK1 pins while in this mode.

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input, according to the Schmitt Trigger input specification.
  - 2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw





#### 10.6 **Comparator Interrupts**

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the comparator interrupt flag. The CMIF bit must be RESET by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

If a change in the CMCON register Note: (C1OUT or C2OUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CMIF (PIR1<6>) interrupt flag may not get set.

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- Any write or read of CMCON. This will end the a) mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

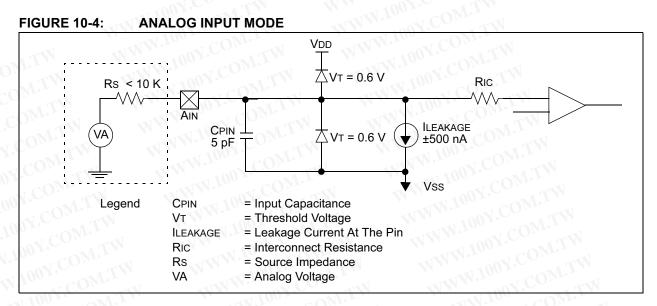
WWW.100Y.COM.

#### 10.7 **Comparator Operation During** SLEEP

When a comparator is active and the device is placed in SLEEP mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from SLEEP mode when enabled. While the comparator is powered-up, higher SLEEP currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in SLEEP mode, turn off the comparators, CM<2:0> = 111, before entering SLEEP. If the device wakes up from SLEEP, the contents of the CMCON register are not affected.

#### 10.8 Effects of a RESET

A device RESET forces the CMCON register to its RESET state. This forces the Comparator module to be in the comparator RESET mode, CM2:CM0 = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at RESET time. The comparators will be powered-down during the RESET interval.


#### 10.9 **Analog Input Connection** Considerations

W.100Y.COM

WW.100Y.COM

A simplified circuit for an analog input is shown in Figure 10-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 kΩ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

WWW.100Y.COM 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw



**REGISTERS ASSOCIATED WITH COMPARATOR MODULE TABLE 10-1:** 

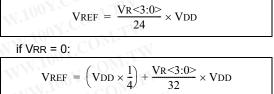
WWW.100Y.COM

Address N	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
1Fh C	CMCON	C2OUT	C1OUT	C2INV	C1NV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
0Bh, 8Bh, 10Bh, 18Bh	NTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch P	PIR1	EEIF	CMIF	RCIF	TXIF	10. <u></u>	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch P	PIE1	EEIE	CMIE	RCIE	TXIE	004.0	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
85h TI	RISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
Legend: x	x = Unkr	nown, u =	= Unchan	ged, - =	Unimpler	mented, r	ead as '0	,		WW.	N.COM

WWW.100Y.COM.TW 特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.

# 11.0 VOLTAGE REFERENCE MODULE


The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Figure 11-1. The block diagram is given in Figure 11-1.

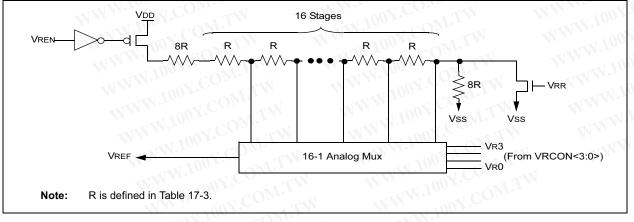
### 11.1 Voltage Reference Configuration

The Voltage Reference can output 16 distinct voltage levels for each range.

The equations used to calculate the output of the Voltage Reference are as follows:

if VRR = 1:




The setting time of the Voltage Reference must be considered when changing the VREF output (Table 17-3). Example 11-1 demonstrates how Voltage Reference is configured for an output voltage of 1.25V with VDD = 5.0V.

<b>REGISTER 11-1:</b>	VRCON RE	GISTER	ADDRES	S: 9Fh)				
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	VREN	VR1	VR0					
	bit 7	WW.10	N.COM	Wn	WW	W.IOON.	ONL	bit 0
bit 7	VREN: VREF	Enable						
	1 = VREF circ 0 = VREF circ			IDD drain	N	WW. 100	Y.COM	WT
bit 6	VROE: VREF	Output En	able		券特力材			
	1 = VREF is c 0 = VREF is c						1-54151736 55-83298787	
bit 5	VRR: VREF R	ange sele	ction			Http://w	ww. 100y.	com. tw
	1 = Low Ran 0 = High Ran	•			TN -	WWW	1.100	COM.TW
bit 4	Unimpleme	nted: Rea	d as '0'					
bit 3-0	Vr<3:0>: Vr When Vrr = When Vrr =	1: Vref =	(VR<3:0>/2	24) * VDD				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

#### FIGURE 11-1: VOLTA

### VOLTAGE REFERENCE BLOCK DIAGRAM



#### VOLTAGE REFERENCE EXAMPLE 11-1: CONFIGURATION

	MOVLW	0x02	;4 Inputs Muxed
	MOVWF	CMCON	;to 2 comps.
	BSF	STATUS, RPO	;go to Bank 1
	MOVLW	0x07	;RA3-RA0 are
	MOVWF	TRISA	;outputs
	MOVLW	0xA6	;enable VREF
	MOVWF	VRCON	;low range set VR<3:0>=6
	BCF	STATUS, RPO	;go to Bank 0
	CALL	DELAY10	;10µs delay
1			

#### 11.2 Voltage Reference Accuracy/Error

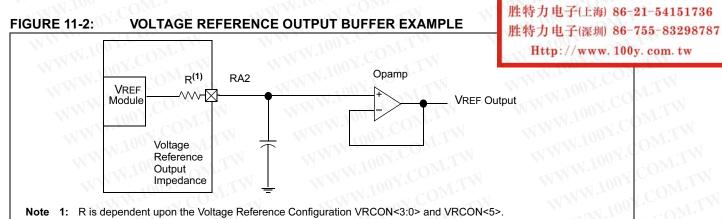
The full range of Vss to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 11-1) keep VREF from approaching VSS or VDD. The Voltage Reference is VDD derived and therefore, the VREF output changes with fluctuations in VDD. The tested absolute accuracy of the Voltage Reference can be found in Table 17-3.

#### 11.3 **Operation During SLEEP**

When the device wakes up from SLEEP through an interrupt or a Watchdog Timer time out, the contents of the VRCON register are not affected. To minimize current consumption in SLEEP mode, the Voltage Reference should be disabled.

#### 11.4 Effects of a RESET

A device RESET disables the Voltage Reference by clearing bit VREN (VRCON<7>). This RESET also disconnects the reference from the RA2 pin by clearing bit VROE (VRCON<6>) and selects the high voltage range by clearing bit VRR (VRCON<5>). The VREF value select bits, VRCON<3:0>, are also cleared.


#### 11.5 **Connection Considerations**

Voltage Reference Module The operates independently of the comparator module. The output of the reference generator may be connected to the RA2 pin if the TRISA<2> bit is set and the VROE bit, VRCON<6>, is set. Enabling the Voltage Reference output onto the RA2 pin with an input signal present will increase current consumption. Connecting RA2 as a digital output with VREF enabled will also increase current consumption.

The RA2 pin can be used as a simple D/A output with limited drive capability. Due to the limited drive capability, a buffer must be used in conjunction with the Voltage Reference output for external connections to VREF. Figure 11-2 shows an example buffering technique.

特力材

料 886-3-5753170



Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other RESETS	
9Fh	VRCON	VREN	VROE	VRR	NT-	VR3	VR2	VR1	VR0	000- 0000	000- 0000	
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000	
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111	

#### **UNIVERSAL SYNCHRONOUS** 12.0 ASYNCHRONOUS RECEIVER **TRANSMITTER (USART)** MODULE

The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as a Serial Communications Interface or SCI. The USART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs, etc.

The USART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

Bit SPEN (RCSTA<7>), and bits TRISB<2:1>, have to be set in order to configure pins RB2/TX/CK and RB1/ RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

Register 12-1 shows the Transmit Status and Control Register (TXSTA) and Register 12-2 shows the Receive Status and Control Register (RCSTA).

#### REGISTER 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS: 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
	CSRC	TX9	TXEN	SYNC	A.M.	BRGH	TRMT	TX9D
	bit 7	NN.	N.COm	WT	WW	100Y.	TIM	bit 0
bit 7	CSRC: Clo		Select bit					
	Asynchrone Don't ca							
		ter mode (C		ated internally ternal source		) WW.10		
bit 6	<b>TX9</b> : 9-bit 7	Fransmit En	able bit					
		9-bit trans 8-bit trans						
bit 5	TXEN: Trai	nsmit Enabl	e bit ⁽¹⁾		T.c.	N. A.	N.100 1	CONLI
	1 = Transm 0 = Transm				勝特	力材料 1电子(上海)	886-3-57	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
bit 4	SYNC: US	ART Mode	Select bit			And		
		onous mod				J 电子(深圳) tp://www.		
bit 3	Unimplem	ironous mo			m	tp.//www.	Tooy. com	
bit 3			te Select bit					
DIL 2	Asynchrone							
	1 = High 0 = Low	speed						
	<u>Synchrono</u> Unused	<u>us mode</u> in this mode	e 🔨					
bit 1	TRMT: Trai	nsmit Shift I	Register ST/	ATUS bit				
	1 = TSR er 0 = TSR fu							
bit 0 🚿	<b>TX9D</b> : 9th	bit of transn	nit data. Car	n be parity bit	.1001.0			
				TXEN in SYN				
	Legend:	100 ×			W.Jus	COMP.	N/	WWW

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown
WWW 100Y.C	V WILL	100X. 0N. TW

	R/W-0	R/W-0	R/W-0	R/W-0	N.Y	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	Y.	ADEN	FERR	OERR	RX9D				
	bit 7	N.COM	TW	W.	NN	100Y.C	COM.TV	Ń	bit 0				
bit 7	SPEN: Serial Port Enable bit (Configures RB1/RX/DT and RB2/TX/CK pins as serial port pins when bits TRISB<2:1> are set)												
	1 = Serial p	s RB1/RX/D port enabled port disable	WT .	I X/CK pins	sass	serial port p	ins when bit	s TRISB<2:	1> are set)				
bit 6		Receive En											
W n		s 9-bit recep											
		s 8-bit recep											
bit 5	SREN: Sin	gle Receive	Enable bit										
	Asynchron	-		MM.	勝特力材料 886-3-5753170								
	Don't ca					WW	胜特力电	子(上海) 86	5-21-5415173				
		<u>us mode - r</u>					胜特力电	子(深圳) 86	5-755-832987				
		bles single i					Http:	//www.10	00y. com. tw				
	<ul> <li>0 = Disables single receive</li> <li>This bit is cleared after reception is complete.</li> </ul>												
		us mode - s		in is comple	510.								
		in this mode											
bit 4	CREN: Continuous Receive Enable bit												
	Asynchronous mode:												
	1 = Ena	bles continu	ious receive	COM									
		bles contin	uous receive	e.									
	Synchrono							-1001					
		bles continu			le br	t CREN is o	cleared (CRI	EN override	es SREN)				
bit 3	ADEN: Ad	dress Detec	t Enable bit										
		ous mode 9				1		WW.Los	V CONT				
		oles address	detection, e	enable inte	rrupt	t and load o	f the receive	buffer whe	n RSR<8>				
	is set	bloc addroc	e detection	all bytes a	ro ro	coived and	d ninth bit ca	n ho usod r	a parity bit				
	Asynchron	ous mode 8 in this mode	-bit (RX9=0		leie	ceiveu, and	u fillititi bit ca	ii be useu a	as parity bit				
	Synchrono		W										
		in this mode	)										
bit 2	FERR: Fra	ming Error	oit										
	1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)												
	0 = No fran	ning error	N	WWW.		NY.COF			1007.0				
bit 1	OERR: OV	errun Error	bit										
	1 = Overru	n error (Car	n be cleared	l by clearin	g bit	CREN)							
	0 = No ove	errun error											
bit 0	<b>RX9D</b> : 9th	bit of receiv	ed data (Ca	an be parity	/ bit)								
	Legend:	NOY.COM	WTN	W	NV.	100X	COM.T	N	NWW II				
	Legenu.												

-n = Value at POR

'1' = Bit is set

x = Bit is unknown

WWW.100Y.COM

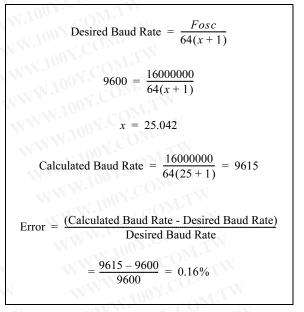
'0' = Bit is cleared

## 12.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:


Fosc = 16 MHz

Desired Baud Rate = 9600

BRGH = 0

SYNC = 0

### EXAMPLE 12-1: CALCULATING BAUD RATE ERROR



It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register, causes the BRG timer to be RESET (or cleared), this ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

## TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

Legend: X = value in SPBRG (0 to 255)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	x000 0000x
99h	SPBRG	N.100	A CC	Bauc	Rate Ge	nerator Re	gister	V.CO		0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'.

Shaded cells are not used by the BRG.

BAUD	Fosc = 20 M	lHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	10 ⁰	M	NA	<u> </u>	N.100	NA	_1	
1.2	NA		N.CO	NA		100	NA	n —	—
2.4	NA	1.10	107	NA		W.Lo	NA		_
9.6	NA		MY-CO	NA	-71	00 - 10	9.766	+1.73%	255
19.2	19.53	+1.73%	255	19.23	+0.16%	207	19.23	+0.16%	129
76.8	76.92	+0.16%	64	76.92	+0.16%	51	75.76	-1.36%	32
96	96.15	+0.16%	51	95.24	-0.79%	41	96.15	+0.16%	25
300	294.1	-1.96	16	307.69	+2.56%	12	312.5	+4.17%	7
500	500	0	9	500	0	7	500	0	4
HIGH	5000	<u>N</u>	0	4000		0	2500	M.	0
LOW	19.53	NU-	255	15.625	- N	255	9.766	W Per	255

#### BAUD RATES FOR SYNCHRONOUS MODE TABLE 12-3.

BAUD RATE (K)	Fosc = 7.159 KBAUD	909 MHz ERROR	SPBRG value (decimal)	5.0688 MHz KBAUD	ERROR	SPBRG value (decimal)	4 MHz KBAUD	ERROR	SPBRG value (decimal)
0.3	NA	<1 -	A AND	NA	31		NA	V.CO.	-112
1.2	NA		W.	NA	T.M.		NA	TOM	_
2.4	NA	- IX	A A	NA	W.	- <	NA	N.CO	A TON
9.6	9.622	+0.23%	185	9.6	0	131	9.615	+0.16%	103
19.2	19.24	+0.23%	92	19.2	0	65	19.231	+0.16%	51
76.8	77.82	+1.32	22	79.2	+3.13%	15	75.923	+0.16%	12
96	94.20	-1.88	18	97.48	+1.54%	12	1000	+4.17%	9
300	298.3	-0.57	5	316.8	5.60%	3	NA	·	01-
500	NA	N.T.Y		NA	Ma	<u> </u>	NA	N.100	CONT
HIGH	1789.8	N <del>-1</del>	0 🔨	1267	1.00	0	100	100Y.	0
LOW	6.991	M-L	255	4.950		255	3.906	W.Fo	255

BAUD RATE (K)	Fosc = 3.579 KBAUD	9545 MHz ERROR	SPBRG value (decimal)	1 MHz KBAUD	ERROR	SPBRG value (decimal)	32.768 kHz KBAUD	ERROR	SPBRG value (decimal)
0.3	NA	Mr.	1	NA	NJOU M	-01 <del>4</del> . F	0.303	+1.14%	26
1.2	NA	V.COM	-Wm	1.202	+0.16%	207	1.170	-2.48%	6
2.4	NA	105		2.404	+0.16%	103	NA	N Ver	(
9.6	9.622	+0.23%	92	9.615	+0.16%	25	NA	N.	N.1001.
19.2	19.04	-0.83%	46	19.24	+0.16%	12	NA	11 to 1	Yon .
76.8	74.57	-2.90%	11	83.34	+8.51%	2	NA	<u> </u>	W.76
96	99.43	+3.57%	8	NA 🔨		04.0	NA	2/ 1/	007 10
300	298.3	0.57%	2	NA	A VIII		NA		NN <u>-</u>
500	NA	~100X.	T.t.	NA		00	M.L.Y	_	
HIGH	894.9		0	250	WN N	0	8.192	- 1	0
LOW	3.496	W.L	255	0.9766		255	0.032		255

WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

W.100Y.COM.TW

COM.TW

I.COM.TW

N.COM.TW

.100Y.COM.TW

WWW.100

BAUD RATE (K)	Fosc = 20 M KBAUD	ERROR	SPBRG value (decimal)	16 MHz KBAUD	ERROR	SPBRG value (decimal)	10 MHz KBAUD	ERROR	SPBRG value (decimal
			(ueciliai)	<		(ueciliai)			(uecilila
0.3	NA	N.Ju		NA	TV-		NA	—	_
1.2	1.221	+1.73%	255	1.202	+0.16%	207	1.202	+0.16%	129
2.4	2.404	+0.16%	129	2.404	+0.16%	103	2.404	+0.16%	64
9.6	9.469	-1.36%	32	9.615	+0.16%	25	9.766	+1.73%	15
19.2	19.53	+1.73%	15	19.23	+0.16%	12	19.53	+1.73V	7
76.8	78.13	+1.73%	3	83.33	+8.51%	2	78.13	+1.73%	1
96	104.2	+8.51%	2	NA		V	NA	- N	_
300	312.5	+4.17%	0	NA		100 '	NA	_	_
500	NA	AND	NTCO.	NA		N	NA	- 177	_
HIGH	312.5		0	250	_	0	156.3		0
LOW	1.221	N M	255	0.977		255	0.6104	<u>III</u>	255

### TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD RATE (K)	Fosc = 7.159 KBAUD	909 MHz ERROR	SPBRG value (decimal)	5.0688 MHz KBAUD	ERROR	SPBRG value (decimal)	4 MHz KBAUD	ERROR	SPBRG value (decimal)
0.3	NA		NW L	0.31	+3.13%	255	0.3005	-0.17%	207
1.2	1.203	+0.23%	92	1.2	0	65	1.202	+1.67%	51
2.4	2.380	-0.83%	46	2.4	0	32	2.404	+1.67%	25
9.6	9.322	-2.90%	11	9.9	+3.13%	7	NA	. cotto	· ·
19.2	18.64	-2.90%	5	19.8	+3.13%	3	NA	1.0-	-NT
76.8	NA	_	NT.	79.2	+3.13%	0	NA	- CON-	
96	NA	N —	N.T.	NA	N <del>P</del>	- 1	NA		
300	NA	·	W Internet	NA	N1	_	NA		
500	NA	<u> </u>		NA		_	NA	001.	$\Lambda^{1}$
HIGH	111.9		0	79.2	<u>Ove</u>	0	62.500	T ₁ CU	0
LOW	0.437	TV_	255	0.3094		255	3.906	100	255

BAUD RATE (K)	Fosc = 3.579 KBAUD	9545 MHz ERROR	SPBRG value (decimal)	1 MHz KBAUD	ERROR	SPBRG value (decimal)	32.768 kHz KBAUD	ERROR	SPBRG value (decimal)
0.3	0.301	+0.23%	185	0.300	+0.16%	51	0.256	-14.67%	1.1
1.2	1.190	-0.83%	46	1.202	+0.16%	12	NA	NN <u>-</u>	V.COM
2.4	2.432	+1.32%	22	2.232	-6.99%	6	NA	100	
9.6	9.322	-2.90%	5	NA	- C		NA	W T.	N.CO.
19.2	18.64	-2.90%	2	NA	1100-	M-	NA	1.1	
76.8	NA	J.COM	-122	NA		Vn-	NA		MY-C
96	NA	M.T.	_	NA	N.100	COM. 1	NA	N.	
300 <	NA	N.CO.	477	NA	Yom.	- 1	NA	M T	1002.
500	NA	107		NA	W.Lo	- COM	NA	WV <del>N</del>	
HIGH	55.93		0	15.63	00 <del></del>	0	0.512		0
LOW	0.2185	01-0	255	0.0610	NN.	255	0.0020		255

poy.COM.TW LOOY.COM.TW

WW.100Y.COM.TW

WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 WWW.100Y.COM.TW 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.CC

<b>TABLE 12-5</b> :	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)	
---------------------	---------------------------------------------	--

BAUD	Fosc = 20 M	Hz	SPBRG value	16 MHz	WWW	SPBRG value	10 MHz		SPBRG value
RATE (K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3 10	NA		_
625000	625	0	1, C	NA	—	NN M.	625	0	0
1250000	1250	0	0	NA	_		NA		_

BAUD	Fosc = 7.16	MHz	SPBRG value	5.068 MHz		SPBRG value	4 MHz	OW.TW	SPBRG value
RATE (K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	- In	W	316750	26.700%	0	250000	0.000%	0
625000	NA	<u> </u>	<u> </u>	NA	M-	_	NA		· · · _
1250000	NA	- 12	A North Contraction of the second sec	NA	- TV	- I	NA	an <u>l</u>	127

BAUD RATE (K)	Fosc = 3.579 KBAUD	9 MHz ERROR	SPBRG value (decimal)	1 MHz KBAUD	ERROR	SPBRG value (decimal)	32.768 kHz KBAUD	ERROR	SPBRG value (decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	Non New York	W-	NA	NA	NA
250000	223687.5	-10.525%	0	NA	100-0	ON-	NA	NA	NA
625000	NA	1.00-	$-W_{T}$	NA	A CONTRACT	TT	NA	NA	NA
1250000	NA	- CON.		NA	1.1 1	-O <u>N</u> -	NA	NA	NA

WWW.100Y.COM.TW

.100Y.COM.TW

WWW.100Y.COM.TW

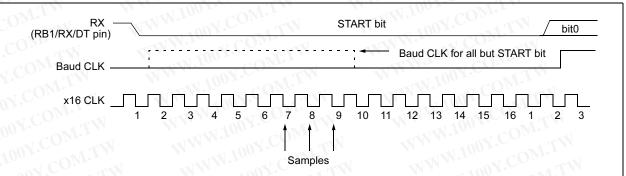
WWW.100Y.COM.TW

WW.100Y.COM.TW

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WY.100Y.COM.TW

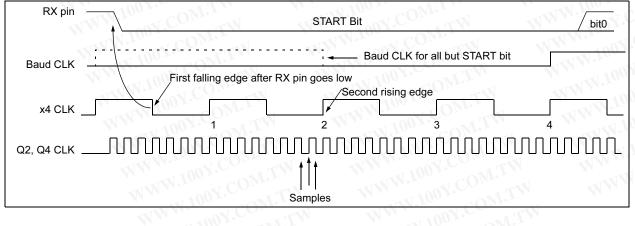
WWW.100Y.COM.TW

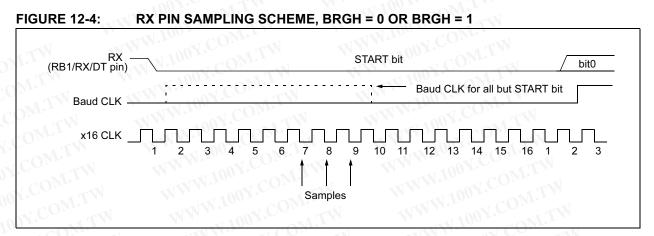

OOY.COM.TW

WWW

The data on the RB1/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


### FIGURE 12-1: RX PIN SAMPLING SCHEME. BRGH = 0




## FIGURE 12-2: RX PIN SAMPLING SCHEME, BRGH = 1



## FIGURE 12-3: RX PIN SAMPLING SCHEME, BRGH = 1





# 12.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits and one STOP bit). The most common data format is 8-bit. A dedicated 8-bit baud rate generator is used to derive baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

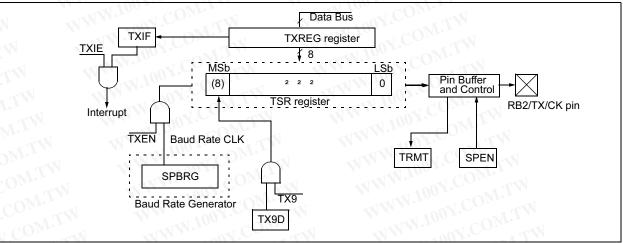
The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- · Asynchronous Receiver

### 12.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 12-5. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in soft-

ware. It will RESET only when new data is loaded into the TXREG register. While flag bit TXIF indicated the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. STATUS bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.


Note 1: The TSR register is not mapped in data	a
memory so it is not available to the user.	

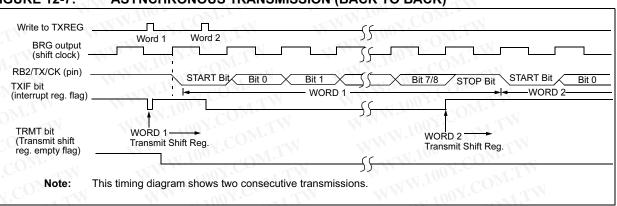
2: Flag bit TXIF is set when enable bit TXEN is set.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 12-5). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 12-7). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will RESET the transmitter. As a result the RB2/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit maybe loaded in the TSR register.

#### FIGURE 12-5: USART TRANSMIT BLOCK DIAGRAM




Follow these steps when setting up an Asynchronous Transmission:

- 1. TRISB<1> bit needs to be set and TRISB<2> bit cleared in order to configure pins RB2/TX/CK and RB1/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter pins.
- Initialize the SPBRG register for the appropriate 2. baud rate. If a high-speed baud rate is desired, set bit BRGH. (Section 12.1)
- 3. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit 4. TXIE.
- If 9-bit transmission is desired, then set transmit 5. bit TX9.
- 6. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- If 9-bit transmission is selected, the ninth bit 7. should be loaded in bit TX9D.
- 8. Load data to the TXREG register (starts transmission).

材料 886-3-5753170 特 力 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

e to TXREG	Word 1		A WAW	
RG output shift clock)			لمتستعير	N 1001.CO
ГХ/СК (pin)	START Bit Bit 0		it 7/8 STOP Bit	W.100X.CU
[:] bit nsmit buffer empty flag)	TWI DI COM TW	WORD 1		WW.100Y.C
IT bit nsmit shift	♦ WORD 1 ——► Transmit Shift Reg		OMTW	MMM 100X
empty flag)	WWW.100Y.CONLITY	55	CONTW	MMM.To.

#### **ASYNCHRONOUS TRANSMISSION** FIGURE 12-6:



#### **FIGURE 12-7**: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

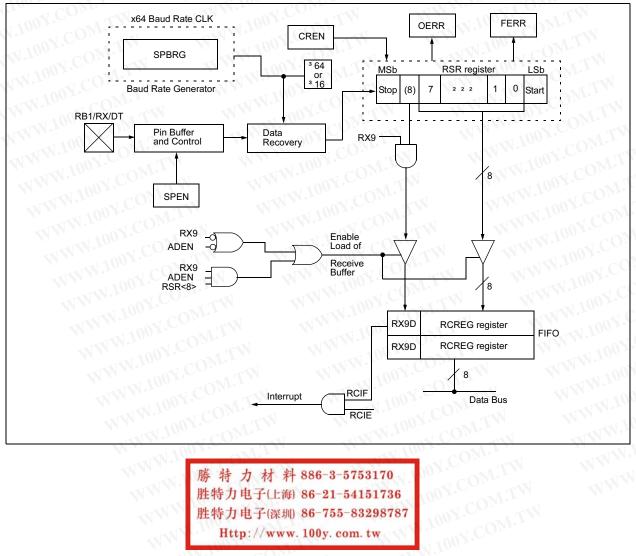
#### **TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h T	TXREG	USART Tra	nsmit dat	a register	N.100-	100	1.1		WW	0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	<u>y.                                    </u>	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	N.CU	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h S	SPBRG	Baud Rate	Generato	r Register	11.10		ON.	×1		0000 0000	0000 0000

WWW.100Y.COM.TW

料 886-3-5753170 勝 特 力材 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW


### 12.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 12-8. The data is received on the RB1/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

When Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read-only bit, which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register, (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG, will load bits RX9D and FERR with new values, therefore it is essential for the user to read the RCSTA register before reading RCREG register in order not to lose the old FERR and RX9D information.

## FIGURE 12-8: USART RECEIVE BLOCK DIAGRAM



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

## FIGURE 12-9: ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT

RCV SHIFT REG	MY. CC. CM	CC D		
RCV BUFFER REG	BIT8 = 0, DATA BYTE			
READ RCV BUFFER REG RCREG	<u> </u>	S S	REG	
RCIF INTERRUPT FLAG)	<u> </u>	<u> </u>		<b>/</b>
ADEN = 1 ^{'<u>1'</u> ADDRESS MATCH ENABLE)}	55	55	<u> </u>	<u>'1</u>

### FIGURE 12-10: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

RCV SHIFT REG	BIT8 = 1, ADDRESS BYTE	BIT8 = 0, DATA BYTE		<u>P.M.</u>
READ RCV BUFFER REG RCREG		<u></u>		COM.
RCIF INTERRUPT FLAG)	<u>_</u>	<u></u>	<u>S</u>	v.coM
ADEN = 1 <u>'1'</u> ADDRESS MATCH ENABLE)		<u>-</u>		<u>s.cOi</u>

# FIGURE 12-11: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST FOLLOWED BY VALID DATA BYTE

RCV SHIFT REG RCV BUFFER REG BIT8 = 1, ADDRESS BYTE BUFFER REG RCREG       WORD 1 BIT8 = 0, DATA BYTE RCREG       WORD 2 RCREG         RCIF (INTERRUPT FLAG)       S       S         ADEN (ADDRESS MATCH ENABLE)       S       S         Note:       This timing diagram shows an address byte followed by an data byte. The data byte is read into th (Receive Buffer) because ADEN was updated after an address match, and was cleared to a '0', so th of the Receive Shift Register (RSR) are read into the Receive Buffer regardless of the value of Bit 8.	N-100	WW	STOP BIT	ВІТО С С ХВІТВ		віто Хвіт1 Х 5 Хв		RB1/RX/DT (F
BIT8 = 1, ADDRESS BYTE       WORD 1 RCREG       BIT8 = 0, DATA BYTE       WORD 2 RCREG         RCIF (INTERRUPT FLAG)       S       S       S         ADEN (ADDRESS MATCH ENABLE)       S       S       S         Note:       This timing diagram shows an address byte followed by an data byte. The data byte is read into th (Receive Buffer) because ADEN was updated after an address match, and was cleared to a '0', so th	NW.IO	<u> </u>	_Γ(<	$\langle \zeta \rangle$	<b>İ</b>	5	-	REG
Note:       This timing diagram shows an address byte followed by an data byte. The data byte is read into the (Receive Buffer) because ADEN was updated after an address match, and was cleared to a '0', so the followed by an data byte. The data byte is read into the context of the		))	WORD 2	BIT8 = 0, DATA BYTE	BYTE WORD 1	BIT8 = 1, ADDRESS	ER REG	RCV BUFF
(INTERRUPT FLAG)       )         ADEN (ADDRESS MATCH ENABLE)       )         Note:       This timing diagram shows an address byte followed by an data byte. The data byte is read into th (Receive Buffer) because ADEN was updated after an address match, and was cleared to a '0', so th		,5	S S	<u> </u>		<u> </u>		BUFFER R
(ADDRESS MATCH )) ENABLE) Note: This timing diagram shows an address byte followed by an data byte. The data byte is read into the (Receive Buffer) because ADEN was updated after an address match, and was cleared to a '0', so the followed by the state of the stateo	-	» <del>۲</del>	<u> </u>	<u> </u>	/	<u> </u>	PT F <u>LAG</u> )	
(Receive Buffer) because ADEN was updated after an address match, and was cleared to a '0', so the	W	λ <del>ς</del>	<u> </u>	<u> </u>	NTW	55	S MATCH	(ADDRESS
	he conter	to a '0', so the	nd was cleared to	an address match, a	vas updated after	fer) because ADEN w	(Receive B	Note:
		WT.Mo.	100Y.CO	WW.	COMPT	WWW.100Y		

Follow these steps when setting up an Asynchronous Reception:

- 1. TRISB<1> bit needs to be set and TRISB<2> bit cleared in order to configure pins RB2/TX/CK and RB1/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter pins.
- 2. Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH. (Section 12.1).
- 3. Enable the asynchronous serial port by clearing bit SYNC, and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	A TTO	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive d	lata regis	ter	N.100'	CON			0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	007-0	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	N.P.	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	ator Regis	ster	N.10		M. L	«1	0000 0000	0000 0000

### TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

# 12.3 USART Address Detect Function

### 12.3.1 USART 9-BIT RECEIVER WITH ADDRESS DETECT

When the RX9 bit is set in the RCSTA register, 9 bits are received and the ninth bit is placed in the RX9D bit of the RCSTA register. The USART module has a special provision for multi-processor communication. Multiprocessor communication is enabled by setting the ADEN bit (RCSTA<3>) along with the RX9 bit. The port is now programmed such that when the last bit is received, the contents of the receive shift register (RSR) are transferred to the receive buffer, the ninth bit of the RSR (RSR<8>) is transferred to RX9D, and the receive interrupt is set if and only if RSR<8> = 1. This feature can be used in a multi-processor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by setting the ninth bit (RSR<8>) to a '1' (instead of a '0' for a data byte). If the ADEN and RX9 bits are set in the slave's RCSTA register, enabling multiprocessor communication, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave to be interrupted only by addresses, so that the slave can examine the received byte to see if it is being addressed. The addressed slave will then clear its ADEN bit and prepare to receive data bytes from the master.

When ADEN is enabled (='1'), all data bytes are ignored. Following the STOP bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost. The ADEN bit will only take effect when the receiver is configured in 9-bit mode (RX9 = '1'). When ADEN is disabled (='0'), all data bytes are received and the 9th bit can be used as the parity bit.

The receive block diagram is shown in Figure 12-8.

Reception is enabled by setting bit CREN (RCSTA<4>).

# 12.3.1.1 Setting up 9-bit mode with Address Detect

Follow these steps when setting up Asynchronous Reception with Address Detect Enabled:

- TRISB<1> bit needs to be set and TRISB<2> bit cleared in order to configure pins RB2/TX/CK and RB1/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter pins.
- 2. Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH.
- 3. Enable asynchronous communication by setting or clearing bit SYNC and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. Set bit RX9 to enable 9-bit reception.
- 6. Set ADEN to enable address detect.
- 7. Enable the reception by setting enable bit CREN or SREN.
- 8. Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- 9. Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- 10. If any error occurred, clear the error by clearing enable bit CREN if it was already set.
- If the device has been addressed (RSR<8> = '1' with address match enabled), clear the ADEN and RCIF bits to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART	Receive	data regi	ster			N.10		0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	N	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG			Bau	d Rate G	enerator l	Register	Win	Inn	0000 0000	0000 0000

## TABLE 12-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.



## 12.4 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner, (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RB2/TX/CK and RB1/RX/DT I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

### 12.4.1 USART SYNCHRONOUS MASTER TRANSMISSION

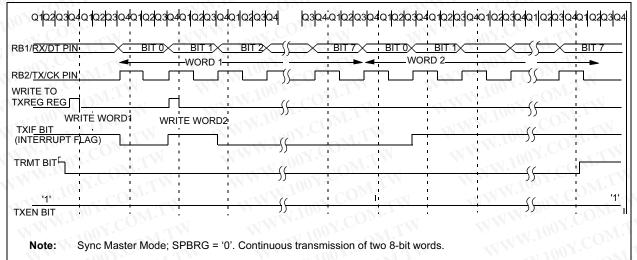
The USART transmitter block diagram is shown in Figure 12-5. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG is empty and interrupt bit, TXIF (PIR1<4>) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will RESET only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 12-12). The transmission can also be started by first loading the TXREG register and then setting bit TXEN (Figure 12-13). This is advantageous when slow baud rates are selected, since the BRG is kept in RESET when bits TXEN, CREN, and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing enable bit TXEN, during a transmission, will cause the transmission to be aborted and will RESET the transmitter. The DT and CK pins will revert to hiimpedance. If either bit CREN or bit SREN is set, during a transmission, the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic however is not RESET although it is disconnected from the pins. In order to RESET the transmitter, the user has to clear bit TXEN. If bit SREN is set (to interrupt an on-going transmission and receive a single word), then after the single word is received, bit SREN will be cleared and the serial port will revert back to transmitting since bit TXEN is still set. The DT line will immediately switch from hi-impedance Receive mode to transmit and start driving. To avoid this, bit TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR was empty and the TXREG was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.

Follow these steps when setting up a Synchronous Master Transmission:


- 1. TRISB<1> bit needs to be set and TRISB<2> bit cleared in order to configure pins RB2/TX/CK and RB1/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter pins.
- 2. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 4. If interrupts are desired, then set enable bit TXIE.
- 5. If 9-bit transmission is desired, then set bit TX9.
- 6. Enable the transmission by setting bit TXEN.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 8. Start transmission by loading data to the TXREG register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	a -	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART T	Transmit	data reg	jister	N	AN.	10	N.C.	0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	~~ <del>1</del>	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	<u> </u>	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	te Gener	rator Reg	gister	NT.			1001.0	0000 0000	0000 0000

### TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.

## FIGURE 12-12: SYNCHRONOUS TRANSMISSION



## FIGURE 12-13: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

RB2/TX/CK PIN	
WRITE TO TXREG REG	
TXIF BIT	
	TOTAL WALLON CONTRACT WALLONG
TRMT BIT	
TXEN BIT	(N.COMMENT NOV NOV NOV NOV NOV
N/	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Http://www.100y.com.tw

## 12.4.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RB1/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is RESET by the hardware. In this case it is RESET when the RCREG register has been read and is empty. The RCREG is a double buffered register, (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D

V.100Y.CON

with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Follow these steps when setting up a Synchronous Master Reception:

- 1. TRISB<1> bit needs to be set and TRISB<2> bit cleared in order to configure pins RB2/TX/CK and RB1/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter pins.
- 2. Initialize the SPBRG register for the appropriate baud rate. (Section 12.1)
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, then set enable bit RCIE.
- 6. If 9-bit reception is desired, then set bit RX9.
- 7. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART I	Receive	data reg	ister	NW V	Yoo.	COL	WT	0000 0000	0000 0000
8Ch	PIE1	EEPIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	M.	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	ite Gene	rator Re	gister	NN	100	N.Co	WTA	0000 0000	0000 0000

## TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

RB1/RX/DT PIN	ВІТС			BIT3		ВІТ	ВІТ6		÷ 
B2/TX/CK PIN					J.		<u> </u>		, , ,
	N N N	1.1001	<u>co^{M.1}</u>			NN 100	Y COM		;
	WW	W.100	A.COM.	W		WW.Lo	ON.CO	WT	, , ,
REN BIT		M.Too	N.CON	WT		NMM.	. 00X.CC	NT N	
REN BIT '0'		WALL	N.CO	WT .	 	WWW	1007.0	WTI	;
CIF BIT NTERRUPT)		N.W.W.		DVI.		VININ		COM. N	; ,
EAD	1 1 1	WWW		OVI.	N	WW	4.100	COM.	ά.
XREG			1.100	coM.			W.Jos	- CON.	

# FIGURE 12-14: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

## 12.5 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RB2/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

### 12.5.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous Master and Slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Transmission:

- 1. TRISB<1> bit needs to be set and TRISB<2> bit cleared in order to configure pins RB2/TX/CK and RB1/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter pins.
- 2. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 3. Clear bits CREN and SREN.
- 4. If interrupts are desired, then set enable bit TXIE.
- 5. If 9-bit transmission is desired, then set bit TX9.
- 6. Enable the transmission by setting enable bit TXEN.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 8. Start transmission by loading data to the TXREG register.

## 12.5.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Mlave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in Slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Reception:

1. TRISB<1> bit needs to be set and TRISB<2> bit cleared in order to configure pins RB2/TX/CK and RB1/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter pins.

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. To enable reception, set enable bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART T	Transmit	data reg	gister		OM.		WW	0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	7 <u>00-</u> .	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	1 CON	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	te Gene	rator Re	gister	1.1.	COM.	III	1	0000 0000	0000 0000

### TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

### TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	W.	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART	Receive	data reg	ister	MM.	100	1.00	WT	0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	N ID	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	<u> </u>	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	te Gene	rator Re	gister	N.	11	01.0	WT.M.	0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM

WWW.100X.

WWW.100Y.COM.T

NOTES:

WWW.100Y.COM.TW WWW.100Y.COM.TW 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

V.100Y.COM.TW

WWW.100Y

COM.TW

EW.100Y.COM.TW

WW.100X.COM.TW

# 13.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers (SFRs). There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2 (Not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC16F627A/628A devices have 128 bytes of data EEPROM with an address range from 0h to 7Fh. PIC16F648A device has 256 bytes of data EEPROM with an address range from 0h to FFh. The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The writetime will vary with voltage and temperature as well as from chip to chip. Please refer to AC specifications for exact limits.

When the device is code protected, the CPU can continue to read and write the data EEPROM memory. A device programmer can no longer access this memory.

Additional information on the Data EEPROM is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

# REGISTER 13-1: EEDATA REGISTER (ADDRESS: 9Ah)

R/W-x 📢	R/W-x						
EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0
bit 7	WW.	N.CC	M.	WW.	1.10	COM.	bit 0

### bit 7-0

**EEDATn**: Byte value to write to or read from Data EEPROM memory location.

Legend:	W.L. OV.COM.	WWWW. OOY.COM TY
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

REGISTER 13-2:

### EEADR REGISTER (ADDRESS: 9Bh)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EADR7	EADR6	EADR5	EADR4	EADR3	EADR2	EADR1	EADR0
bit 7	W	MM.	1100Y.C	WT.I.		0/ 10	bit 0

bit 7 PIC1

PIC16F627A/628A - Unimplemented Address: Must be set to '0' PIC16F648A - EEADR: Set to '1' specifies top 128 locations (128-256) of EEPROM Read/Write Operation

bit 6-0 **EEADR**: Specifies one of 128 locations of EEPROM Read/Write Operation

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

# 13.1 EEADR

The PIC16F648A EEADR register addresses 256 bytes of data EEPROM. All eight bits in the register (EEADR<7:0>) are required.

The PIC16F627A/628A EEADR register addresses only the first 128 bytes of data EEPROM so only seven of the eight bits in the register (EEADR<6:0>) are required. The upper bit is address decoded. This means that this bit should always be '0' to ensure that the address is in the 128 byte memory space.

## 13.2 EECON1 AND EECON2 REGISTERS

EECON1 is the control register with four low order bits physically implemented. The upper-four bits are nonexistent and read as '0's. Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a  $\overline{\text{MCLR}}$  Reset or a WDT Time out Reset during normal operation. In these situations, following RESET, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATA and EEADR registers.

Interrupt flag bit EEIF in the PIR1 register is set when write is complete. This bit must be cleared in software.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the Data EEPROM write sequence.

## REGISTER 13-3: EECON1 REGISTER (ADDRESS: 9Ch) DEVICES

	U-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0
	<u></u>	<u></u>	N.100	CO ^A	WRERR	WREN	WR	RD
	bit 7	Mr.	W100	T.MOD		WITTEN!	001.	bit (
t 7-4	Unimpleme	ented: Read	as '0'					
bit 3	WRERR: EI	EPROM Err	or Flag bit					
		ration or BC	OR Reset)	MY.CO	(any MCLR F	Reset, any W	/DT Reset	during nor
t 2 100	WREN: EEF	PROM Write	e Enable bi	t 100 ^{1.0}				
	1 = Allows	write cycles						
	0 = Inhibits	write to the	data EEPF	ROM				
bit 1								
t 1	WR: Write C	Control bit						
NWN	1 = initiates can only	a write cycl y be set (no	t cleared) i	n software.	v hardware on	ce write is c	omplete. ⊺	Γhe WR bit
	1 = initiates can only 0 = Write cy	a write cycl y be set (no ycle to the d	t cleared) i			ce write is c	omplete. 7	Γhe WR bit
t 1 t 0	1 = initiates can only 0 = Write cy <b>RD</b> : Read C	a write cycl y be set (no ycle to the d Control bit	t cleared) i ata EEPRO	n software. OM is comple	ete		MM	
	1 = initiates can only 0 = Write cy <b>RD</b> : Read C 1 = Initiates can only	a write cycl y be set (no ycle to the d control bit an EEPRO y be set (no	t cleared) i ata EEPRO M read (re t cleared) i	n software. DM is comple ad takes one n software).			MM	
	1 = initiates can only 0 = Write cy <b>RD</b> : Read C 1 = Initiates	a write cycl y be set (no ycle to the d control bit an EEPRO y be set (no	t cleared) i ata EEPRO M read (re t cleared) i	n software. DM is comple ad takes one n software).	ete		MM	
	1 = initiates can only 0 = Write cy <b>RD</b> : Read C 1 = Initiates can only 0 = Does no	a write cycl y be set (no ycle to the d control bit an EEPRO y be set (no	t cleared) i ata EEPRO M read (re t cleared) i	n software. DM is comple ad takes one n software).	ete		MM	
	1 = initiates can only 0 = Write cy <b>RD</b> : Read C 1 = Initiates can only	a write cycl y be set (no ycle to the d control bit an EEPRO y be set (no	t cleared) i ata EEPRO M read (re t cleared) i	n software. DM is comple ad takes one n software).	ete		MM	
	1 = initiates can only 0 = Write cy <b>RD</b> : Read C 1 = Initiates can only 0 = Does no	a write cycl y be set (no ycle to the d Control bit an EEPRO y be set (no ot initiate an	t cleared) i ata EEPR( M read (re t cleared) i EEPROM	n software. DM is comple ad takes one n software).	ete e cycle. RD is e		ardware. 1	he RD bit

## 13.3 READING THE EEPROM DATA MEMORY

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

### EXAMPLE 13-1: DATA EEPROM READ

BSF	STATUS, RPO	;Bank 1	
MOVLW	CONFIG_ADDR	WWW.	
MOVWF	EEADR	;Address to read	
BSF	EECON1, RD	;EE Read	
MOVF	EEDATA, W	;W = EEDATA	
BCF	STATUS, RPO	;Bank 0	

## 13.4 WRITING TO THE EEPROM DATA MEMORY

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

### EXAMPLE 13-2: DATA EEPROM WRITE

-				
N	11.	BSF	STATUS, RPO	;Bank 1
		BSF	EECON1, WREN	;Enable write
		BCF	INTCON, GIE	;Disable INTs.
	al S	MOVLW	55h	;
		MOVWF	EECON2	;Write 55h
	dui	MOVLW	AAh	;
	Sec	MOVLW MOVWF	EECON2	;Write AAh
		BSF	EECON1,WR	;Set WR bit
				;begin write
		BSF INT	CON, GIE	;Enable INTs.
1				

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number what is not equal to the required cycles to execute the required sequence will cause the data not to be written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit in the PIR1 registers must be cleared by software.

# 13.5 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 13-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

### EXAMPLE 13-3: WRITE VERIFY

BSF STATUS, RP0;Bank 1
MOVF EEDATA, W
BSF EECON1, RD ;Read the
;value written
; WWW. OV.COM TW
;Is the value written (in W reg) and
;read (in EEDATA) the same?
; COMPANY
SUBWF EEDATA, W ;
BTFSS STATUS, Z ;Is difference 0?
GOTO WRITE_ERR ;NO, Write error
: ;YES, Good write
: ;Continue program
WT WWWWWWWW

# 13.6 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also when enabled, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence, and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

#### 13.7 Using the Data EEPROM

The data EEPROM is a high endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in FLASH program memory.

A simple data EEPROM refresh routine is shown in Example 13-4.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124.

#### EXAMPLE 13-4: DATA EEPROM REFRESH ROUTINE

N.C.	clrf	EEADR	;	Start at address 0
AT CC	bcf	EECON1,CFGS	;	Set for memory
01	bcf	EECON1, EEPGD	;	Set for Data EEPROM
V.C	bcf	INTCON, GIE	;	Disable interrupts
00 1	bsf	EECON1, WREN	;	Enable writes
Loop			;	Loop to refresh array
700-	bsf	EECON1, RD	;	Read current address
1001	movlw	55h	;	
1.10	movwf	EECON2	;	Write 55h
-1100	movlw	AAh	;	
N.10	movwf	EECON2	;	Write AAh
	bsf	EECON1,WR	;	Set WR bit to begin write
	btfsc	EECON1,WR	;	Wait for write to complete
. WALL	bra	\$-2		
	incfsz	EEADR, F	;	Increment address
WIT	bra	Loop	;	Not zero, do it again
	bcf	EECON1, WREN	;	Disable writes
N	bsf	INTCON, GIE	;	Enable interrupts
	N		-	

#### DATA EEPROM OPERATION 13.8 **DURING CODE PROTECT**

When the device is code protected, the CPU is able to read and write data to the Data EEPROM.

### TABLE 13-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	T	Bit 0	Value on Power-on Reset	Value on all other RESETS
9Ah	EEDATA	EEPROM	data regi	ister		MA.	1007		11	N.4	XXXX XXXX	นนนน นนนน
9Bh	EEADR	EEPROM	address	register	[	Wire	W	V.CUr	-	N.	XXXX XXXX	นนนน นนนน
9Ch	EECON1			$\Lambda \rightarrow 1$		WRERR	WREN	WR	1.	RD	x000	q000
9Dh	EECON2 ⁽¹⁾	EEPROM	control re	eaister 2	N			M.C		NT.	·····	· · · · · · · · · · · · · · · · · · ·

# 14.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16F627A/628A/648A family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving Operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. RESET
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Brown-out Reset (BOR)
- 7. Interrupts
- 8. Watchdog Timer (WDT)
- 9. SLEEP
- 10. Code protection
- 11. ID Locations
- 12. In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F627A/628A/648A has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. There is also circuitry to RESET the device if a Brown-out occurs. With these three functions on-chip, most applications need no external RESET circuitry.

The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

## 14.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special configuration memory space (2000h – 3FFFh), which can be accessed only during programming. See Programming Specification (DS41196) for additional information.

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WW.100Y.COM.

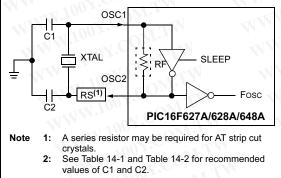
## **REGISTER 14-1: CONFIGURATION WORD**

<ul> <li>G. C. F. LASH Program Memory Code Protection bit⁴⁹</li> <li>a. Some protection off</li> <li>b. Some protection off</li> <li>b. Some protection off</li> <li>c. Some protection of soff all protection off soff all protection of protectio</li></ul>	CP	CPD LVP BOREN M	CLRE FOSC2 PWRTE WDTE F0SC1 F0SC0
PICLEFERADA <ul> <li>Code protection off 0 = 00001 to 0FFFh code protected PICLEFERADA 1 = Code protection off 0 = 00001 to 00FFh code protected PICLEFERADA 1 = Code protection off 0 = 0000 to 00FFh code protected</li> </ul> <ul>             Windlemented: Read as '0'             CPD: Data Code Protection bit⁽³⁾ = Data memory code protection off 0 = Data memory code protection 0 = Data memory code protection off 0 = BotReset enable bit '1' 1 = BOR Reset enable bit '1' 1 = BOR Reset enable bit '1' 1 = BOR Reset enable bit '1' 1 = POR Reset enable bit '1' 1 = POR Reset enable bit '1' 1 = POR Stabilder WDTEN: Which dog Timer Enable bit '1' 1 = POR Consolitators Selection bits⁽⁴⁾ 1 = MC consolitators in GAGIOSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 1 = RC consolitators in Data menta RA8/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 1 = RC consolitors i'10 function on RA8/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 1 = RC consolitors i'10 function on RA8/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 1 = RC consolitors i'10 function on RA8/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/O</ul>	oit 13	WWW. OV.CON TW WW	bit 0
PICIEFEZZAI 9 = Code protection off 0 = 0000h to 07FFh code protected         PICEFEZZAI 9 = 0000h to 07FFh code protected         PICEFEZZAI 9 = 0000h to 07Fh code protected         PICEFEZZAI 9 = Data memory code protected         PICEFEZZAI 9 = DOR Reset Inable 9 = DOR Reset Inable DOR Reset Inable DOR RESETED NOT 9 = IntroSC coelliator Stelents NEGOSC2/CLKOUT pn, In Unition on RA/OSC/CLKIN 9 = INTOSC coelliator CLKOUT Innotion on RA/OSC/CLKOUT pn, IN Unition on RA/OSC/CLKIN 9 = INTOSC coelliator CLKOUT Innotion on RA/OSC/CLKOUT pn, IN Unition on RA/OSC/CLKIN 9 = INTOSC coelliator CLKOUT Innotion on RA/OSC/CLKOUT pn, IN Unitio	vit 13:	(PIC16F648A) 1 = Code protection off	
<ul> <li>a = 0000h to 03FFh code protected</li> <li>Set Unimplemented: Read as 0'</li> <li>CPD: Data Code Protection bit⁽³⁾</li> <li>a - Data memory code protected</li> <li>a - Data memory code protection off</li> <li>b - Data memory code protection off</li> <li>a - Data memory code protection off</li> <li>b - Data memory code protection off</li> <li>c - R54/POM in has PGM function. Jow voltage programming enabled</li> <li>c - BOR Rest enabled</li> <li>a - BOR Rest enabled</li> <li>a - BOR Rest enabled</li> <li>a - BOR Rest enabled</li> <li>b - Dor Reset disabled</li> <li>c - RAS/MCL pi function is election.</li> <li>c - RAS/MCL pi function is digital Input. MCLR internally lied to toto</li> <li>c - PWRT disabled</li> <li>c - WWRT enabled</li> <li>a - DVTEN: Watchdog Timer Enable bit ⁽¹⁾</li> <li>a - Rose Callator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a - RC scalitor: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a - RC scalitor: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a - RC scalitor: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a - RC scalitor: CLKOUT function on RA6/OSC2/CLKOUT pin, Noticon on RA7/OSC1/CLKIN</li> <li>a - RC scalitor: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a - RC scalitor: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a - RC scalitor: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a - Socialitor: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a - Socialitor: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <l< td=""><td></td><td>(PIC16F628A) 1 = Code protection off 0 = 0000h to 07FFh code protected (PIC16F627A)</td><td>WW.100Y.COM.TW</td></l<></ul>		(PIC16F628A) 1 = Code protection off 0 = 0000h to 07FFh code protected (PIC16F627A)	WW.100Y.COM.TW
<ul> <li>2.3. Onimplemented. Read as 0</li> <li>CPD: Data Code Protection off 1 = Data memory code protection off 9 = Dor Reset enabled 9 = DOR Reset disabled 9 = PWRT disabled 9 = PWRT disabled 9 = WDT Ensible dit 10 1 = RC oscillator CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 10 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 10 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, 10 function on RA7/OSC1/CLKIN 10 = NTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, 10 function on RA7/OSC1/CLKIN 10 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, 10 function on RA7/OSC1/CLKIN 10 = NTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, 10 function on RA7/OSC1/CLKIN 10 = NTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, 10 function on RA7/OSC1/CLKIN 10 = NTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, 10 function on RA7/OSC1/CLKIN 10 = NTOSC oscillator: CLKOUT f</li></ul>			
<ul> <li>CPD: Data Code Protection bit⁽³⁾</li> <li>1 = Data memory code protection of 0 = Data memory code protected</li> <li>LVP: Low Voltage Programming Enable 1 = R84/FGM pin has PGM function, low voltage programming enabled 0 = R84/FGM is digital I/O, HV on MCLR must be used for programming 0 = R84/FGM is digital I/O, HV on MCLR must be used for programming 0 = R84/FGM is digital I/O, HV on MCLR must be used for programming 0 = R84/FGM is digital I/O, HV on MCLR must be used for programming 0 = R84/FGM is digital I/O, HV on MCLR must be used for programming 0 = R84/FGM is digital I/O, HV on MCLR must be used for programming 0 = R84/FGM is digital I/O, HV on MCLR must be used for programming 1 = RAS/MCLR pin function is MCLR 1 = RAS/MCLR pin function select 1 = RAS/MCLR pin function is MCLR 0 = RAS/MCLR pin function is MCLR 1 = PWRT disabled 0 = FWRT disabled 1 = WWT disabled 1 = WWT disabled 1 = WWT disabled 1 = WWT disabled 1 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 1 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 1 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Notacion on RA7/OSC1/CLKIN 1 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Notacion on RA7/OSC1/CLKIN 1 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Notacion on RA7/OSC1/CLKIN 1 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Notacion on RA7/OSC1/CLKIN 1 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, RA7/OSC1/CLKIN 2 = HS oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 2 = HS oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin RA7/OSC1/CLKIN 2 = HS oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin RA7/OSC1/CLKIN 2 = HS oscillator: CLKOUT function on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 2 = HS oscillator: CLKOUT pin RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 2 = HS oscillator: CLKOUT And RA7/OSC1/CLKIN 2 = HS oscillator: Hgin speed cry</li></ul>	oit 12-9:	Unimplemented: Read as '0'	
<ul> <li>1 = RB4/PGM pin has PGM function. Lew voltage programming enabled 0 = RB4/PGM is digital I/O, HV on MCLR must be used for programming</li> <li>BOREN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOR Reset isabled</li> <li>BOR Reset disabled</li> <li>MCLRE: RA5/MCLR pin function select 1 = RA5/MCLR pin function is MCLR 0 = RA5/MCLR pin function is digital Input, MCLR internally tied to Vop</li> <li>PWRTEN: Power-up Timer Enable bit ⁽¹⁾ 1 = PVRT disabled</li> <li>PWRTEN: Vatchdog Timer Enable bit ⁽¹⁾ 1 = PVRT disabled</li> <li>WDTEN: Watchdog Timer Enable bit 1 = WDT enabled</li> <li>WDTEN: Watchdog Timer Enable bit 1 = WDT disabled</li> <li>III = RC oscillator: Selection bits⁽⁴⁾</li> <li>RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 100 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Nesistor and Capacitor on RA7/OSC1/CLKIN 101 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Nesistor and Capacitor on RA7/OSC1/CLKIN 102 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 103 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 104 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 105 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 106 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, RA7/OSC1/CLKIN 107 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 108 = I: Coscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 109 = I Proscillator: Chystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Chystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: High speed fore the CPb bit, turning the code protection of. See Programming Specification DS41196 for details The endite data EEPROM needs to be buik erased to set the CPb bit, turning the code protection of. See Programming Specification DS41196 fo</li></ul>	oit 8:	1 = Data memory code protection off	
<ul> <li>a BOR Reset enabled</li> <li>a BOR Reset disabled</li> <li>MCLRE: RA5/MCLR pin function is MCLR</li> <li>a RA5/MCLR pin function is MCLR</li> <li>a RA5/MCLR pin function is digital Input, MCLR internally tied to Vop</li> <li>FWRTEN: Power-up Timer Enable bit ⁽¹⁾</li> <li>a PWRT disabled</li> <li>a PWRT enabled</li> <li>WDTEN: Watchdog Timer Enable bit</li> <li>a WDT enabled</li> <li>WDT enabled</li> <li>WDT disabled</li> <li>a WDT disabled</li> <li>a WDT disabled</li> <li>WDT in a control on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>b RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>a RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, No function on RA7/OSC1/CLKIN</li> <li>b RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN</li> <li>c WDT ensitient: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN</li> <li>a ST oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN</li> <li>b H coscillator: Coystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN</li> <li>c H coscillator: Coystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN</li> <li>c H code protection scheme has changed from the code protection off. See Programming Specification DS41196 for details</li> <li>The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See Programming Specification DS41196 for details</li> <li>The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See Programming Specification DS41196 for details</li> <li>When MCLR is asserted in INTOSC mode, the internal clock oscillator i</li></ul>	bit 7:	1 = RB4/PGM pin has PGM function, low voltage programming enabled	
<ul> <li>1 = RAS/MCLR pin function is MCLR 0 = RAS/MCLR pin function is digital Input, MCLR internally tied to Vbb</li> <li><b>PWRTEN:</b> Power-up Timer Enable bit ⁽¹⁾ 1 = PWRT disabled 0 = PWRT enabled</li> <li><b>WDTEN:</b> Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled</li> <li><b>WDTEN:</b> Watchdog Timer Enable bit 1 = WDT enabled</li> <li><b>FOSC2:FOSC0:</b> Oscillator Selection bits⁽⁴⁾</li> <li>111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 100 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Nesistor and Capacitor on RA7/OSC1/CLKIN 101 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 102 = INTOSC oscillator: U/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 103 = HS oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 011 = EC: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 012 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 013 = XT oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 014 = XT oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 015 = LC oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 016 = LC oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 017 = XT oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 018 = 1: Enabling Brown-out Reset does not automatically enable the Power-up Timer (PWRT) the way it did in the PIC16F627/628. The entire FLASH program memory needs to be bulk erased to set the CP bit, turning the code protection off. See Programming Specification DS41196 for details.</li> <li><b>1</b> The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See Programming Specification DS41196 for details.</li> <li><b>2</b> When MCLR is asserted in INTOSC mode, the int</li></ul>	bit 6:	1 = BOR Reset enabled	
<ul> <li>1 = PWRT disabled</li> <li>PWRT enabled</li> <li>WDTEN: Watchdog Timer Enable bit</li> <li>WDT enabled</li> <li>WDT disabled</li> <li>WDT disabled</li> <li>T11 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>10 = RC oscillator: U/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>10 = RC oscillator: U/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>10 = INTOSC oscillator: U/O function on RA6/OSC2/CLKOUT pin, U/O function on RA7/OSC1/CLKIN</li> <li>10 = INTOSC oscillator: U/O function on RA6/OSC2/CLKOUT pin, U/O function on RA7/OSC1/CLKIN</li> <li>01 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, U/O function on RA7/OSC1/CLKIN</li> <li>01 = KT oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT pin A7/OSC1/CLKIN</li> <li>010 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN</li> <li>010 = LP oscillator: Low power crystal on RA6/OSC2/LKOUT and RA7/OSC1/CLKIN</li> <li>000 = LP oscillator: Low power crystal on RA6/OSC2/LKOUT and RA7/OSC1/CLKIN</li> <li>000 = LP oscillator: Compared from the code protection scheme used in the PIC16F627/628.</li> <li>2: The code protection scheme has changed from the code protection off. See Programming Specification DS41196 for details</li> <li>3: The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See Programming Specification DS41196 for details.</li> <li>4: When MCLR is asserted in INTOSC mode, the internal clock oscillator is disabled.</li> </ul>	bit 5:	1 = RA5/MCLR pin function is MCLR	
<ul> <li>1 = WDT enabled 0 = WDT disabled</li> <li>, 1-0: FOSC2:FOSC0: Oscillator Selection bits⁽⁴⁾</li> <li>111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 110 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 101 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 102 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 103 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 104 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 105 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 106 = HS oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 107 = XT oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 108 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 109 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on CA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal on CA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low power crystal oscillator code protection off. See Programming Specification DS41196 for detail</li></ul>	oit 3:	1 = PWRT disabled	
<ul> <li>111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>110 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN</li> <li>101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN</li> <li>100 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN</li> <li>111 = EC: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN</li> <li>010 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN</li> <li>010 = HS oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN</li> <li>010 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN</li> <li>000 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN</li> <li>11 = Enabling Brown-out Reset does not automatically enable the Power-up Timer (PWRT) the way it did in the PIC16F627/628.</li> <li>22 The code protection scheme has changed from the code protection scheme used in the PIC16F627/628. The entire FLASH program memory needs to be bulk erased to set the CP bit, turning the code protection off. See Programming Specification DS41196 for details.</li> <li>33 The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See Programming Specification DS41196 for details.</li> <li>44: When MCLR is asserted in INTOSC mode, the internal clock oscillator is disabled.</li> </ul>	oit 2:	1 = WDT enabled	
<ol> <li>The code protection scheme has changed from the code protection scheme used in the PIC16F627/628. The entire FLASH program memory needs to be bulk erased to set the CP bit, turning the code protection off. See Programming Specification DS41196 for details</li> <li>The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See Programming Specification DS41196 for details.</li> <li>When MCLR is asserted in INTOSC mode, the internal clock oscillator is disabled.</li> </ol>	vit 4, 1-0:	111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resis 110 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and 101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O 100 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O fun 011 = EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1 010 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT 001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/O	d Capacitor on RA7/OSC1/CLKIN /O function on RA7/OSC1/CLKIN ction on RA7/OSC1/CLKIN /CLKIN and RA7/OSC1/CLKIN SC1/CLKIN
end 1002.001.111 1002.001.11	2: 3:	The code protection scheme has changed from the code protection scheme memory needs to be bulk erased to set the CP bit, turning the code protection The entire data EEPROM needs to be bulk erased to set the CPD bit, turning DS411 <u>96 for</u> details.	used in the PIC16F627/628. The entire FLASH program n off. See Programming Specification DS41196 for details. the code protection off. See Programming Specification
	4:	WHEN WOLK IS ASSERTED IN INTOSC MODE, THE INTERNAL CLOCK OSCIIIATOR IS CISA	
Readable bit U = Unimplemented bit read as '0'	egend	WWW. OD.COM TW W	N NOT CONTRACTOR WIND
	= Readab	le bit W = Writable bit U = Unim	plemented bit, read as '0'

WW

# 14.2 Oscillator Configurations

## 14.2.1 OSCILLATOR TYPES


The PIC16F627A/628A/648A can be operated in eight different oscillator options. The user can program three configuration bits (FOSC2 through FOSC0) to select one of these eight modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC External Resistor/Capacitor (2 modes)
- INTOSC Internal Precision Oscillator (2 modes)
- EC External Clock In

# 14.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 14-1). The PIC16F627A/628A/648A oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 14-4).

## FIGURE 14-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

# TABLE 14-1:CAPACITOR SELECTION FOR<br/>CERAMIC RESONATORS

Mode	Freq	OSC1(C1)	OSC2(C2)						
ХТ	455 kHz	22 - 100 pF	22 - 100 pF						
	2.0 MHz	15 - 68 pF	15 - 68 pF						
	4.0 MHz	15 - 68 pF	15 - 68 pF						
HS	8.0 MHz	10 - 68 pF	10 - 68 pF						
	16.0 MHz	10 - 22 pF	10 - 22 pF						
Note:	Higher capacitance increases the stability of the oscil- lator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the res- onator manufacturer for appropriate values of external components.								

# TABLE 14-2:CAPACITOR SELECTION FOR<br/>CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)		
LP	32 kHz	15 - 30 pF	15 - 30 pF		
	200 kHz	0 - 15 pF	0 - 15 pF		
ХТ	100 kHz	68 - 150 pF	150 - 200 pF		
	2 MHz	15 - 30 pF	15 - 30 pF		
	4 MHz	15 - 30 pF	15 - 30 pF		
HS	8 MHz	15 - 30 pF	15 - 30 pF		
	10 MHz	15 - 30 pF	15 - 30 pF		
	20 MHz	15 - 30 pF	15 - 30 pF		
Note:	lator but also ind are for design may be require avoid overdrivin tion. Since each user should con	nce increases the s creases the start-up guidance only. A s d in HS mode as w g crystals with low d crystal has its own sult the crystal mani external component	time. These values eries resistor (RS) vell as XT mode to rive level specifica- characteristics, the ufacturer for appro-		

## 14.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 14-2 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k $\Omega$  resistor provides the negative feedback for stability. The 10 k $\Omega$  potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.



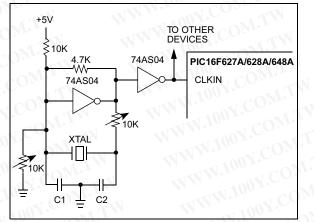
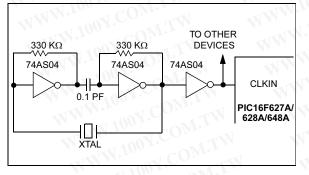
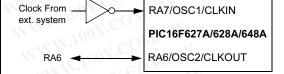




Figure 14-3 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a  $180^{\circ}$  phase shift in a series resonant oscillator circuit. The 330 k $\Omega$  resistors provide the negative feedback to bias the inverters in their linear region.

### FIGURE 14-3: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT



### 14.2.4 PRECISION INTERNAL 4 MHz OSCILLATOR


The internal precision oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5 V and  $25^{\circ}C$ . See Section 17.0, Electrical Specifications, for information on variation over voltage and temperature.

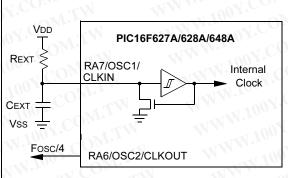
## 14.2.5 EXTERNAL CLOCK IN

For applications where a clock is already available elsewhere, users may directly drive the PIC16F627A/ 628A/648A provided that this external clock source meets the AC/DC timing requirements listed in Section 17.6. Figure 14-4 below shows how an external clock circuit should be configured. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

FIGURE 14-4:

# EXTERNAL CLOCK INPUT OPERATION (EC, HS, XT OR LP OSC CONFIGURATION)




## 14.2.6 RC OSCILLATOR

For applications where precise timing is not a requirement, the RC oscillator option is available. The operation and functionality of the RC oscillator is dependent upon a number of variables. The RC oscillator frequency is a function of:

- · Supply voltage
- Resistor (REXT) and capacitor (CEXT) values
- · Operating temperature.

The oscillator frequency will vary from unit to unit due to normal process parameter variation. The difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to account for the tolerance of the external R and C components. Figure 14-5 shows how the R/C combination is connected.





The RC Oscillator mode has two options that control the unused OSC2 pin. The first allows it to be used as a general purpose I/O port. The other configures the pin as an output providing the Fosc signal (internal clock divided by 4) for test or external synchronization purposes.

# 14.2.7 CLKOUT

The PIC16F627A/628A/648A can be configured to provide a clock out signal by programming the configuration word. The oscillator frequency, divided by 4 can be used for test purposes or to synchronize other logic.

### 14.2.8 SPECIAL FEATURE: DUAL SPEED OSCILLATOR MODES

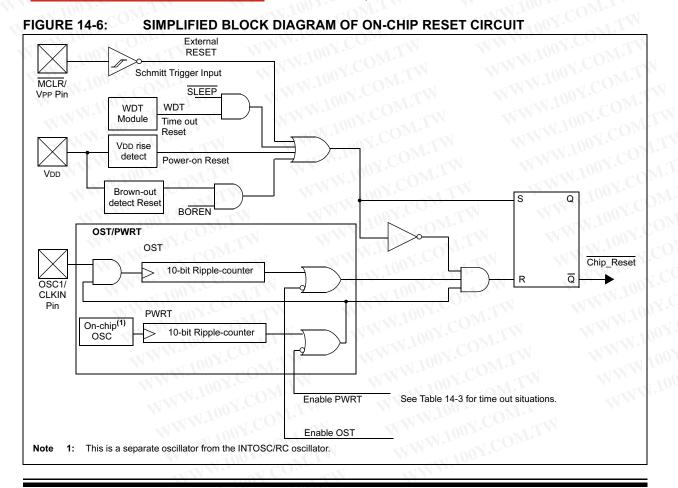
A software programmable dual speed Oscillator mode is provided when the PIC16F627A/628A/648A is configured in the INTOSC Oscillator mode. This feature allows users to dynamically toggle the oscillator speed between 4 MHz and 37 kHz nominal in the INTOSC mode. Applications that require low current power savings, but cannot tolerate putting the part into SLEEP, may use this mode.

There is a time delay associated with the transition between Fast and Slow oscillator speeds. This Oscillator Speed Transition delay consists of two existing clock pulses and eight new speed clock pulses. During this Clock Speed Transition Delay the System Clock is halted causing the processor to be frozen in time. During this delay the Program Counter and the Clock Out stop.

The OSCF bit in the PCON register is used to control Dual Speed mode. See Section 4.2.2.6, Register 4-6.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

# 14.3 RESET


The PIC16F627A/628A/648A differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during SLEEP
- d) WDT Reset (normal operation)
- e) WDT wake-up (SLEEP)
- f) Brown-out Reset (BOR)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a <u>"RESET state" on Power-on Reset, Brown-out Reset,</u> <u>MCLR Reset, WDT Reset and MCLR Reset during</u> SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different RESET situations as indicated in Table 14-4. These bits are used in software to determine the nature of the RESET. See Table 14-7 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 14-6.

The  $\overline{\text{MCLR}}$  Reset path has a noise filter to detect and ignore small pulses. See Table 17-7 for pulse width specification.



© 2002 Microchip Technology Inc.

# 14.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

### 14.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in RESET until VDD has reached a high enough level for proper_operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce an internal RESET when VDD declines.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.

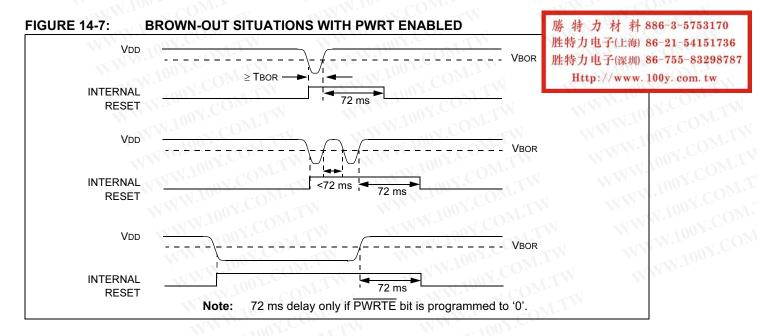
For additional information, refer to Application Note AN607, "Power-up Trouble Shooting".

## 14.4.2 POWER-UP TIMER (PWRT)

The PWRT provides a fixed 72 ms (nominal) time out on power-up (POR) or if enabled from a Brown-out Reset. The PWRT operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the PWRT. It is recommended that the PWRT be enabled when Brown-out Reset is enabled. The Power-Up Time delay will vary from chip to chip and due to VDD, temperature and process variation. See DC parameters Table 17-7 for details.

### 14.4.3 OSCILLATOR START-UP TIMER (OST)

The OST provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. Program execution will not start until the OST time out is complete. This ensures that the crystal oscillator or resonator has started and stabilized.


The OST time out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP. See Table 17-7.

### 14.4.4 BROWN-OUT RESET (BOR)

The PIC16F627A/628A/648A have on-chip BOR circuitry. A configuration bit, BOREN, can disable (if clear/ programmed) or enable (if set) the BOR Reset circuitry. If VDD falls below VBOR for longer than TBOR, the brown-out situation will RESET the chip. A RESET is not guaranteed to occur if VDD falls below VBOR for shorter than TBOR. VBOR and TBOR are defined in Table 17-2 and Table 17-7, respectively.

On any RESET (Power-on, Brown-out, Watchdog, etc.), the chip will remain in RESET until VDD rises above BVDD (see Figure 14-7). The Power-up Timer will now be invoked, if enabled, and will keep the chip in RESET an additional 72 ms.

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-Up Timer will execute a 72 ms RESET. Figure 14-7 shows typical Brown-out situations.



#### 14.4.5 TIME OUT SEQUENCE

On power-up the time out sequence is as follows: First PWRT time out is invoked after POR has expired. Then OST is activated. The total time out will vary based on oscillator configuration and PWRTE bit STATUS. For example, in RC mode with PWRTE bit set (PWRT disabled), there will be no time out at all. Figure 14-8, Figure 14-9 and Figure 14-10 depict time out sequences.

Since the time outs occur from the POR pulse, if MCLR is kept low long enough, the time outs will expire. Then bringing MCLR high will begin execution immediately (see Figure 14-9). This is useful for testing purposes or to synchronize more than one PIC16F627A/628A/ 648A device operating in parallel.

Table 14-6 shows the RESET conditions for some special registers, while Table 14-7 shows the RESET conditions for all the registers.

#### 14.4.6 POWER CONTROL (PCON) STATUS REGISTER

The power control/STATUS register, PCON (address 8Eh) has two bits.

Bit0 is BOR (Brown-out Reset). BOR is unknown on Power-on-Reset. It must then be set by the user and checked on subsequent RESETS to see if BOR = 0 indicating that a brown-out has occurred. The BOR STATUS bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by setting BOREN bit = 0 in the Configuration word).

Bit1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent RESET if POR is '0', it will indicate that a Poweron Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Powe	er-up	Brown-c	out Reset	Wake-up
Oscillator Configuration	<b>PWRTEN</b> = 0	<b>PWRTEN</b> = 1	<b>PWRTEN</b> = 0	<b>PWRTEN = 1</b>	from SLEEF
XT, HS, LP	72 ms + 1024•Tosc	1024•Tosc	72 ms + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC	72 ms	N100 Y. CON	72 ms	N 11 1001	CONTIN
INTOSC	72 ms	1002.00	72 ms	WW 100	6 μs

## TABLE 14-3: TIME OUT IN VARIOUS SITUATIONS

TADLE 44 4.	CTATUS/DCON DITE	AND THEID CICNIEL	CANCE
TABLE 14-4:	STATUS/PCON BITS	AND THEIR SIGNIFT	LANCE

POR	BOR	TO	PD	Condition
0	X	CO11.1	1	Power-on Reset
0	X	0	Х	Illegal, TO is set on POR
0	X	X	0	Illegal, PD is set on POR
1	0.10	Х	Х	Brown-out Reset
1	1	0	u	WDT Reset
1	1	000	0	WDT Wake-up
1	1	u .	u	MCLR Reset during normal operation
1	1	101	0	MCLR Reset during SLEEP

Legend: u = unchanged, x = unknown.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

W.100X.COM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
03h, 83h, 103h, 183h	STATUS	IRP	RP1	RPO	то	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON	NAM.		I.COm	T	OSCF		POR	BOR	1-0x	u-uq

### TABLE 14-5: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition.

Shaded cells are not used by Brown-out Reset.

WWW.100Y

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

### TABLE 14-6: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	1-0x
MCLR Reset during normal operation	000h	000u uuuu	1-uu
MCLR Reset during SLEEP	000h	0001 Ouuu	1-uu
WDT Reset	000h	0000 uuuu	1-uu
WDT Wake-up	PC + 1	uuu0 0uuu	u-uu
Brown-out Reset	000h	000x xuuu	1-u0
Interrupt Wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

**Note 1:** When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw	OM.TW COM.TW COM.TW
DY.COM.TW WWW.10	0X.COM.T
DOY.COM.TW WWW.10	00X.COM.T
DOY.COM.TW WWW.3	100X.COM.

Register	Address	Power-on Reset	<ul> <li>MCLR Reset during normal operation</li> <li>MCLR Reset during SLEEP</li> <li>WDT Reset</li> <li>Brown-out Reset ⁽¹⁾</li> </ul>	<ul> <li>Wake-up from SLEEP⁽⁷⁾ through interrupt</li> <li>Wake-up from SLEEP⁽⁷⁾ through WDT time out</li> </ul>
W	WW	XXXX XXXX	<u>uuuu</u> uuuu	<u>uuuu</u> uuuu
INDF	00h	100 - 00	HILL THE WILLOW	CONT.
TMR0	01h, 101h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	02h, 82h, 102h, 182h	0000 0000	0000 0000	PC + 1 ⁽³⁾
STATUS	03h, 83h, 103h, 183h	0001 1xxx	000q quuu <b>(4)</b>	uuuq 0uuu ⁽⁴⁾
FSR	04h, 84h, 104h, 184h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA	05h	xxxx 0000	xxxx 0000	uuuu uuuu
PORTB	06h, 106h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0Ah, 8Ah, 10Ah, 18Ah	0 0000	0 0000	u uuuu
INTCON	0Bh, 8Bh, 10Bh,18Bh	0000 000x	0000 000u	uuuu uqqq ⁽²⁾
PIR1	0Ch	0000 -000	0000 -000	qqqq -qqq ⁽²⁾
TMR1L	0Eh	XXXX XXXX	uuuu uuuu	<u>uuuu</u> uuuu
TMR1H	0Fh	XXXX XXXX	<u>uuuu</u> uuuu	<u>uuuu</u> uuuu
T1CON	10h	00 0000	uu uuuu ⁽⁶⁾	uu uuuu
TMR2	0 11h	0000 0000	0000 0000	uuuu uuuu
T2CON	12h	-000 0000	-000 0000	-uuu uuuu
CCPR1L	15h	XXXX XXXX	<u>uuuu</u> uuuu	<u>uuuu</u> uuuu
CCPR1H	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	17h	00 0000	00 0000	uu uuuu
RCSTA	18h	0000 000x	0000 000x	uuuu uuuu
TXREG	19h	0000 0000	0000 0000	uuuu uuuu
RCREG	1Ah	0000 0000	0000 0000	uuuu uuuu
CMCON	1Fh	0000 0000	0000 0000	uu uuuu
OPTION	81h,181h	1111 1111	1111 1111	սսսս սսսս
TRISA	85h	1111 1111	1111 1111	uuuu uuuu
TRISB	86h, 186h	1111 1111	1111 1111 00	uuuu uuuu
PIE1	8Ch	0000 -000	0000 -000	uuuu –uuu
PCON	8Eh	1-0x	1-uq ^(1,5)	u-uu
PR2	92h	1111 1111	1111 1111	uuuu uuuu
TXSTA	98h	0000 -010	0000 -010	uuuu -uuu
SPBRG	99h	0000 0000	0000 0000	uuuu uuuu
EEDATA	9Ah	XXXX XXXX	uuuu uuuu	uuuu uuuu
EEADR	9Bh	XXXX XXXX	uuuu uuuu	uuuu uuuu
EECON1	9Ch	x000	q000	uuuu
EECON2	9Dh	100 E. COL	1.1. <u>-</u>	COM NW
VRCON	9Fh	000- 0000	000- 0000	uuu- uuuu ands on condition. ad differently.

# 100%.

WWW.100Y.C

4: See Table 14-6 for RESET value for specific condition.

5: If RESET was due to brown-out, then bit 0 = 0. All other RESETS will cause bit 0 = u.

6: Reset to '--00 0000' on a Brown-out Reset (BOR).

7: Peripherals generating interrupts for wake-up from SLEEP will change the resulting bits in the associated registers.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

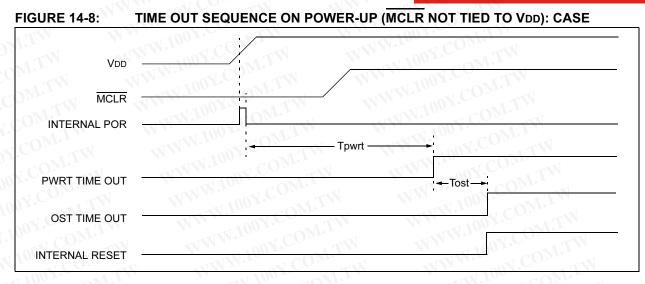
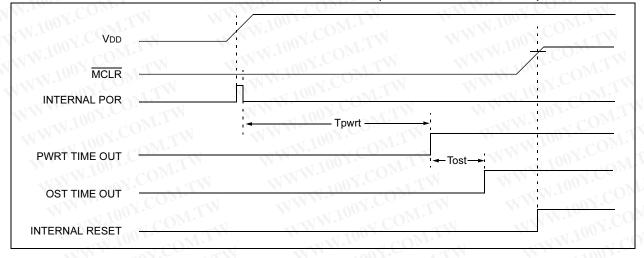
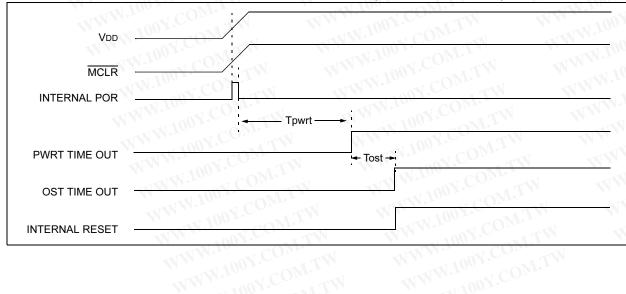
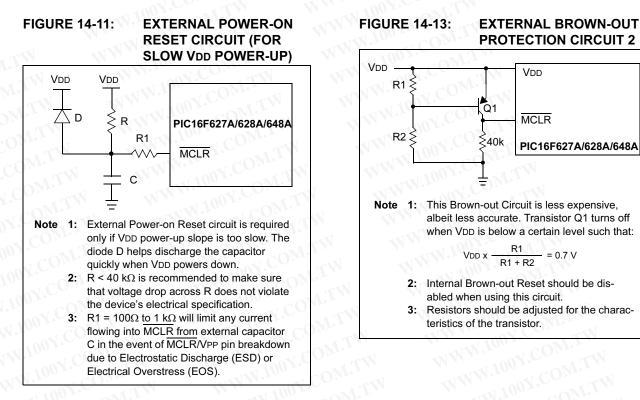
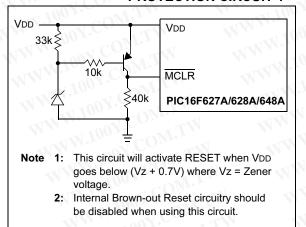






FIGURE 14-9: TIME OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2




# FIGURE 14-10: TIME OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)





### FIGURE 14-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1



WWW.100Y

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WW.100Y.COM

### © 2002 Microchip Technology Inc.

# 14.5 Interrupts

The PIC16F627A/628A/648A has 10 sources of interrupt:

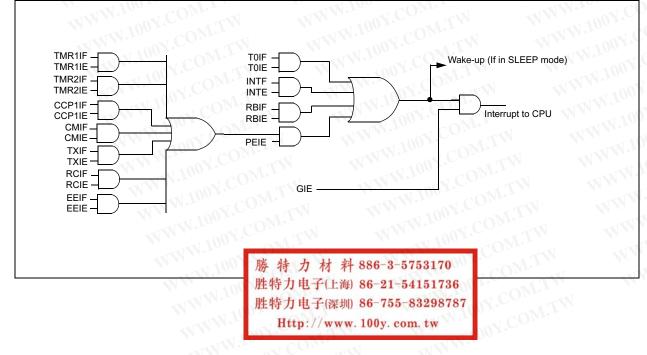
- External Interrupt RB0/INT
- TMR0 Overflow Interrupt
- PORTB Change Interrupts (pins RB7:RB4)
- Comparator Interrupt
- USART Interrupt TX
- USART Interrupt RX
- CCP Interrupt
- TMR1 Overflow Interrupt
- TMR2 Match Interrupt
- Data EEPROM Interrupt

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which reenable RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.


The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 14-15). The latency is the same for one or two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

Note	1:	Individual	interrupt		flag			set
		regardless	of	the	sta	tus	of	their
		correspond	ing m	ask k	bit or t	the G	GIE bi	t.

2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.



# FIGURE 14-14: INTERRUPT LOGIC

#### 14.5.1 **RB0/INT INTERRUPT**

External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 14.8 for details on SLEEP, and Figure 14-17 for timing of wake-up from SLEEP through RB0/INT interrupt.

#### TMR0 INTERRUPT 14.5.2

An overflow (FFh  $\rightarrow$  00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.

#### 14.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note:	If a change on the I/O pin should occur					
	when the read operation is being executed					
NWW.	(starts during the Q2 cycle and ends before					
	the start of the Q3 cycle), then the RBIF					
MM	interrupt flag may not get set.					

#### 14.5.4 COMPARATOR INTERRUPT

See Section 10.6 for complete description of comparator interrupts.

1.100 L. CO	Q1   Q2   Q3   Q4	Q1   Q2   Q3   Q4	Q1   Q2   Q3   Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 C
OSC1					
CLKOUT					1
INT pin	(4)	<b>▼</b> (1)	ov.COM.TW	WWW	TOOX.COM
INTF flag (INTCON<1>)	♥(1) / (5)		Interrupt Latency (2)		N.100X.CON
GIE bit (INTCON<7>)	DY.COM.TW	WWW	1001. COM.1	<u>al al</u>	WW.100 1. CO
INSTRUCTION	FLOW	VWV V	V.IOC N.COM.	N NT	WW. LOOY.C
PC	PC	(	PC+1	X 0004h	X 0005h
Instruction {	Inst (PC)	Inst (PC+1)	W.1001.CO	Inst (0004h)	Inst (0005h)
Instruction {	Inst (PC-1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)

is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: CLKOUT is available in RC and INTOSC Oscillator mode.

4: For minimum width of INT pulse, refer to AC specs.

5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS ⁽¹⁾
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000

### TABLE 14-8: SUMMARY OF INTERRUPT REGISTERS

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

## 14.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This must be implemented in software.

Example 14-2 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in a common memory location (i.e., W_TEMP is defined at 0x70 in Bank 0 and is therefore, accessible at 0xF0, 0x170 and 0x1F0). The Example 14-2:

- · Stores the W register
- Stores the STATUS register
- · Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

### EXAMPLE 14-2: SAVING THE STATUS AND W REGISTERS IN RAM

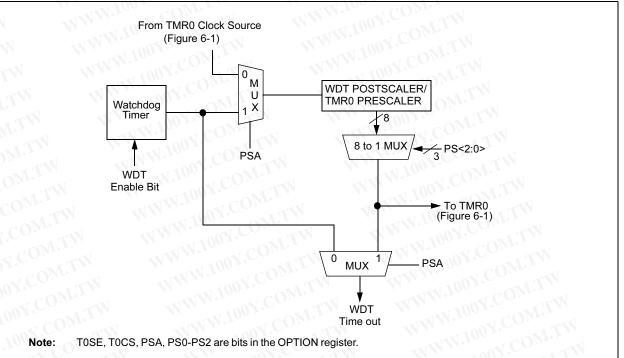
MOVWF V	W_TEMP	;copy W to temp register, ;could be in any bank
SWAPF S	STATUS,W	;swap status to be saved ;into W
BCF S	STATUS,RPO	;change to bank 0 ;regardless of current ;bank
MOVWF S	STATUS_TEMP	;save status to bank 0 ;register
: (	ISR)	WW.100X.COM.TW
SWAPF S	STATUS_TEMP,	W;swap STATUS_TEMP register ;into W, sets bank to original ;state
	STATUS W TEMP,F	<pre>;move W into STATUS register ;swap W TEMP</pre>
		;swap W_TEMP into W

## 14.7 Watchdog Timer (WDT)

The watchdog timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time out generates a device RESET. If the device is in SLEEP mode, a WDT time out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 14.1).

# 14.7.1 WDT PERIOD

The WDT has a nominal time out period of 18 ms (with no prescaler). The time out periods vary with temperature, VDD and process variations from part to part (see DC Specifications, Table 17-7). If longer time out periods are desired, a postscaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time out periods up to 2.3 seconds can be realized.


The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.

The  $\overline{\text{TO}}$  bit in the STATUS register will be cleared upon a Watchdog Timer time out.

### 14.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time out occurs.





#### TABLE 14-9: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other RESETS
2007h	Config. bits	LVP	BOREN	MCLRE	FOSC2	PWRTE	WDTE	FOSC1	FOSC0	uuuu uuuu	uuuu uuuu
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', g = value depends upon condition.

**Note:** Shaded cells are not used by the Watchdog Timer.

#### 14.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the STATUS register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hi-impedance).

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw For lowest current consumption in this mode, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin and the comparators, and VREF should be disabled. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a RESET generated
.WW.	by a WDT time out does not drive MCLR
	pin low.

WW.100

#### 14.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin
- 2. Watchdog Timer wake-up (if WDT was enabled)
- Interrupt from RB0/INT pin, RB Port change, or any Peripheral Interrupt.

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. PD bit, which is set on power-up is cleared when SLEEP is invoked. TO bit is cleared if WDT wake-up occurred.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the correspond-

ing interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will not enter SLEEP. The SLEEP instruction is executed as a NOP instruction.

The WDT is cleared when the device wakes up from SLEEP, regardless of the source of wake-up.

### FIGURE 14-17: WAKE-UP FROM SLEEP THROUGH INTERRUPT

; Q1  Q2  Q3  Q4, Q1  Q2  Q3  Q4 SC1 ロークローク			, Q1 Q2 Q3 Q4 		21  Q2  Q3  Q4 7 /7 /7 /7
	Tost ⁽²⁾				
T pin	N 100	COM-		WW.IV	COM.
ITF flag NTCON<1>)		Interrupt Latend	çy	C IN N. IN	SI COM
IE bit		(Note 2)		10	
NTCON<7>)	Processor in	MY.COM		WWW	NOT.COF
	WWW.	NON.COM	W	WWW	
PC X PC X PC+1	X PC+2	X PC+2	X PC + 2 X	0004h X	0005h
struction { Inst(PC) = SLEEP Inst(PC + 1)		Inst(PC + 2)	M.TY	Inst(0004h)	Inst(0005h)
struction { Inst(PC - 1) SLEEP	N.	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

- 2: TOST = 1024TOSC (drawing not to scale). Approximately 1 µs delay will be there for RC Osc mode.
- 3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.
- 4: CLKOUT is not available in these Osc modes, but shown here for timing reference.

### 14.9 Code Protection

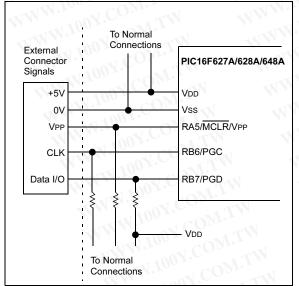
With the Code Protect bit is cleared (Code Protect enabled) the contents of the program memory locations are read out as "00". See Programing Specification, DS41196, for details.

Note:	Only a Bulk Erase function can set the CP
	and CPD bits by turning off the code pro-
	tection. The entire data EEPROM and
	FLASH program memory will be erased to
	turn the code protection off.

### 14.10 User ID Locations

Four memory locations (2000h-2003h) are designated as user ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. Only the Least Significant 4 bits of the user ID locations are used.

### 14.11 In-Circuit Serial Programming


The PIC16F627A/628A/648A microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After RESET, to place the device into Programming/ Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the Programming Specifications (DS41196).

A typical In-Circuit Serial Programming connection is shown in Figure 14-18.

#### FIGURE 14-18: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION



### 14.12 Low Voltage Programming

The LVP bit of the configuration word, enables the low voltage programming. This mode allows the microcontroller to be programmed via ICSP using only a 5V source. This mode removes the requirement of VIHH to be placed on the MCLR pin. The LVP bit is normally erased to '1' which enables the low voltage programming. In this mode, the RB4/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. The device will enter Programming mode when a '1' is placed on the RB4/PGM pin. The HV Programming mode is still available by placing VIHH on the MCLR pin.

- Note 1: While in this mode the RB4 pin can no longer be used as a general purpose I/O pin.
  - 2: VDD must be 5.0V <u>+</u>10% during erase operations.

If Low-voltage Programming mode is not used, the LVP bit should be programmed to a '0' so that RB4/PGM becomes a digital I/O pin. To program the device, VIHH must be placed onto MCLR during programming. The LVP bit may only be programmed when programming is entered with VIHH on MCLR. The LVP bit cannot be programmed when programming is entered with RB4/PGM.

It should be noted, that once the LVP bit is programmed to 0, only high voltage Programming mode can be used to program the device.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WW.100Y.COM.T

WWW.100Y.COM.

NOTES:

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

W.100Y.COM.TW

WWW.100Y.COM

WWW.100X.

WWW.100Y.COM.T

COM.TW

EW.100Y.COM.TW

WW.100X.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

PIC16F627A/628A/648A

Http://www.100y.com.tw

### 15.0 INSTRUCTION SET SUMMARY

Each PIC16F627A/628A/648A instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F627A/628A/648A instruction set summary in Table 15-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 15-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

#### TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$ . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
то	Time out bit
PD	Power-down bit
dest	Destination either the W register or the specified regis- ter file location
[]	Options
()	Contents
$\rightarrow$	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

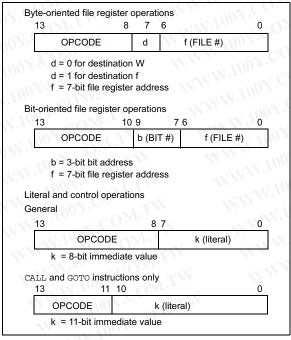
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1  $\mu$ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2  $\mu$ s.

Table 15-2 lists the instructions recognized by the MPASMTM assembler.

Figure 15-1 shows the three general formats that the instructions can have.


- Note 1: Any unused opcode is reserved. Use of any reserved opcode may cause unexpected operation.
  - 2: To maintain upward compatibility with future PICmicro products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

#### 0xhh

where h signifies a hexadecimal digit.

#### FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS



Mnemor	nic,	WW.100 - COM.1	TWW.IU		14-Bit	Opcode		Status	N - 4
Operan	ds	Description	Cycles	MSb		VI.	LSb	Affected	Notes
BYTE-ORIEN	NTED F	ILE REGISTER OPERATIONS	W	100.	-160	$N_{T+r}$			
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	<1	Clear W	11	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	N 101	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1 1 1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	00	1111	dfff	ffff	- 1	1,2,3
IORWF	f, d	Inclusive OR W with f	TN 1 1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff	NTN .	
NOP		No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	M. 1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	011	00	1110	dfff	ffff	Une.	1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FILI	E REGISTER OPERATIONS	WTI	1	WW	-11	00Y.	LIN	W
BCF	f, b	Bit Clear f	CONTAN	01	00bb	bfff	ffff	COm	1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	01	10bb	bfff	ffff	V.COF	3
BTFSS	f, b	Bit Test f, Skip if Set	1(2)	01	11bb	bfff	ffff	100	3
LITERAL AN	D CON	TROL OPERATIONS	T.M.	N		NN.	×110	01	N.TY
ADDLW	k	Add literal and W		11	111x	kkkk	kkkk	C,DC,Z	1
ANDLW	k	AND literal with W	01.1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0 k k k	kkkk	kkkk	ANY.C	
CLRWDT	1100	Clear Watchdog Timer		00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	. 100%.	
ORLW	K k	Inclusive OR literal with W	1.10	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk	11004	
RETFIE		Return from interrupt	2 0	00	0000	0000	1001	N.10	
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk	100	
RETURN	. <del></del>	Return from Subroutine	2	00	0000	0000	1000	NN.1	
SLEEP 🕥		Go into Standby mode	1001	00	0000	0110	0011	TO,PD	
	1.1	Subtract W from literal	170	11	110x	kkkk	kkkk	C,DC,Z	
SUBLW	k			/ <u> </u>	TTUX	<u>KKKK</u>	KKKK	0,D0,Z	

#### TADIE 45 9. DICACEGOZA/COOA/CAOA INCTDUCTION CET

1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the Note pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed WW.100Y.COM as a NOP.

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WW.100Y.COM Http://www.100y.com.tw

WW

WWW.100Y.COM.

WWW.100

#### 15.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[label] ADDLW k
Operands:	0 ≤ k ≤ 255
Operation:	$(W) + k \rightarrow (W)$
Status Affected:	C, DC, Z
Encoding:	11 111x kkkk kkkk
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.
Words:	1 WW 100Y. COM.T
Cycles:	1 WWW.100Y.COM
Example	ADDLW 0x15
	Before Instruction W = 0x10 After Instruction W = 0x25

ADDWF	Add W	and f	WWW	V.Luov.CO	AND
Syntax:	[ label ]	ADDW	′F f,d	W.100	Synt
Operands:	$\begin{array}{l} 0 \leq f \leq \\ d \in [0,1] \end{array}$				Oper
Operation:	(W) + (	f) $\rightarrow$ (de	st) 🔨		Oper
Status Affected:	C, DC,	Ζ			Statu
Encoding:	00	0111	dfff	ffff	Enco
Description:	with reg stored ir	ister 'f'. If n the W re	of the W r 'd' is 0 the egister. If 'c ack in regis	result is I' is 1 the	Desc
Words:	1V.C				Word
Cycles:	1				Cycle
Example	ADDWF	REG1,	0		Exar
		Instructi V =	on 0x17 0xC2		

ANDLV		AND L	iteral wi	th W	
Syntax:	N.Cu	[ label ]	] ANDLV	Vk	
Operan	ds:	0 ≤ k ≤	255		
Operati	on:	(W) .AI	ND. (k) –	→ (W)	
Status A	Affected:	Z			
Encodir	ng:	-11	1001	kkkk	kkkk
Descrip	tion:	AND'ed	with the e	V register a eight bit lite ed in the V	eral 'k'.
Words:		NON.CL			
Cycles:		1.4.0			
Exampl	e	ANDLW	0x5F		
			Instruction W = 0 Instruction W = 0	xA3	

Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) $\rightarrow$ (dest)
Status Affected:	Z WWW.ICOM
Encoding:	00 0101 dfff ffff
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the V register. If 'd' is 1 the result is stored back in register 'f'.
Words:	1 WW.1001.
Cycles:	N1 N 1002.0
Example	ANDWF REG1, 1 Before Instruction
	W = 0x17
	REG1 = 0xC2
	After Instruction W = 0x17
	REG1 = 0x02
1001.	WW. VIII
材料 886-3-57	52170

100Y.CO

After Instruction

WWW.100Y.COM.

WWW.100

REG1 = 0x8A

WWW.100Y.COM.TW

BCF	Bit Clear f	BTFSC	Bit Test f, Skip if Clear
Syntax:	[ <i>label</i> ]BCF f,b	Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f <b>) = 0</b>
Status Affected:	None	Status Affected:	None
Encoding:	01 00bb bfff fff	Encoding:	01 10bb bfff ffff
Description: Words: Cycles: Example	Bit 'b' in register 'f' is cleared. 1 1 BCF REG1, 7 Before Instruction	Description:	If bit 'b' in register 'f' is '0' then the next instruction is skipped. If bit 'b' is '0' then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two- cycle instruction.
	REG1 = 0xC7 After Instruction	Words:	1. 100X.CO. M.T.W
	REG1 = 0x47	Cycles:	1(2)
BSF CO	Bit Set f	Example	HERE BTFSC REG1 FALSE GOTO PROCESS_CODE TRUE •
Syntax:	[ <i>label</i> ]BSF f,b		WWW.CONT.COM
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		Before Instruction PC = address HERE
Operation:	$1 \rightarrow (f \le b >)$		After Instruction
Status Affected:	None		if REG<1> = 0, PC = address TRUE
Encoding:	01 01bb bfff ffff		if REG<1>=1,
Description:	Bit 'b' in register 'f' is set.		PC = address FALSE
Words:	CONC.		
Cycles:	ODY. COM.TW		
Example	BSF REG1, 7		
	Before Instruction REG1 = 0x0A After Instruction		

BTFSS	Bit Test f, Skip if Set	CALL	Call Subroutine		
Syntax:	[ <i>label</i> ]BTFSS f,b	Syntax:	[ <i>label</i> ] CALL k		
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 2047$		
	0 ≤ b < 7	Operation:	(PC)+ 1 $\rightarrow$ TOS,		
Operation:	skip if (f <b>) = 1</b>		$k \rightarrow PC < 10:0>$ ,		
Status Affected:	None	Status Affected:	$(PCLATH<4:3>) \rightarrow PC<12:11>$ None		
Encoding:	01 11bb bfff ffff	Encoding:		kk kkkk	
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a two-cycle instruc- tion.	Description:	100kkkkkkkkkkkCall Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit imme- diate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle		
Words:	1 WWW.LoonV.COM	WWW WWW	instruction.		
Cycles:	1(2)	Words:	N110° CONL		
Example	HERE BTFSS REG1	Cycles:	2.100 COM.		
	FALSE GOTO PROCESS_CODE TRUE •	Example	HERE CALL TH	ERE	
	Before Instruction PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1,	CLRF		ess THERE ess HERE+1	
	PC = address TRUE	Syntax:	[ <i>label</i> ] CLRF f	COM.	
		Operands:	$0 \le f \le 127$		
		Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
		Status Affected:	Z		
		Encoding:	00 0001 1f	ff ffff	
WW	L100Y.COM.TW WW	Description:	The contents of regination cleared and the Z bits		
	件 886-3-5753170	Words:	N WW		
	建) 86-21-54151736	Cycles:	1		
	II) 86-755-83298787	Example	CLRF REG1		
Http://ww	w. 100y. com. tw		Before Instruction REG1 = 0 After Instruction	0x5A	

WWW.100Y.COM.

WW.100X.COM.TW

WWW.100Y.COM.

© 2002 Microchip Technology Inc.

W.100Y.COM.TW

CLRW	Clear W	COMF	Complement f
Syntax:	[label] CLRW	Syntax:	[label] COMF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$00h \rightarrow (W)$		d ∈ [0,1]
	$1 \rightarrow Z$	Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z	Status Affected:	Z
Encoding:	00 0001 0000 0011	Encoding:	00 1001 dfff fff
Description:	W register is cleared. Zero bit (Z) is set.	Description:	The contents of register 'f' are complemented. If 'd' is 0 the
Words:	1 WWW.100Y.COM		result is stored in W. If 'd' is 1 th result is stored back in register
Cycles:	1 WWW.LOOX.COM		f.
Example	CLRW	Words:	1 ON CONTRACT
	Before Instruction	Cycles:	W.IW COM. IN
	W = 0x5A	Example	COMF REG1, 0
	After Instruction W = 0x00	W.TW W	Before Instruction
	Z = 1		REG1 = 0x13
			After Instruction REG1 = 0x13
			$W = 0 \times EC$
CLRWDT	Clear Watchdog Timer	DECF	Decrement f
Syntax:	[label] CLRWDT	Syntax:	[label] DECF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$00h \rightarrow WDT$	OOT.COM.T	d ∈ [0,1]
	$0 \rightarrow \frac{\text{WDT}}{\text{TO}}$ prescaler,	Operation:	(f) - 1 $\rightarrow$ (dest)
	$1 \rightarrow \frac{\text{TO}}{\text{PD}}$	Status Affected:	Z WWW100Y.C
Status Affected:	TO, PD	Encoding:	00 0011 dfff fff
Encoding:	00 0000 0110 0100	Description:	Decrement register 'f'. If 'd' is C
Description:	CLRWDT instruction resets the		the result is stored in the W register. If 'd' is 1 the result is store
	Watchdog Timer. It also resets		back in register 'f'.
	the prescaler of the WDT. Status	Words:	17 JUN 2 W 100
	bits TO and PD are set.	Cycles:	JIW WWW
Words:	WW.IOCONLETW	Example	DECF CNT, 1
Cycles:	WW.100 P COM. I	<u>Example</u>	Before Instruction
Example	CLRWDT		CNT = 0x01
	Before Instruction WDT counter = ?		Z = 0
	After Instruction		After Instruction CNT = 0x00
	WDT counter = 0x00		Z = 1
	$\frac{\text{WDT prescaler}}{\text{TO}} = 1$		
	$\frac{10}{PD} = 1$	10 N.10	CON.
		勝特力	材料 886-3-5753170
			子(上海) 86-21-54151736 子(深圳) 86-755-83298787

WW

DECFSZ	Decrement f, Skip if 0	GOTO	Unconditional Branch
Syntax:	[ <i>label</i> ] DECFSZ f,d	Syntax:	[ <i>label</i> ] GOTO k
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]	Operands:	$0 \le k \le 2047$
Operation:	(f) - 1 → (dest); skip if result = 0	Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> $\rightarrow$ PC<12:11>
Status Affected:	None	Status Affected:	None
Encoding:	00 1011 dfff ffff	Encoding:	10 1kkk kkkk kkkk
Description:	The contents of register 'f' are decremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruc-	Description:	GOTO is an unconditional branch. The eleven-bit immedi- ate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.
	tion, which is already fetched, is	Words:	1 COMP TW
	discarded. A NOP is executed instead making it a two-cycle	Cycles:	2. COMPANY
	instruction.	Example	GOTO THERE
Words: Cycles:	1 1(2)		After Instruction PC = Address THERE
Example	HERE DECFSZ REG1, 1 GOTO LOOP CONTINUE •		
	M.TW . WW. 1002.0		
	Before Instruction PC = address HERE		
	PC = address HERE After Instruction REG1 = REG1 - 1 if REG1 = 0, PC = address CONTINUE		
	if REG1 ≠ 0, PC = address HERE+1		

WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100Y.COM.TW

WW.100X.COM.TW

WWW.100Y.COM.TW

WWW.100Y.CO

WWW.100Y.COM.TW

W.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.

WW

INCF	Increment f	INCFSZ	Increment f, Skip if 0		
Syntax:	[label] INCF f,d	Syntax:	[label] INCFSZ f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$	Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(f) + 1 $\rightarrow$ (dest)	Operation:	(f) + 1 $\rightarrow$ (dest), skip if result = 0		
Status Affected:	Z WWW. LOON.COM	Status Affected:	None		
Encoding:	00 1010 dfff ffff	Encoding:	00 1111 dfff ffff		
Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.	Description:	The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.		
Words:	W1 WN 100Y.CO.		If the result is 0, the next instruc- tion, which is already fetched, is		
Cycles:	WWW.LOOX.COOM		discarded. A NOP is executed		
Example	INCF REG1, 1		instead making it a two-cycle instruction.		
	Before Instruction	Words:			
	REG1 = 0xFF $Z = 0$	Cycles:	1(2)		
	After Instruction				
	REG1 = 0x00	Example	HERE INCFSZ REG1, 1 GOTO LOOP		

Before Instruction PC = address HERE After Instruction REG1 = REG1 + 1if CNT = 0. COM.TW PC = address CONTINUE if REG1≠ 0, PC = address HERE +1 WWW.100Y.COM.TW

WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

100Y.COM.TW

M.TW

WW.100Y.COM.TW

[ <i>label</i> ] 0 ≤ k ≤ : (W) .OF		Vk	≪1
	255		
(W) .OF		255 . k → (W)	
	R. $k \rightarrow (V$		
Z			
11	1000	kkkk	kkkk
OR'ed w The res	with the e sult is pla	eight bit li	teral 'k'.
1			
1			
IORLW	0x35		
After In	$W = 0x^{2}$ struction $W = 0x^{2}$	9A	
	The cor OR'ed v The res register 1 1 IORLW Before After In	The contents of OR'ed with the e The result is pla register. 1 1 IORLW 0x35 Before Instruction W = 0x After Instruction W = 0x	The contents of the W reg OR'ed with the eight bit li The result is placed in th register. 1 1 IORLW 0x35 Before Instruction W = 0x9A After Instruction W = 0xBF

MOVLW	Move Literal to W
Syntax:	[label] MOVLW k
Operands:	0 ≤ k ≤ 255
Operation:	$k \rightarrow (W)$
Status Affected:	None
Encoding:	11 00xx kkkk kkkk
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.
Words:	NTW NO.
Cycles:	MILCONT W
Example	MOVLW 0x5A
	After Instruction W = 0x5A

IORWF	Inclusive OR W with f	MOVF	Move f
Syntax:	[ <i>label</i> ] IORWF f,d	Syntax:	[ <i>label</i> ] MOVF f,d
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation:	(W) .OR. (f) $\rightarrow$ (dest)	Operation:	$(f) \rightarrow (dest)$
Status Affected:	<u>(Z)</u>	Status Affected:	Z WWW. DOV.COM
Encoding:	00 0100 dfff ffff	Encoding:	00 1000 dfff ffff
Words: Cycles:	register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. 1		moved to a destination depen- dent upon the status of d. If d = 0, destination is W register. If d = 1, the destination is file regis- ter f itself. d = 1 is useful to test a file register since status flag Z is affected.
Example	IORWF REG1, 0	Words:	1 WWW.roox.Com
	Before Instruction REG1 = 0x13	Cycles:	WWW.Loov.COM
	W = 0x91	Example	MOVF REG1, 0
	After Instruction REG1 = $0x13$ W = $0x93$ Z = $1$		After Instruction W= value in REG1 register Z = 1

Http://www.100y.com.tw

MOVWF	Move W to f	OPTION	Load Option Register		
Syntax:	[ label ] MOVWF f Syntax:	Syntax:	[ label ] OPTION		
Operands:	$0 \le f \le 127$	Operands:	None		
Operation:	$(W) \rightarrow (f)$	Operation:	$(W) \rightarrow OPTION$		
Status Affected:	None	Status Affected:	None		
Encoding:	00 0000 1fff ffff	Encoding:	00 0000 0110 0010		
Description: Words: Cycles: Example	Move data from W register to regis- ter 'f'. 1 1 MOVWF REG1 Before Instruction REG1 = 0xFF W = 0x4F After Instruction REG1 = 0x4F	Description: Words: Cycles: Example	The contents of the W register and loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C50 products. Since OPTION is a readable/writable register, the user can directly address it. Using only register instruction such as MOVWF. 1		
	W = 0x4F	O	To maintain upward compatibi ity with future PICmicro [®] prod ucts, do not use this instruction.		

NOP	No Operation		RETFIE	Returr	n from In	terrupt	M
Syntax:	[label] NOP	WWW.	Syntax:	[ label	] RETF	Ë	Y.C.
Operands:	None		Operands:	None			
Operation: Status Affected:	No operation None		Operation:	TOS – 1 → G			
Encoding:	00 0000 0xx0	0000	Status Affected:	None			
Description:	No operation.		Encoding:	00	0000	0000	1001
Vords: 1 Cycles: 1 Example NOP	Description:	POPeo is load are en Interru (INTCO	d and Top ed in the abled by pt Enable	errupt. St o of Stack PC. Inte setting G e bit, GIE This is a n.	t (TOS) rrupts ilobal		
	<u>N 1007.</u>		Words:	LON			
特力材料8	886-3-5753170		Cycles:	2			
寺力电子(上海) 8	36-21-54151736		Example	RETFIE	E.T.Y		
特力电子(深圳) 8 Http://www.1	86-755-83298787 100y. com. tw				nterrupt PC = T GIE = 1	os	

Preliminary 1002.CON

WW

WW.100X.COM.TW

RETLW	Return with Literal in W	RLF COM	Rotate Left f through Carry
Syntax:	[ <i>label</i> ] RETLW k	Syntax:	[ <i>label</i> ] RLF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$
Operation:	$k \rightarrow (W);$	WW.100 F	d ∈ [0,1]
TH	$TOS \rightarrow PC$	Operation:	See description below
Status Affected:	None	Status Affected:	C
Encoding:	11 01xx kkkk kkkk	Encoding:	00 1101 dfff fff
Description:	The W register is loaded with the eight bit literal 'k'. The pro-	Description:	The contents of register 'f' are rotated one bit to the left throug
	gram counter is loaded from the		the Carry Flag. If 'd' is 0 the resu
	top of the stack (the return address). This is a two-cycle		is placed in the W register. If 'd' 1 the result is stored back in reg
	instruction.		ister 'f'.
Words:	1 WW.1001.		
Cycles:	2	Marda	100 CONCENT
Example	CALL TABLE;W contains table	Words:	N.100X. COM.TW
	<pre>;offset value ;W now has table value</pre>	Cycles: Example	RLF REG1, 0
	TW WWW. 100Y.CO.	Example	Before Instruction
TABLE	• ADDWF PC;W = offset		REG1=1110 0110
	RETLW k1;Begin table		C = 0 After Instruction
	RETLW k2;		REG1=1110 0110
	M.TV W.1001.		$W = 1100 \ 1100$
	RETLW kn; End of table		WW.1001.COM.I
	Before Instruction	Y.CO.M.TW	WWW.100Y.COM.TV
	W = 0x07 After Instruction	勝特力材料88	36-3-5753170
	W = value of k8	胜特力电子(上海) 86	
		胜特力电子(深圳) 86	3-755-83298787
RETURN	Return from Subroutine	Http://www.10	00y. com. tw
	Return nom Subroutine	N.10 COM.	WWW.100Y.CO
1			
Syntax:	[ <i>label</i> ] RETURN		
Syntax: Operands:	None		
Syntax: Dperands: Dperation:	None TOS → PC		
Syntax: Operands: Operation: Status Affected:	None TOS → PC None		
Syntax: Operands: Operation: Status Affected: Encoding:	None           TOS → PC           None           00         0000         1000		
Syntax: Operands: Operation: Status Affected: Encoding:	None $TOS \rightarrow PC$ None 00 0000 0000 1000 Return from subroutine. The stack is POPed and the top of		
Syntax: Operands: Operation: Status Affected: Encoding:	None $TOS \rightarrow PC$ None 00 0000 0000 1000 Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into		
Syntax: Operands: Operation: Status Affected: Encoding:	None $TOS \rightarrow PC$ None $\boxed{00  0000  0000  1000}$ Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a		
Syntax: Operands: Operation: Status Affected: Encoding: Description:	None $TOS \rightarrow PC$ None 00 0000 0000 1000 Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	None $TOS \rightarrow PC$ None $\boxed{00  0000  0000  1000}$ Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	None $TOS \rightarrow PC$ None $\boxed{00  0000  0000  1000}$ Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. 1		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	None $TOS \rightarrow PC$ None $\boxed{00  0000  0000  1000}$ Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. 1 2		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	None $TOS \rightarrow PC$ None $\boxed{00  0000  0000  1000}$ Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. 1 2 RETURN		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	None $TOS \rightarrow PC$ None $\boxed{00  0000  0000  1000}$ Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. 1 2 RETURN After Interrupt		

RRF	Rotate Right f through Carry	SUBLW	Subtract W from Literal
Syntax:	[ <i>label</i> ] RRF f,d	Syntax:	[label] SUBLW k
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$
	d ∈ [0,1]	Operation:	$k - (W) \rightarrow (W)$
Operation:	See description below	Status	C, DC, Z
Status Affected:	C	Affected:	100Y.CONTH
Encoding:	00 1100 dfff fff	Encoding:	11 110x kkkk kkkk
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W reg-	Description:	The W register is subtracted (2's complement method) from the eigh bit literal 'k'. The result is placed in the W register.
	ister. If 'd' is 1 the result is placed back in register 'f'.	Words:	NW.100 L. COM.I
		Cycles:	1.100Y.COM.TW
		Example 1:	SUBLW 0x02
Words:	WWW.LOOX.COM		Before Instruction
Cycles:	D.V. WWW.IVoov.CO		W = 1
Example	RRF REG1, 0		C = ?
	Before Instruction		After Instruction
	REG1 = 1110 0110 C = 0		W = 1 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
	<b>REG1</b> = 1110 0110	Y.C.Linnipio Li	W = 2
	$W = 0111 \ 0011$ C = 0		C = ?
			After Instruction
SLEEP			W = 0 C = 1; result is zero
Syntax:	[label] SLEEP	Example 3:	Before Instruction
Operands:	None		W = 3
Operation:	$00h \rightarrow WDT$ ,		C = ?
	$0 \rightarrow WDT$ prescaler,		After Instruction
	$1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD}$		W = 0xFF C = 0; result is negative
Status Affected:	TO, PD		C – 0, result is negative
	00 0000 0110 0011		
Encoding:		WWW.10	10 ⁻
Encoding:	The power-down STATUS bit, PD is cle <u>are</u> d. Time out STA-		力材料 886-3-5753170
Encoding:	The power-down STATUS bit, PD is cleared. Time out STA- TUS bit, TO is set. Watchdog	胜特力电	<b>己子(上海) 86-21-54151736</b>
Encoding: Description:	The power-down STATUS bit, PD is cle <u>are</u> d. Time out STA-	胜特力电 胜特力电	見子(上海) 86-21-54151736 見子(深圳) 86-755-83298787
Encoding:	The power-down STATUS bit, PD is cleared. Time out STA- TUS bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into	胜特力电 胜特力电	<b>己子(上海) 86-21-54151736</b>
Encoding:	The power-down STATUS bit, PD is cleared. Time out STA- TUS bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscilla-	胜特力电 胜特力电	見子(上海) 86-21-54151736 見子(深圳) 86-755-83298787
Encoding:	The power-down STATUS bit, PD is cleared. Time out STA- TUS bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into	胜特力电 胜特力电	見子(上海) 86-21-54151736 見子(深圳) 86-755-83298787
Encoding:	The power-down STATUS bit, PD is cleared. Time out STA- TUS bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscilla- tor stopped. See Section 14.8	胜特力电 胜特力电	見子(上海) 86-21-54151736 見子(深圳) 86-755-83298787
Encoding: Description:	The power-down STATUS bit, PD is cleared. Time out STA- TUS bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscilla- tor stopped. See Section 14.8 for more details.	胜特力电 胜特力电	見子(上海) 86-21-54151736 見子(深圳) 86-755-83298787
Encoding: Description:	The power-down STATUS bit, PD is cleared. Time out STA- TUS bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscilla- tor stopped. See Section 14.8 for more details.	胜特力电 胜特力电	<b>3</b> 子(上海) 86-21-54151736 3子(深圳) 86-755-83298787 ://www.100y.com.tw
Encoding: Description: Words: Cycles:	The power-down STATUS bit, PD is cleared. Time out STA- TUS bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscilla- tor stopped. See Section 14.8 for more details. 1	胜特力电 胜特力电	县子(上海) 86-21-54151736 县子(深圳) 86-755-83298787 ://www.100y.com.tw
Encoding: Description: Words: Cycles:	The power-down STATUS bit, PD is cleared. Time out STA- TUS bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscilla- tor stopped. See Section 14.8 for more details. 1	胜特力电 胜特力电	見子(上海) 86-21-54151736 見子(深圳) 86-755-83298787

WWW

J. Contraction	[ <i>label</i> ] SUBWF f,d 0 ≤ f ≤ 127	Syntax:	
peration:	$0 \le f \le 127$		[ <i>label</i> ] SWAPF f,d
Operation: Status	d ∈ [0,1]	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Status	(f) - (W) $\rightarrow$ (dest)	Operation:	$(f<3:0>) \rightarrow (dest<7:4>),$
Affected:	C, DC, Z	Status Affected:	(f<7:4>) → (dest<3:0>) None
Encoding:	00 0010 dfff ffff	Encoding:	00 1110 dfff ffff
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.	Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W regis- ter. If 'd' is 1 the result is placed in register 'f'.
Words:	1 NW.100 L COM.1	Words:	IT COM I
Cycles:	1 WW.100X.COM.TW	Cycles:	V.100 L. CONCLU
Example 1:	SUBWF REG1, 1	Example	SWAPF REG1, 0
	Before Instruction		Before Instruction
	REG1 = 3		REG1 = 0xA5
	W = 2 C = ?		After Instruction
	After Instruction		REG1 = 0xA5
	REG1 = 1 W = 2		W = 0x5A
	C = 1; result is positive	TRIS	Load TRIS Register
WW.LOON	Z = DC = 1	Syntax:	[label] TRIS f
Example 2:	Before Instruction	Operands:	$5 \le f \le 7$
	REG1 = 2 W = 2	Operation:	$(W) \rightarrow TRIS register f;$
	C = ?	Status Affected:	None
	After Instruction	Encoding: Description:	00         0000         0110         0fff           The instruction is supported for
Example 3:	REG1 = 0 $W = 2$ $C = 1; result is zero$ $Z = DC = 1$ Before Instruction	Description.	code compatibility with the PIC16C5X products. Since TRIS registers are readable and writ- able, the user can directly
		Words:	1 WWW.100 V.C
	W = 2 C = ?	Cycles:	YOULWWW.1001
	After Instruction	TANILL CO	To maintain upward compatibil-
	REG1 = 0xFF $W = 2$ $C = 0$ result is pegative	WW.100Y.CC	ity with future PICmicro [®] prod- ucts, do not use this
	Z = DC = 0	WWW.1001	CONTRA MANUA
胜特力电	C = 1; result is zero $Z = DC = 1$ Before Instruction $REG1 = 1$ $W = 2$ $C = ?$ After Instruction $REG1 = 0xFF$ $W = 2$ $C = 0; result is negative$		registers are readable and writ able, the user can directly address them. 1 1 To maintain upward compati ity with future PICmicro [®] pro

© 2002 Microchip Technology Inc.

XORLW	Exclusive OR Literal with W	XORWF	Exclusive OR W with f
Syntax:	[ <i>label</i> ] XORLW k	Syntax:	[label] XORWF f,d
Operands: Operation:	$0 \le k \le 255$ (W) .XOR. $k \rightarrow$ (W)	Operands:	$0 \le f \le 127$ d $\in [0,1]$
Status Affected:	Z	Operation:	(W) .XOR. (f) $\rightarrow$ (dest)
Encoding:		Status Affected:	Z
Description:	The contents of the W register	Encoding:	00 0110 dfff f
Words: Cycles:	are XOR'ed with the eight bit lit- eral 'k'. The result is placed in the W register. 1	Description:	Exclusive OR the contents of W register with register 'f'. If 'c 0 the result is stored in the W ister. If 'd' is 1 the result is stor back in register 'f'.
Example:	XORLW 0xAF	Words:	1 100Y.CO. N.TW
Example.	Before Instruction	Cycles:	1 100Y.COMINITY
	$W = 0 \times B5$	Example	XORWF REG1, 1
	After Instruction		Before Instruction
	W = 0x1A		$\begin{array}{rcl} REG1 = & 0xAF \\ W & = & 0xB5 \end{array}$
			After Instruction
			REG1 = 0x1A W = 0xB5

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.T

EW.100Y.COM.TW

WW

WW.100X.COM.TW

WWW.100Y.COM.TW

WWW.100X

### 16.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
  - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
- MPASM[™] Assembler
- MPLAB C17 and MPLAB C18 C Compilers
- MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
- Simulators
  - MPLAB SIM Software Simulator
- Emulators
  - MPLAB ICE 2000 In-Circuit Emulator
  - ICEPIC™ In-Circuit Emulator
  - In-Circuit Debugger
  - MPLAB ICD
- Device Programmers
  - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
  - PICDEM[™]1 Demonstration Board
  - PICDEM 2 Demonstration Board
  - PICDEM 3 Demonstration Board
  - PICDEM 17 Demonstration Board
  - KEELOQ[®] Demonstration Board

#### 16.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
  - simulator
  - programmer (sold separately)
  - emulator (sold separately)
  - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- · Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
  - source files
  - absolute listing file
  - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

### 16.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PICmicro MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

### 16.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

#### 16.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

#### 16.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

### 16.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

### 16.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

### 16.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

### 16.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in Stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In Stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

### 16.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

### 16.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

### 16.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

100X.COX

### 16.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

### 16.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

#### 16.15 KEELOQ Evaluation and Programming Tools

100Y.COM.T

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

#### TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

	MPLAB [®] Integrated Development Environment	MPLAB [®] C17 C Compiler	MPLAB [®] C18 C Compiler	MPASM TM Assembler/ MPLINK TM Object Linker	mulator	ICEPIC TM In-Circuit Emulator	MPLAB [®] ICD In-Circuit Debugger	PICSTART® Plus Entry Level Development Programmer	PRO MATE® II Universal Device Programmer	PICDEM TM 1 Demonstration Board	PICDEM TM 2 Demonstration Board	PICDEM TM 3 Demonstration Board	PICDEM TM 14A Demonstration Board	PICDEM TM 17 Demonstration Board	KEELoQ [®] Evaluation Kit	KEELoQ [®] Transponder Kit	microlD TM Programmer's Kit	125 kHz microlD TM Developer's Kit	125 kHz Anticollision microlD TM Developer's Kit	13.56 MHz Anticollision microlD TM Developer's Kit	MCP2510 CAN Developer's Kit
PIC12CXXX	>	N	0	>	>	.CO	WTT	>	->1	NN.		NO	CO	1	T.				W	NN	ļ.
PIC14000	>		1.1	~	>		WT.	>		11	700	N.C	QN	. T.	Z				NN	<b>N</b> .	0
PIC16C5X	`	N	10	03.	>	×1.	¹ N	<b>`</b>	``	1	You		JW.	L.M.	1			V		V.10	V
X9D91DI9		10	00	<b>~</b> ~	Ç		* *	~	1	1.10	5		N.T	N			-	NN		100	X
PIC16CXXX	(1)	00	×.	20	1	2	-	~	18.1	,	1.C	OW	TN				2	W	N.10	007.	
PIC16F62X		20	.C	6, 5	**/	LM.		**/	**/	07.9		1.1	V			3	~	NN.	100	Y.C	
X7O01019	20	V.	C	1	1		*>		1202	÷>	2+0	TI T	V			N	N	1.10	005	.C ^Q	
XX7D8rDI9	Y.			1.1	1	>	WW		001		M.T	W						.100	Y.C		1
PIC16C8X	, c	07	1.	`	>	>	WWV		, Ż.C	M		N		Z	2	1	1	005		M.	1
PIC16F8XX		M	T	~	>		>	00		M.T	N				5	1.)	90	Y.C	<b>CO</b> ¹	1.1	
XX6D91DI9	140			>	>		MW.10	X	CON	1.1	N	>	N	NN.		1	0	.0	ON.	TV	
X4071019	M.	>		>	>	NN NN	W.100	``	OM.					W	10	0		^C O ¹	1.1		
XXTOTIOI9	`	1		~	×	WW	N.100Y	\$	M.T	N		4	N.		00	N.		ON V	TV.		
PIC18CXX2			~	~	~	WW.	1001.0	301			~	A.	Y	100	5	.C	0	V.7	N7		
PIC18FXXX	~		>	>	1		JOX/CO	`	11		2		N.1	007	.С л		N	TV.			
52CXX/ 54CXX/				1	N	1.100	N.CON	1.1				NN	100	N.	20	M	<u>.</u> х	N7			
нсеххх азсхх			N	>		1001	COM	LM	>	7		N.)	007	.C ^Q	1	1	N				
MCRFXXX				W	10	N.C	OM.T	A.		-	NN	100	01.	202	N.	4		>	>	>	
WCP2510	Z			N.Y	0	<u>1.CU</u>	WT.W		V			005	1 C	0M	T	Z	J				

© 2002 Microchip Technology Inc.

WWW.100Y.COM.

NOTES:

WWW.190Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.C

WWW.100X.

WWW.100Y.COM.T

100Y.COM.TW

COM.TW

W.100X.COM.TW

WW.100Y.COM.TW

### 17.0 ELECTRICAL SPECIFICATIONS

#### Absolute Maximum Ratings†

Ambient temperature under bias	40 to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	-0.3 to +6.5V
Voltage on MCLR and RA4 with respect to Vss	0.3 to +14V
Voltage on all other pins with respect to Vss	-0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	
Output clamp current, Iок (Vo < 0 or Vo >VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA and PORTB (Combined)	
Maximum current sourced by PORTA and PORTB (Combined)	
<b>Note 1:</b> Power dissipation is calculated as follows: PDIS = VDD x {IDD - $\sum$ IOH} +	

**† NOTICE**: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

W.100Y.COM.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM

WW.100X.COM.TW



#### DC Characteristics: PIC16F627A/628A/648A (Industrial, Extended) 17.1 PIC16LF627A/628A/648A (Industrial)

PIC16LI (Indus	<b>-627A/62</b> trial)	BA/648A		Operating ( temperature		·	t <b>herwise stated)</b> °C for industrial			
	<b>327A/628/</b> rial, Exter		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic/Device	Min	Тур†	Max	Units	Conditions			
DNr.,	VDD	Supply Voltage	M	THE STORY WALL AND THE STORY						
D001		PIC16LF627A/628A/648A	2.0	_	5.5	V	OM. P			
	WI	PIC16F627A/628A/648A	3.0	_	5.5	V	OM.TY			
D002	VDR	RAM Data Retention Voltage ⁽¹⁾	OM.TV	1.5*	AN 20 Y	.10VS	Device in SLEEP mode			
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	$CO^{\overline{N}1,T}$	Vss	<u>v</u>	V	See Section 14.4 on Power-on Reset for details			
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	TW	W	V/ms	See Section 14.4 on Power-on Reset for details			
D005	VBOR	Brown-out Reset Voltage	3.65 3.65	4.0 4.0	4.35 4.4	V V	BOREN configuration bit is set BOREN configuration bit is set, Extended			

Legend: Rows with standard voltage device data only are shaded for improved readability.

These parameters are characterized but not tested.

Data in "Typ" column is at 5.0 V, 25°C, unless otherwise stated. These parameters are for design guidance only and are t, not tested. WWW.100Y.COM.T

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data. WWW.100Y.COM.TW

力材料 886-3-5753170 特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WW.100Y.COM.TW

#### 17.2 DC Characteristics: PIC16F627A/628A/648A (Industrial) PIC16LF627A/628A/648A (Industrial)

			rd Operang temp				therwise stated) 5°C for industrial		
Param	LF and F Device	Nint a	TIN	Max	Unite	10	Conditions		
No.	Characteristics	Min†	Тур	Max	Units	VDD	Note		
Supply Vol	tage (VDD)		<i>M</i> .,			NN.	N COM.		
1	LF	2.0	ON.	5.5	V	ATN.	100 × CON. F		
D001	LF/F	3.0		5.5	v		1001. N.T.		
Power-dow	vn Base Current (IPD)	.V.	COM	Wn	<u> </u>	NWY	TTN STATE		
- c0M	LF	NITO-	0.1	0.80	μA	2.0	WDT, BOR, Comparators, VREF, and		
D020	1.17	AL 1003	0.1	0.85	μA	3.0	T1OSC: disabled		
N.CO	LF/F	0000	0.2	0.95	μA	5.0	TI 100Y.COMILTW		
Peripheral	Module Current (△IMOD) ⁽¹⁾	WW.	N.C	0.0	W.	N	WWW. OOY.CO. TW		
100 .	OM- LF	W HILL	1	2.0	μA	2.0	WDT Current		
D021	M.T.	1	2	3.4	μA	3.0	WWW.1003.COM.TW		
in on the	LF/F	NN-	9	12.5	μA	5.0			
D000	CONTRACTOR	WHY W	32	TBD	μA	4.5	BOR Current		
D022	LF/F		33	TBD	μA	5.0	WW.IO. COM.		
100	LF	N.	15	TBD	μA	2.0	Comparator Current		
0023	OY.COMERTW	A.V.	27	TBD	μA	3.0	WW 100Y.COM.TW		
WW.10	LF/F		49	TBD	μA	5.0	WWW. OOY.COM		
.1	CLEL-	_	34	TBD	μA	2.0	VREF Current		
0024	100 ^Y . LEVEL.TW	_~	50	TBD	μA	3.0	W.100 1. COM.		
WWW	LF/F		80	TBD	μA	5.0	WWW 100Y.COM		
- TVI	LE MAN	-	1.2	2.0	μΑ	2.0	T1Osc Current		
0025	W.100		1.3	2.2	μA	3.0	N WW.100 V CO		
Am	LF/F		1.8	2.9	μA	5.0	WW.1001.CO		
Supply Cu	rrent (IDD)	N7	V	W. T.	1001.0	- M	TW WY 100Y.		
	WW.LE LE COM	-12	12	15	μA	2.0	Fosc = 32 kHz		
D010	LF/Fy COM		21	25	μA	3.0	LP Oscillator Mode		
1		<u>1.1</u>	38	48	μA	5.0	L.T. W. 100 L.		
	WWW LEON.CO	4	120	160	μA	2.0	Fosc = 1 MHz		
D011		MAL TAN	180	250	μA	3.0	XT Oscillator Mode		
	LF/F	011-	290	370	μA	5.0	ON'T, MANNING		
	LF 100 Y.C	T.	240	300	μA	2.0	Fosc = 4 MHz		
D012	WILFT ANY.		370	470	μA	3.0	XT Oscillator Mode		
	LF/F	COZ.	670	780	μA	5.0	COMMENTAL WWW.		
D012	LE/EW.100	- OA	2.6	2.9	mA	4.5	Fosc = 20 MHz		
D013	LF/F	Y	3	3.3	mA	5.0	HS Oscillator Mode		

Note 1: The "∆" current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. Max values should be used when calculating total current consumption.

#### 17.3 DC Characteristics: PIC16F627A/628A/648A (Extended)

N	WWW.100Y.CO.		rd Opera				therwise stated) 25°C for extended			
Param	Device Characteristics	Mint	Тур	Max	Units	001.	Conditions			
No.	Device onaracteristics		, AG	Max	Units	VDD	Note			
Supply Voltage (VDD)										
D001	W.I.C.	3.0	I	5.5	V	1.1	COM TW			
Power-down Base Current (IPD)										
D020E	100		0.1	TBD	μA	3.0	WDT, BOR, Comparators, VREF, and			
DUZUE	N WWW.L	N.CU	0.2	TBD	μA	5.0	T1OSC: disabled			
Peripheral Module Current (∆IMOD) ⁽¹⁾										
D021E	21E —		2	TBD	μA	3.0	WDT Current			
DUZTE	TW WW	1007.0	9	TBD	μA	5.0	1001. UNI.TW			
D022E	WWW WW	Va.	32	TBD	μA	4.5	BOR Current			
DUZZL	VII M	NJOG	33	TBD	μA	5.0	N.100 COM.			
D023E	M.TN WT.	11 1 <del>0</del> 01	27	TBD	μA	3.0	Comparator Current			
DUZJE	WW WT	100	49	TBD	μA	5.0	T.I.M. S. TOOLIN			
D024E		NN-	50	TBD	μA	3.0	VREF Current			
DUZAL	MI	N.I	83	TBD	μA	5.0	WW.ICC COM.			
D025E	M.T.W N		1.3	TBD	μA	3.0	T1Osc Current			
DUZUL	.COm www.	V VV	1.8	TBD	μA	5.0	NT. MON.YOOL			
Supply C	urrent (IDD)	WW	.10-	3 CO2	N.		WWW.P OV.COMP			
D010E	CONT.TT		21	TBD	μA	3.0	Fosc = 32 kHz			
DOTOL	N.CO. TW		38	TBD	μA	5.0	LP Oscillator Mode			
D011E	N.COM.	V <del>W</del>	182	TBD	μA	3.0	Fosc = 1 MHz			
DUTIL	CONT.1		293	TBD	μA	5.0	XT Oscillator Mode			
D012E	100X. CMITY		371	TBD	μA	3.0	Fosc = 4 MHz			
DUIZE	MT. YOU.	-1	668	TBD	μA	5.0	XT Oscillator Mode			
D013E	V.IV. CONL. W	_	2.6	TBD	mA	4.5	Fosc = 20 MHz			
DUISE	W.100 OM.1	_	3	TBD	mA	5.0	HS Oscillator Mode			

Note 1: The "4" current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. Max values should be used when calculating total current consumption.

> WWW.100Y.COM. 料 886-3-5753170 特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.

W.100Y.COM.TW

#### 17.4 DC Characteristics: PIC16F627A/628A/648A (Industrial, Extended) PIC16LF627A/628A/648A (Industrial)

DC CHAI	RACTERIS	DTICS	Standard Operation Operating temper Operating voltage	rature	-40°C ≤ TA -40°C ≤ TA	v ≤ +85° v ≤ +125	r <b>wise stated)</b> C for industrial and 0°C for extended C spec Table 17-2 and Table 17-3				
Param. No.	Sym	Characteristic/Device	Min	Тур†	Max	Unit	Conditions				
COM	VIL	Input Low Voltage									
D030	TW I.TW	I/O ports with TTL buffer	Vss Vss Vss	_	0.8 0.15 VDD 0.2 VDD	V V V	VDD = 4.5V to 5.5V otherwise				
D032	M.TV	with Schmitt Trigger input ⁽⁴⁾ MCLR, RA4/T0CKI,OSC1 (in RC mode)	Vss	8	0.2 VDD	V	(Note1)				
D033	ON.	OSC1 (in HS) OSC1 (in LP and XT)	Vss Vss	V	0.3 VDD 0.8	V V	100Y.COM.TW				
In I	ViH	Input High Voltage	COM.	A.	N/	MM.	NT NOS YOU				
D040 D041 D042 D043 D043A	.COM ¥.COM 10¥.CC	I/O ports with TTL buffer with Schmitt Trigger input ⁽⁴⁾ MCLR RA4/T0CKI OSC1 (XT, HS and LP) OSC1 (in RC mode)	2.0 V .25 VDD + 0.8 V 0.8 VDD 0.8 VDD 0.7 VDD 0.9 VDD	RAR'	VDD VDD VDD VDD VDD VDD	V V V V V V V	VDD = 4.5V to 5.5V otherwise (Note1)				
D070	IPURB	PORTB weak pull-up current	50	200	400	μA	VDD = 5.0V, VPIN = VSS				
VII		Input Leakage Current ^{(2), (3)}	WW.IOU	CON			NIMW. POW COMP.				
D060 D061 D063	N.1007 N.100	I/O ports (Except PORTA) PORTA ⁽⁴⁾ RA4/T <u>0CKI</u> OSC1, MCLR	N. 100	10.10	±1.0 ±0.5 ±1.0 ±5.0	μΑ μΑ μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \ \text{pin at hi-impedance} \\ VSS \leq VPIN \leq VDD, \ \text{pin at hi-impedance} \\ VSS \leq VPIN \leq VDD \\ VSS \leq VPIN \leq VDD, \ XT, \ HS \ \text{and} \ LP \ \text{osc} \\ configuration \end{array}$				
W	Vol	Output Low Voltage	WW -11	noy.	TIM		W 1002. ONLT				
D080 🔨	WW.	I/O ports ⁽⁴⁾	N <del>I</del> NN.	100X	0.6 0.6	V V	IOL=8.5 mA, VDD=4.5 V, -40° to +85°C IOL=7.0 mA, VDD=4.5 V, +85° to +125°C				
	Voн	Output High Voltage ⁽³⁾	NW.	100	1.00	L.M	W . 1002. M				
D090	WWY	I/O ports (Except RA4 ⁽⁴⁾	Vdd-0.7 Vdd-0.7	0 <u>+</u> 0	N.C.D.	V V	IOH=-3.0 mA, VDD=4.5 V, -40° to +85°C IOH=-2.5 mA, VDD=4.5 V, +85° to +125°C				
D150	Vod	Open-Drain High Voltage	- 414	14.1	8.5*	V	RA4 pin PIC16F627A/628A/648A, PIC16LF627A/628A/648A				
		Capacitive Loading Specs on	Output Pins	MN.	U.V.CC		O.Yao. WWW				
D100* D101*	COSC2 Cio	OSC2 pin All I/O pins/OSC2 (in RC mode)		NNN N	15 50	pF	In XT, HS and LP modes when external clock used to drive OSC1.				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16F627A/628A/648A be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

**3:** Negative current is defined as coming out of the pin.

4: Includes OSC1 and OSC2 when configured as I/O pins, CLKIN, or CLKOUT.

DC Charac	cteristic	SVI 1001.COM.TV	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Parameter No.	Sym	Characteristic	🕅 Min	Тур†	Max	Units	Conditions					
NT.		Data EEPROM Memory	W	N.V.	-100	1.	M.T.W					
D120	ED	Endurance	100K	1M		E/W	$-40^{\circ}C \le TA \le 85^{\circ}C$					
D120A	ED	Endurance	10K	100K	W.L	E/W	85°C ≤ TA ≤ 125°C					
D121	Vdrw	VDD for read/write	VMIN	-71	5.5	V	VміN = Minimum operating voltage					
D122	TDEW	Erase/Write cycle time	-1	4	8*	ms	COMPT					
D123	TRETD	Characteristic Retention	100	-	W M	Year	Provided no other specifications are violated					
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽¹⁾	1M	10M	NN.	E/W	-40°C to +85°C					
01.	V. I. I.	Program FLASH Memory	coM.			N.W.K	CON					
D130	EP	Endurance	10K	100K		E/W	$-40^{\circ}C \le TA \le 85^{\circ}C$					
D130A	Eр	Endurance	1000	10K		E/W	$85^{\circ}C \le TA \le 125^{\circ}C$					
D131	VPR	VDD for read	VMIN	<u>-</u> 1.1	5.5	V	VміN = Minimum operating voltage					
D132	VIE	VDD for Block erase	4.5		5.5	V	N.ICONI.					
D132A	VPEW	VDD for write	VMIN	DW <del>.T</del> W	5.5	V	Vмın = Minimum operating voltage					
D133	TIE	Block Erase cycle time	700 <u>-</u> . `	4	8*	ms	VDD > 4.5V					
D133A	TPEW	Write cycle time	Non Y.	2	4*	ms	WT.MOY.					
D134	TRETP	Characteristic Retention	100	COW	W-	year	Provided no other specifications are violated					

#### TABLE 17-1: DC Characteristics: PIC16F627A/628A/648A (Industrial, Extended) PIC16LF627A/628A/648A (Industrial)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0 V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. WWW.100Y.COM.T

Note 1: Refer to Section 13.7 for a more detailed discussion on data EEPROM endurance. WWW.100Y.COM.TW

> WWW.100Y.COM.TW WWW.100Y.COM.TW 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WW.100Y.COM.TW

#### **COMPARATOR SPECIFICATIONS TABLE 17-2**:

Param No.	Characteristics	Sym	Min	Тур	Max	Units	Comments
D300	Input Offset Voltage	VIOFF	_ /\	±5.0	±10	mV	
D301	Input Common Mode Voltage	VICM	0 <	N.	Vdd - 1.5*	V	
D302	Common Mode Rejection Ratio	CMRR	55*	N HIN	O.V.	db	A.
D303	Response Time ⁽¹⁾	TRESP		300	400*	ns	VDD = 3.0V to 5.5V -40° to +85°C
	WWW.100Y.	COM.T	N —	400	600*	ns	VDD = 3.0V to 5.5\ -85° to +125°C
	TW WWW.100X	COM.		400	600*	ns	VDD = 2.0V to 3.0V -40° to +85°C
D304	Comparator Mode Change to Output Valid	Тмс2оv	WT	300	10*	μS	M.T.W

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD. WWW.100Y

#### TABLE 17-3: VOLTAGE REFERENCE SPECIFICATIONS

	Operating Conditions: 2.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.										
Spec No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments				
D310	Resolution	VRES	.1001.C	01.1	Vdd/24 Vdd/32	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)				
D311	Absolute Accuracy	VRAA	1.100 X	COZA	1/4 ⁽²⁾ * 1/2 ⁽²⁾ *	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)				
D312	Unit Resistor Value (R)	VRur	001	2k*	1 PM	Ω	1001.001				
D313	Settling Time ⁽¹⁾	TSET	NN.	N.CO	10*	μS	WWW. OOY.CO				

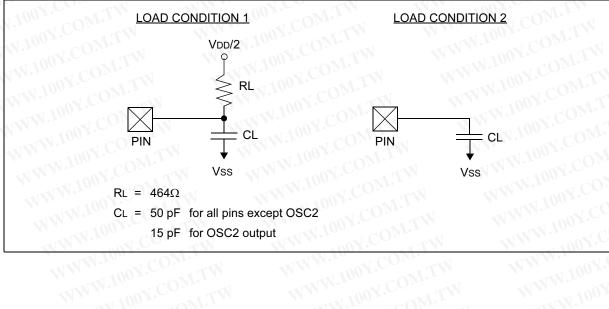
These parameters are characterized but not tested.

WWW.100Y.COM

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

2: When VDD is between 2.0V and 3.0V the VREF output voltage levels on RA2 descirbed by the equation:[VDD/2 ± (3-VDD)/2] may cause the Absolute Accuracy (VRAA) of the VREF output signal on RA2 to be 100Y.COM greater than the stated max.

> WWW.100Y.COM 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


### 17.5 Timing Parameter Symbology

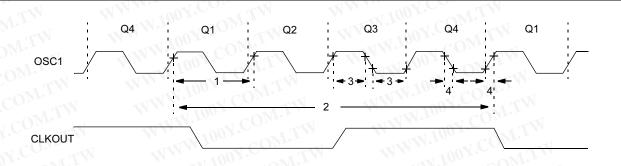
The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

2. IppS	W.IO. COM.	WW.L	COM.
Ţ	WWW. TIOOX. OM.TW	W W II	OX. OM.IN
F	Frequency	T	Time
Lowercas	e subscripts (pp) and their meanings:	WWW.	COMP. WW
pp		W	
ck	CLKOUT	osc	OSC1
io	I/O port	tO	TOCKI
mc	MCLR	VI TI	W.IOT COM. TW
Uppercas	e letters and their meanings:		W.100 S. COM. I.
S	TW WWW. 100Y.CO.	W W	TIOOY.COM.TW
FON	Fall	P	Period
H	High	R	Rise
	Invalid (Hi-impedance)	v V	Valid
<u>tr</u> CO	Low	Z	Hi-Impedance






勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.T

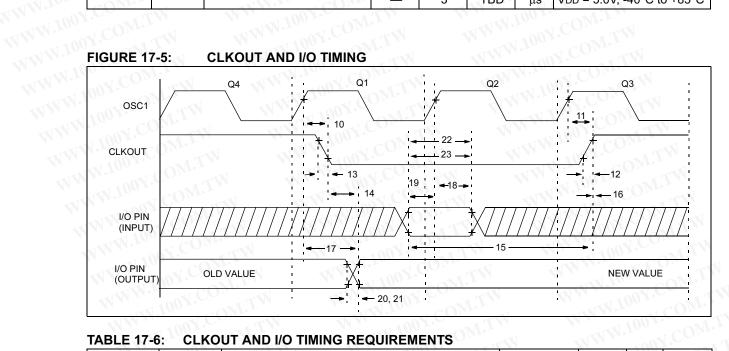
#### 17.6 Timing Diagrams and Specifications

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw





#### **TABLE 17-4**: **EXTERNAL CLOCK TIMING REQUIREMENTS**


Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
N.100Y.C	Fosc	External CLKIN Frequency ⁽¹⁾	DC	<u>LM</u>	4	MHz	XT and RC Osc mode, VDD = 5.0 V
100X.		LV1 V1 100	DC		20	MHz	HS Osc mode
1005		IN WW IO	DC	NI.	200	kHz	LP Osc mode
WW.Los		Oscillator Frequency ⁽¹⁾	N-CO		4	MHz	RC Osc mode, VDD = 5.0V
WW.100		N.I.	0.1	<u>Nr.</u>	4	MHz	XT Osc mode
10	01	M.T.	1001	04.	20	MHz	HS Osc mode
NW VI		WW WTS	10 <del>0</del> Y.		200	kHz	LP Osc mode
WW.		ONL. WWW		4	The second secon	MHz	INTOSC mode (fast)
N T		-ON-IN N.	N.100	37		kHz	INTOSC mode (slow)
1	Tosc	External CLKIN Period ⁽¹⁾	250		1.7.	ns	XT and RC Osc mode
WW		COM WY	50	<u>10</u>	V <del>T</del>	ns	HS Osc mode
		COM	5	~ <del>~</del> C		μs	LP Osc mode
AL.		Oscillator Period ⁽¹⁾	250	<u> </u>	OFT.	ns	RC Osc mode
W		NY.CO. TW V	250	002.0	10,000	ns	XT Osc mode
		N CONL	50		1,000	ns	HS Osc mode
		ONT. COMIT	5	100	COM	μs	LP Osc mode
<		100Y.CO.T.TW	<u>N</u>	250		ns	INTOSC mode (fast)
		TW TONY	A N	27	N.CO	μs	INTOSC mode (slow)
2	Тсу	Instruction Cycle Time	1.0	TCY	DC	ns	Tcy = 4/Fosc
3	TosL, TosH	External CLKIN (OSC1) High External CLKIN Low	100*	NH.I	00 <u>7</u> .C	ns	XT oscillator, Tosc L/H duty cycle
4	RC	External Biased RC Fre- quency	10 kHz*	NT.	4 MHz	<u>.0</u>	VDD = 5.0V

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Instruction cycle period (Tcy) equals four times the input oscillator time-based period. All specified values Note: are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

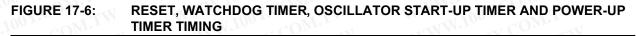
TABLE 17-5:	PRECISION INTERNAL OSCILLATOR PARAMETERS

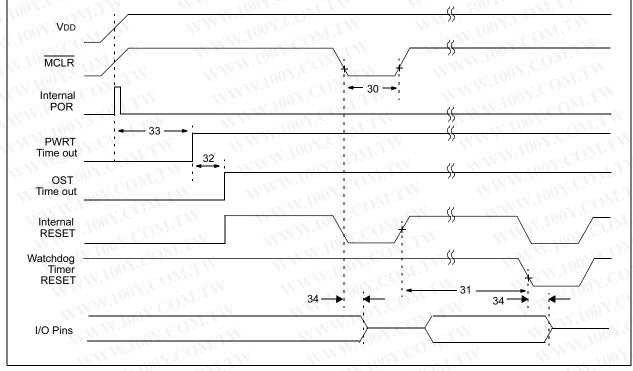
Parameter No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions		
F10	Flosc	Oscillator Center frequency	- AV	4	01.0	MHz	14		
F13	∆losc	Oscillator Stability (jitter)			±1	%	VDD = 3.5 V, 25°C		
			- <	WIDN.	±2	%	$2.0 V \le VDD \le 5.5V$ $0^{\circ}C \le TA \le +85^{\circ}C$		
			—	WW Y	±5	%	$\begin{array}{l} 2.0 \ V \leq V DD \leq 5.5 V \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \ (IND) \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ (EXT) \end{array}$		
F14	Tioscst	Oscillator Wake-up from SLEEP start-up time	N —	6	TBD	μs	VDD = 2.0V, -40°C to +85°C		
			- IX	4	TBD	μs	VDD = 3.0V, -40°C to +85°C		
			_	3	TBD	μs	VDD = 5.0V, -40°C to +85°C		



TABLE 17-6:	CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units
10	TosH2ckL	OSC1↑ to CLKOUT↓	PIC16F62X	1.1.1	75	200*	ns
10A 🔨	WW. A	Y.COM WWW	PIC16LF62X	NT T	<u>-</u> N	400*	ns
11	TosH2ckH	OSC1↑ to CLKOUT↑	PIC16F62X	N <del>y </del>	75	200*	ns
11A	L.W.	COM.I	PIC16LF62X	DW-		400*	ns
12	TckR	CLKOUT rise time	PIC16F62X	0 <u>M-1</u>	35	100*	ns
12A	WWW	100Y.CO. INTW	PIC16LF62X	- ONT	—	200*	ns
13	TckF	CLKOUT fall time	PIC16F62X	NT IL CO	35	100*	ns
13A	WIG	N.10° COM.	PIC16LF62X	V.COM	- N	200*	ns
14	TckL2ioV	CLKOUT $\downarrow$ to Port out valid	WW.100	- CONT.	_	20*	ns
15	TioV2ckH	Port in valid before	PIC16F62X	Tosc+200 ns*		_	ns
18	TosH2iol	OSC1↑ (Q2 cycle) to Port input inv (I/O in hold time)	alid	100* 200*	<u>nu</u>		ns


* These parameters are characterized but not tested.


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units
		CLKOUT 1	PIC16LF62X	Tosc+400 ns*	< <u> </u>	—	ns
16	TckH2iol	Port in hold after CLKOUT ↑	W.100	0		_	ns
17	TosH2ioV	OSC1↑ (Q1 cycle) to	PIC16F62X	10 <u>7.0</u> 10	50	150*	ns
	N	Port out valid	PIC16LF62X	NOT.COM	T	300*	ns
18	TosH2iol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)		100* 200*	1.17	-	ns

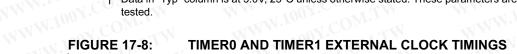
These parameters are characterized but not tested.

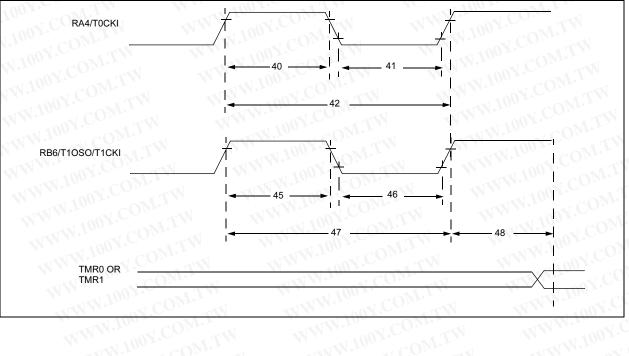
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.











# TABLE 17-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

				-1			
Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2000 TBD	– TBD	— TBD	ns ms	VDD = 5V, -40°C to +85°C Extended temperature
31	Twdt	Watchdog Timer Time out Period (No Prescaler)	7* TBD	18 TBD	33* TBD	ms ms	VDD = 5V, -40°C to +85°C Extended temperature
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc		CON	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	28* TBD	72 TBD	132* TBD	ms ms	VDD = 5V, -40°C to +85°C Extended temperature
34	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	-	MWY	2.0*	μs	MITW
35	TBOR	Brown-out Reset pulse width	100*	111		μs	$VDD \leq VBOR (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.





勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736	N.T.W
胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw	OM.T

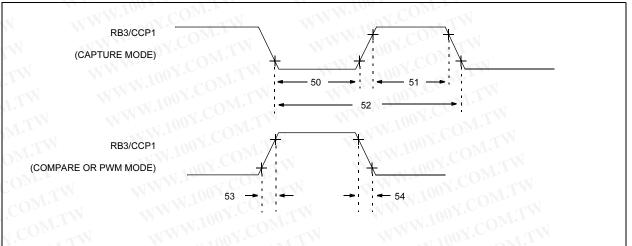
WWW.100Y.COM

WW.100Y.COM

Param No.	Sym	WWW.100	Characteristic	W W	Min	Typ†	Max	Units	Conditions
40	Tt0H	T0CKI High P	ulse Width	No Prescaler	0.5Tcy + 20*	1.0	VEN.	ns	
	×1	WW.		With Prescaler	10*	N <del>.C</del> O		ns	
41	Tt0L	T0CKI Low P	ulse Width	No Prescaler	0.5Tcy + 20*		Mr.	ns	
	W7	WWW		With Prescaler	10*	102.		ns	
(42 (0)	TtOP	T0CKI Period	W.100Y.CO	Greater of: <u>Tcy + 40*</u> N	10 <u>07</u> .0	co _M	ns	N = prescale value (2, 4,, 256)	
45	Tt1H	T1CKI High	Synchronous,	No Prescaler	0.5Tcy + 20*	<u> </u>	$1 \mathbf{C}^{\mathbf{O}}$	ns	N
	WTIM	Time 🔨	Synchronous,	PIC16F62X	15*	N.100		ns	
	The second	1 1	with Prescaler	PIC16LF62X	25*		N.Y.	ns	N.
	OW.	-	Asynchronous	PIC16F62X	30*	14.	S <del>√</del> C	ns	W.
	LIN	11 1	100	PIC16LF62X	50*		<u> 00</u>	ns	
46	46 Tt1L T1CKI Low Time	Synchronous,	No Prescaler	0.5Tcy + 20*	<u> </u>	10 <del>0</del> 7.	ns	MIN	
		Synchronous,	PIC16F62X	15*	WHAT WY		ns	WT	
		with Prescaler	PIC16LF62X	25*		TTO.	ns	Mr	
			Asynchronous	PIC16F62X	30*	NT.	001 12	ns	WI.IM
			·WW.	PIC16LF62X	50*	NT N	<u> </u>	ns	Wn
47	Tt1P	Tt1P T1CKI input Synchroperiod		PIC16F62X	Greater of: <u>Tcy + 40*</u> N	WV	N.M.J	ns	N = prescale value (1, 2, 4, 8
WW 100Y.COM.T	COM.TW	WW	PIC16LF62X	Greater of: <u>Tcy + 40*</u> N		NWN	1.700 7.00	X.COM.TV	
	100	TIM	Asynchronous	PIC16F62X	60*	—		ns	ON.L
	N.10	V.COM.	12 12	PIC16LF62X	100*	—	A.	ns	01.00
W	Ft1		tor input frequen abled by setting b		LCOM.TV	32.7 ⁽¹⁾	<u>M</u>	kHz	100Y.COM
48		increment	ternal clock edge	e to timer	2Tosc	- N	7Tosc		1.100Y.CO

#### TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS **TABLE 17-9**:

WWW.100Y.COM


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

This oscillator is intended to work only with 32.768 kHz watch crystals and their manufactured tolerances. Note 1: Higher value crystal frequencies may not be compatible with this crystal driver.

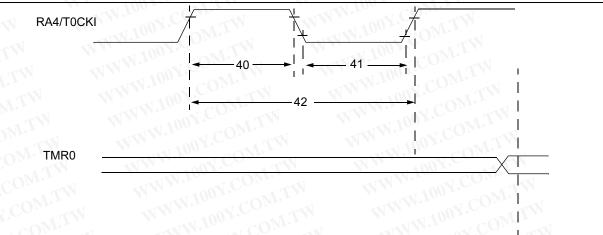
> 特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

100Y.COM

### FIGURE 17-10: CAPTURE/COMPARE/PWM TIMINGS



<b>TABLE 17-8</b> :	CAPTURE/COMPARE/PWM REQUIREMENTS	


Param No.	Sym	ATW.	Characteristic		Min	Тур†	Мах	Units	Conditions
50	TccL	CCP No Prescaler		Y.C.M.TV	0.5Tcy + 20*		100	ns	W.I.N.
.10	V.CC	input low time	WWW.	PIC16F62X	10*		071	ns	WILMO
N.10	J.V.	ONLI	With Prescaler	PIC16LF62X	20*		_	ns	WTN
51	TccH		No Prescaler	TOO CONF.	0.5Tcy + 20*	R		ns	COMMUN
	input high time	input high time		PIC16F62X	10*		Ť	ns	COM
		With Prescaler	PIC16LF62X	20*	_		ns	COM.1	
52	TccP	CCP input perio	W.100Y.CC	<u>3Tcy + 40*</u> N	_	N N	ns	N = prescale value (1,4 or 16)	
53	TccR	CCP output rise	time	PIC16F62X	ONL.	10	25*	ns	N.COM
AN.	WW 100Y. OM.I			PIC16LF62X			45*	ns	ton COM.
54	TccF	CCP output fall	time	PIC16F62X	-ON.IN	10	25*	ns	100 X COM
1	A VI	TODY.COM	WTD	PIC16LF62X	VI.IV	25	45*	ns	N 1001.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw





Parameter No.	Sym	Characteris	Min	Тур†	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 Tcy + 20*		AL 1	ns	LCOM TW
W.100X		M.T.	With Prescaler	10*		W	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 Tcy + 20*	-		ns	COM.
110	oy.C	M.TH W	With Prescaler	10*	_	VT.	ns	
42	Tt0P	T0CKI Period	WW.100Y.C	<u>Tcy + 40</u> * N	_	- 20	ns	N = prescale value (1, 2, 4,, 256)

#### **TABLE 17-9**: TIMER0 CLOCK REQUIREMENTS

t Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. WWW.100 WWW.100Y.COM

WWW.100Y.COM.TW

特 力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

#### 18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

WWW.100Y.COM.T

WWW.100Y.COM.TW Not Available at this time.

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

COM.TW

EW.100Y.COM.TW

### NOTES:

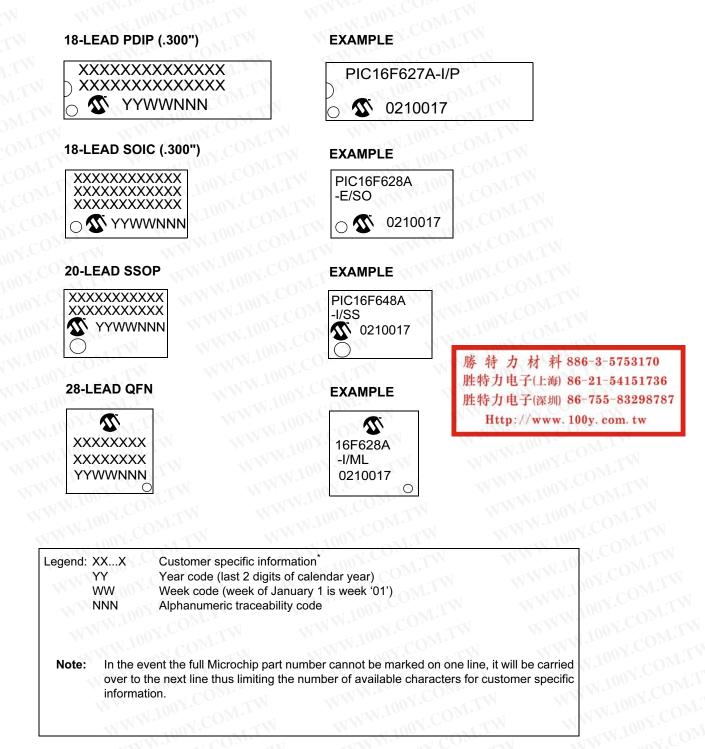
勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.

100Y.COM.TW

WWW.1007.

WWW.100Y.COM.T

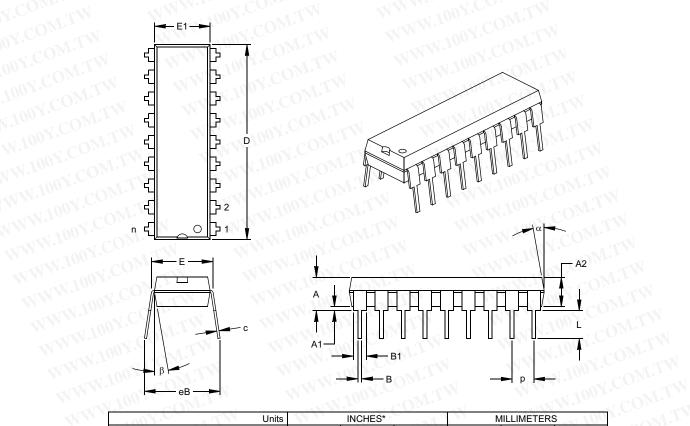

COM.TW

W.100Y.COM.TW

WW

# **19.0 PACKAGING INFORMATION**

### **19.1 Package Marking Information**




* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

© 2002 Microchip Technology Inc.

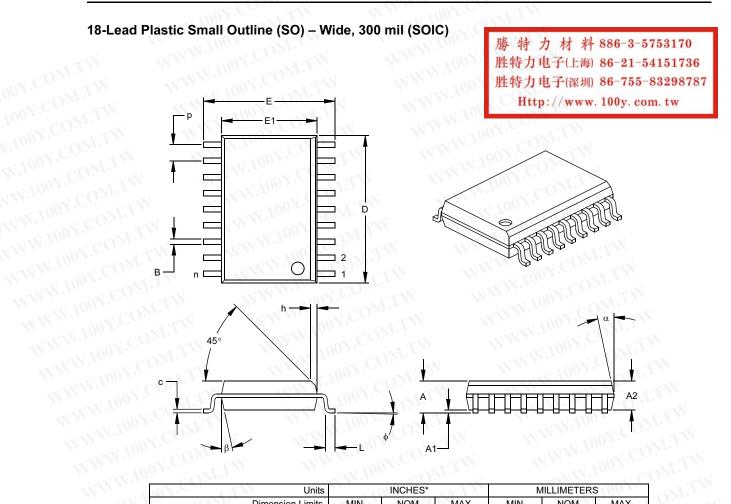
18-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw



100Y.COM

Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18		L.M.	18	1001.0	
Pitch	р	AL.	.100	1 COM		2.54	N.V.	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32	
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68	
Base to Seating Plane	A1	.015	1.10		0.38		MIN IN	
Shoulder to Shoulder Width	E E	.300	.313	.325	7.62	7.94	8.26	
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60	
Overall Length	D	.890	.898	.905	22.61	22.80	22.99	
Tip to Seating Plane	L.	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

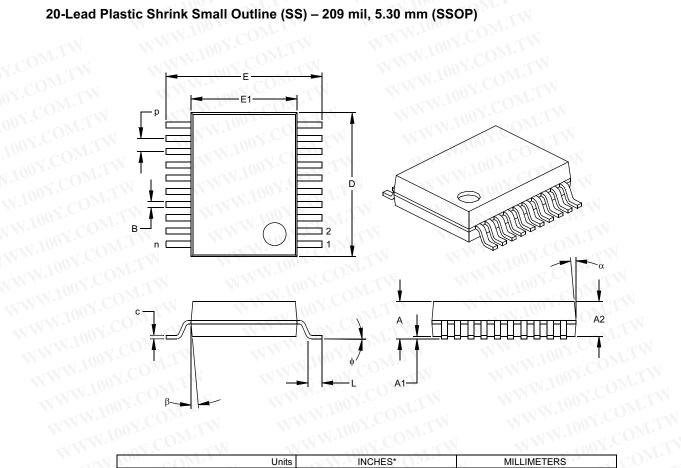

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

WWW.100Y.COM.TW

WWW.100Y.COM.TV JEDEC Equivalent: MS-001 Drawing No. C04-007

W.100Y.COM.TW

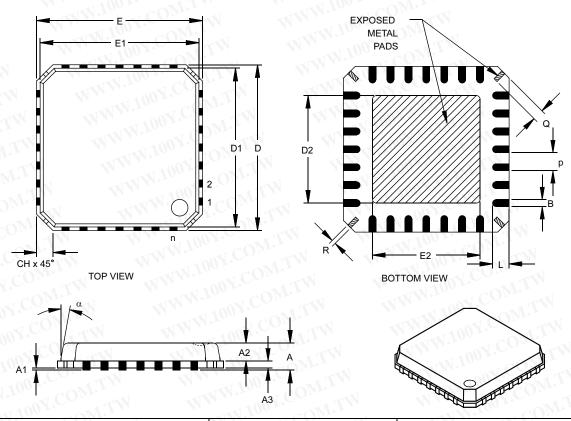



	Units		INCHES*	NT.	MI	LLIMETERS	
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18	1.1		18	1100 -
Pitch	р	ALVN.	.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Nolded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Vold Draft Angle Bottom	β	0	12	15	0	12	15

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed WWW.100Y.C .010" (0.254mm) per side. WWW.100Y.COM. JEDEC Equivalent: MS-013

WWW.100Y.COM.TW Drawing No. C04-051

20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)




$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Units	. W.K.	INCHES*	)hr.	MI	LLIMETERS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Number of Pins	n	ALL NO	20	O'N'S		20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pitch	р		.026	M		0.65	w11W
Standoff §         A1         .002         .006         .010         0.05         0.15         0.22           Overall Width         E         .299         .309         .322         7.59         7.85         8.11           Molded Package Width         E1         .201         .207         .212         5.11         5.25         5.33           Overall Length         D         .278         .284         .289         7.06         7.20         7.33           Foot Length         L         .022         .030         .037         0.56         0.75         0.94           Lead Thickness         c         .004         .007         .010         0.18         0.22           Foot Angle $\phi$ 0         4         8         0.00         101.60         203.24           Lead Width         B         .010         .013         .015         0.25         0.32         0.33           Mold Draft Angle Top         α         0         5         10         0         5         1	Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Overall Width         E         .299         .309         .322         7.59         7.85         8.11           Molded Package Width         E1         .201         .207         .212         5.11         5.25         5.33           Overall Length         D         .278         .284         .289         7.06         7.20         7.33           Foot Length         L         .022         .030         .037         0.56         0.75         0.94           Lead Thickness         c         .004         .007         .010         0.18         0.22           Foot Angle         φ         0         4         8         0.00         101.60         203.24           Lead Width         B         .010         .013         .015         0.25         0.32         0.34           Mold Draft Angle Top         α         0         5         10         0         5         1	Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Molded Package Width         E1         .201         .207         .212         5.11         5.25         5.33           Overall Length         D         .278         .284         .289         7.06         7.20         7.33           Foot Length         L         .022         .030         .037         0.56         0.75         0.94           Lead Thickness         c         .004         .007         .010         0.10         0.18         0.22           Foot Angle         ψ         0         4         8         0.00         101.60         203.24           Lead Width         B         .010         .013         .015         0.25         0.32         0.33           Mold Draft Angle Top         α         0         5         10         0         5         1	Standoff §	N A1	.002	.006	.010	0.05	0.15	0.25
Overall Length         D         .278         .284         .289         7.06         7.20         7.3           Foot Length         L         .022         .030         .037         0.56         0.75         0.9           Lead Thickness         c         .004         .007         .010         0.10         0.18         0.22           Foot Angle         φ         0         4         8         0.00         101.60         203.24           Lead Width         B         .010         .013         .015         0.25         0.32         0.33           Mold Draft Angle Top         α         0         5         10         0         5         11	Overall Width	E	.299	.309	.322	7.59	7.85	8.18
Foot Length         L         .022         .030         .037         0.56         0.75         0.9           Lead Thickness         c         .004         .007         .010         0.10         0.18         0.22           Foot Angle         φ         0         4         8         0.00         101.60         203.24           Lead Width         B         .010         .013         .015         0.25         0.32         0.33           Mold Draft Angle Top         α         0         5         10         0         5         11	Molded Package Width	< E1	.201	.207	.212	5.11	5.25	5.38
Lead Thickness         c         .004         .007         .010         0.10         0.18         0.24           Foot Angle         φ         0         4         8         0.00         101.60         203.24           Lead Width         B         .010         .013         .015         0.25         0.32         0.33           Mold Draft Angle Top         α         0         5         10         0         5         1	Overall Length	D	.278	.284	.289	7.06	7.20	7.34
Foot Angle         φ         0         4         8         0.00         101.60         203.24           Lead Width         B         .010         .013         .015         0.25         0.32         0.33           Mold Draft Angle Top         α         0         5         10         0         5         1	Foot Length	<b>L</b>	.022	.030	.037	0.56	0.75	0.94
Lead Width         B         .010         .013         .015         0.25         0.32         0.33           Mold Draft Angle Top         α         0         5         10         0         5         1	Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Mold Draft Angle Top α 0 5 10 0 5 1	Foot Angle	¢	0	4	8	0.00	101.60	203.20
	Lead Width	В	.010	.013	.015	0.25	0.32	0.38
	Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom $\beta$ 0 5 10 0 5 11	Mold Draft Angle Bottom	β	0	5	10	0	5	10

WWW.100Y.COM Drawing No. C04-072

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

100X.COM.TW



### 28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body (QFN)

War, U.S. Kan		INCHES	WT	MILLIMETERS*					
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n	LIN .	28	1.1		28	- coM		
Pitch	р	NN	.026 BSC	WTI	4	0.65 BSC	1.0-		
Overall Height	А	WW.	.033	.039	41	0.85	1.00		
Molded Package Thickness	A2		.026	.031	7	0.65	0.80		
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05		
Base Thickness	A3		.008 REF.	COM	0.20 REF.				
Overall Width	E		.236 BSC	I.Ma		6.00 BSC			
Molded Package Width	E1	VV	.226 BSC	I.Com	N .	5.75 BSC	. Yoon		
Exposed Pad Width	E2	.140	.146	.152	3.55	3.70	3.85		
Overall Length	D	N.	.236 BSC	N.C.	TW	6.00 BSC	x 100 x		
Molded Package Length	D1	~	.226 BSC	N.COm	W	5.75 BSC			
Exposed Pad Length	D2	.140	.146	.152	3.55	3.70	3.85		
Lead Width	В	.009	.011	.014	0.23	0.28	0.35		
Lead Length	J. N.C	.020	.024	.030	0.50	0.60	0.75		
Tie Bar Width	R	.005	.007	.010	0.13	0.17	0.23		
Tie Bar Length	Q	.012	.016	.026	0.30	0.40	0.65		
Chamfer	СН	.009	.017	.024	0.24	0.42	0.60		
Mold Draft Angle Top	α	1.1.	A.	12°	-M.		12°		

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC equivalent: M0-220

Drawing No. C04-114



© 2002 Microchip Technology Inc.

NWW.100

WWW.100Y.COM.

NOTES:

WWW.100Y.COM.TW WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

WWW.100X.

WWW.100Y.COM.T

WWW.10

W.100Y.COM.TW

COM.TW

EW.100Y.COM.TW

#### **APPENDIX A:** DATA SHEET **REVISION HISTORY**

### **Revision A**

WWW.100Y.COM.TW WWW.100Y.COM.TW This is a new data sheet. WW.100X.COM

#### APPENDIX B: DEVICE DIFFERENCES

The differences between the PIC16F627A/628A/648A devices listed in this data sheet are shown in Table B-1.

#### TABLE B-1: **DEVICE DIFFERENCES**

WW.L.	Memory								
Device	FLASH Program	RAM Data	EEPROM Data						
PIC16F627A	1024 x 14	224 x 8	128 x 8						
PIC16F628A	2048 x 14	224 x 8	128 x 8						
PIC16F648A	4096 x 14	256 x 8	256 x 8						

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100

W.100Y.COM.TW

# APPENDIX C: DEVICE MIGRATIONS

This section describes the functional and electrical specification differences when migrating between functionally similar devices. (such as from a PIC16F627 to a PIC16F627A).

### C.1 PIC16F627/628 to a PIC16F627A/628A

- 1. ER mode is now RC mode.
- Code Protection for the Program Memory has changed from Code Protect sections of memory to Code Protect of the whole memory. The Configuration bits CP0 and CP1 in the PIC16F627/ 628 do not exist in the PIC16F627A/628A. They have been replaced with one Configuration bit<13> CP.
- "Brown-out Detect (BOD)" terminology has changed to "Brown-out Reset (BOR)" to better represent the function of the Brown-out circuitry.
- Enabling Brown-out Reset (BOR) does not automatically enable the Power-up Timer (PWRT) the way it did in the PIC16F627/628.
- 5. INTRC is now called INTOSC.
- Timer1 Oscillator is now designed for 32.768 kHz operation. In the PIC16F627/628 the Timer1 Oscillator was designed to run up to 200 kHz.
- The Dual Speed Oscillator mode only works in the INTOSC Oscillator mode. In the PIC16F627/ 628 the Dual Speed Oscillator mode worked in both the INTRC and ER Oscillator modes.

# APPENDIX D: MIGRATING FROM OTHER PICmicro DEVICES

This discusses some of the issues in migrating from other PICmicro devices to the PIC16F627A/628A/648A family of devices.

### D.1 PIC16C62X/CE62X to PIC16F627A/628A/ 648A Migration

See Microchip web site for availability (www.microchip.com).

### D.2 PIC16C622A to PIC16F627A/628A/648A Migration

See Microchip web site for availability (www.microchip.com).

Note: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

#### DEVELOPMENT APPENDIX E: TOOL VERSION REQUIREMENTS

This lists the minimum requirements (software/ firmware) of the specified development tool to support the devices listed in this data sheet.

MPLAB [®] IDE:	TBD
-------------------------	-----

MPLAB[®] SIMULATOR: TBD

### MPLAB® ICE 3000:

PIC16F627A/628A/648A Processor Module: TBD Part Number er: MAN

PIC16F627A/628A/64	8A Device Adapter:	
Socket	Part Number	
18-pin PDIP	TBD	
18-pin SOIC	TBD	
20-pin SSOP	TBD	
28-pin QFN	TBD	
MPLAB [®] ICD:	TBD	
PRO MATE [®] II:	TBD	
PICSTART [®] Plus:	TBD	
MPASM [™] Assembler:	TBD WWW. MOY.CO	
MPLAB [®] C18 C Compiler:	TBD	

Note:	Please read all associated F files that are supplied with ment tools. These "read me cuss product support and	the develop- " files will dis-	
WWW	limitations.	II.WWW	

WWW.100Y.COM.T

WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

oy.COM.TW 00Y.COM.TW

WW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.C

WWW.100Y.COM.TW 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

WWW.100Y.COM.TW

100Y.COM.TW

WWW.100Y.COM.TW

WWW.100X.

WWW.100Y.COM.T

COM.TW

EW.100Y.COM.TW

WW

## **ON-LINE SUPPORT**

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

### **Connecting to the Microchip Internet Web Site**

The Microchip web site is available at the following URL:

#### www.microchip.com

The file transfer site is available by using an FTP service to connect to:

#### ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- Design Tips
- Device Errata
- Job Postings
- · Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

# SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

# **READER RESPONSE**

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To: Technical Publications Manager	Total Pages Sent
RE: Reader Response	
From: Name	WWW.100 CONFIL
Company	WWWW 100 T. COM. TW
City / State / ZIP / Country	
Telephone: ()	FAX: ( ) -
Application (optional):	WWW.IOW.COM.
Would you like a reply?YN	IN WWW.100 P COMPLET
Device: PIC16F627A/628A/648A Literature Number: Questions:	胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787
1. What are the best features of this document?	Http://www.100y.com.tw
100X.CO.M.T.N. N.M. 100X.C	CONTRACTOR NOT CONTRACTOR
<ol> <li>How does this document meet your hardware and sol</li> <li>3. Do you find the organization of this document easy to</li> </ol>	DECOMET WWW.100 P.COM. P
WWW.100X.COM.TW WWW.	100X.COM.TW WWW.100X.COM
4. What additions to the document do you think would en	nhance the structure and subject?
NWW.100X.CONL.2	W.1002 COMPLEX WWW.100 OV.CO
5. What deletions from the document could be made wit	hout affecting the overall usefulness?
W. 100 P. COMP.	ANW.100 SI CONT.
6. Is there any incorrect or misleading information (what	and where)?
WWWWWWI 100X.COMMIT	WWW 1002. OM.TW WWW.I
7. How would you improve this document?	
WWW.Luny.COnt. TW	WWW.LOOX.COPALTW WW
WWW.100 COM. TW	WWW.100Y.COM.TW WW

## 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Α

INDEX

A/D	
Special Event Trigger (CCP)	WW
Absolute Maximum Ratings	
ADDLW Instruction	
ADDWF Instruction	(
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview9	
Assembler	
MPASM Assembler	
BONLTH WWW.1002.COM.TW	
Baud Rate Error	
Baud Rate Formula	
BCF Instruction	
Block Diagrams	
Comparator	
I/O Operating Modes	
Modified Comparator Output	
I/O Ports	
RB0/INT Pin	
RB1/RX/DT Pin	TIM
RB2/TX/CK Pin	June
RB3/CCP1 Pin	M
RB4/PGM Pin	
RB5 Pin	COM
RB6/T10S0/T1CKI Pin	
RB7/T1OSI Pin	
RC Oscillator Mode96	
USART Receive	
USART Transmit77	
BRGH bit71	
Brown-Out Reset (BOR)	
BSF Instruction114	
BTFSC Instruction 114	100
BTFSS Instruction 115	11001
C ALWWIN OV. COMP. TOW WWW	
WI MOLONALIW	x100

### С

CALL Instruction 1	15
Capture (CCP Module)	56
Block Diagram	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Changing Between Capture Prescalers	
Prescaler Software Interrupt	56
Timer1 Mode Selection	56
Capture/Compare/PWM (CCP)	55
Capture Mode. See Capture	
CCP1	55
CCPR1H Register	55
CCPR1L Register	55
CCP2	55
Compare Mode. See Compare	
PWM Mode. See PWM	
Timer Resources	55
CCP1CON Register	
CCP1M3:CCP1M0 Bits	55
CCP1X:CCP1Y Bits	55
CCP2CON Register	
CCP2M3:CCP2M0 Bits	55
CCP2X:CCP2Y Bits	55

# PIC16F627A/628A/648A

Clocking Scheme/Instruction Cycle	
CLRF Instruction	
CLRW Instruction	
CLRWDT Instruction	116
Code Examples	
Data EEPROM Refresh Routine	92
Code Protection	108
COMF Instruction	116
Comparator	
Block Diagrams	
I/O Operating Modes	
Modified Comparator Output	
Comparator Module	
Configuration	
Interrupts	
Operation	
Reference	
Compare (CCP Module)	
Block Diagram	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Software Interrupt	
Special Event Trigger	
Timer1 Mode Selection	
Configuration Bits	
Crystal Operation	
DW WWW.LU ON	
Data EEDDOM Mamany	00

# D

, ) a f	Data EEPROM Memory		
1.0	EECON1 Register		
2	EECON2 Register		
3	Operation During Code Protection		
)	Reading		
<b>7</b> 0 -	Spurious Write Protection		
	Using		
3002	Write Verify		
	Writing to		
1.100	Data Memory Organization		
5	DECF Instruction	116	
	DECFSZ Instruction	117	
	Development Support		
5	Development Tool Version Requirements		
3	Device Differences	155	
3	Device Migrations	156	
3	Dual-speed Oscillator Modes		
3	- WILL WILL		
3	W.E. COM.		

6	Dual-speed Oscillator Modes	
6 6	W.E ^{JOY.} COM.TW	
6	EECON1 register	
6	EECON2 register	
6	Errata	
5	External Crystal Oscillator Circuit	
5	GV.LOOM.COM.	

External Crystal Oscillator Circuit		
GV.100 COM.		
General-Purpose Register File		
GOTO Instruction	117	
WW. 100Y.COM.		
I/O Ports		
Bi-Directional		
Block Diagrams		
RB0/INT Pin		
RB1/RX/DT Pin		
RB2/TX/CK Pin		
RB3/CCP1 Pin		
RB4/PGM Pin	39	

RB5 Pin	. 40	
RB6/T1OSO/T1CKI Pin	.41	IC
RB7/T1OSI Pin	. 42	10
PORTA	. 31	
PORTB	. 36	K
Programming Considerations		ĸ
Successive Operations		
TRISA		Ν
TRISB		N
ICEPIC In-Circuit Emulator		IV
ID Locations		N
INCF Instruction		N N
INCFSZ Instruction		N
In-Circuit Serial Programming		N
Indirect Addressing, INDF and FSR Registers		N
Instruction Flow/Pipelining		N
Instruction Set ADDLW		N
		W
ADDWF		N
ANDLW	113	N
ANDWF	113	1
BCF	114	N
BSF	114	N
BTFSC	114	N
BTFSS	115	C
CALL	115	С
CLRF		Č
CLRW		Ö
CLRWDT		C
COMF		ĊŬ
DECF		P
		P
DECFSZ		•
GOTO		P
INCF		P
INCFSZ		1
IORLW		P
IORWF		P
MOVF		P
MOVLW		Ρ
MOVWF	120	P
NOP	120	P
OPTION	120	P
RETFIE	120	P
RETLW		
RETURN	121	
RLF		Р
RRF		P
SLEEP		P
SUBLW.		P
SUBWF		P
SUBWI		P
		P
TRIS		•
XORLW		P
XORWF		Р
Instruction Set Summary		Р
INT Interrupt		Р
INTCON Register	. 24	Р
Interrupt Sources		
Capture Complete (CCP)	. 56	
Compare Complete (CCP)	. 57	
TMR2 to PR2 Match (PWM)	. 58	
Interrupts		
Interrupts, Enable Bits CCP1 Enable (CCP1IE Bit)		
The second se		
CCP1 Enable (CCP1IE Bit)	. 56	

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

CCP1 Flag (CCP1IF Bit)	
IORLW Instruction	
IORWF Instruction	119
KWW.100 COM.	

# KWW.10

KeeLoq Evaluation and Programming Tools ...... 128

### Μ

Memory Organization	
Data EEPROM Memory8	9, 91, 92
Migrating from other PICmicro Devices	156
MOVF Instruction	119
MOVLW Instruction	119
MOVWF Instruction	120
MPLAB C17 and MPLAB C18 C Compilers	125
MPLAB ICD In-Circuit Debugger	127
MPLAB ICE High Performance Universal In-Circuit I	Emulator
with MPLAB IDE	126
MPLAB Integrated Development Environment Softwa	are 125
MPLINK Object Linker/MPLIB Object Librarian	126
N N. N. N. 100 L. COM. I	
NOD Instruction	120

## Ν

NOP Instruction	120

#### 0

OPTION Instruction	120
OPTION Register	
Oscillator Configurations	
Oscillator Start-up Timer (OST)	
PINLTW WW.1003	
Package Marking Information	

### Ρ

Package Marking Information       149         Packaging Information       149         Packaging Information       149         Packaging Information       149         Packaging Information       26         Stack       26         PCON Register       27         PICDEM 1 Low Cost PICmicro Demonstration Board       127         PICDEM 17 Demonstration Board       128         PICDEM 2 Low Cost PIC16CXX Demonstration Board       127         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       127         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       128         PICTRAT Plus Entry Level Development Programmer       127         PICTRAT       108         PICTRAT       69–86         RC7/RX/DT       69–86         PORTA       37         PORTB       36         Power Control/Status Register (PCON)       98         Power-On Reset (POR)       98         Power-On Reset (POR)       98         Power-Up Timer (PWRT)       98         Packagister       52, 55         Program Memory Organization       14         PWM (CCP Module)       56         Simplified PWM       56         Simplified PWM       <	PM.TW WWW.100Y.C	
Packaging Information       149         PCL and PCLATH       28         Stack       26         PCON Register       27         PICDEM 1 Low Cost PICmicro Demonstration Board       127         PICDEM 1 Demonstration Board       128         PICDEM 2 Low Cost PIC16CXX Demonstration Board       127         PICDEM 3 Low Cost PIC16CXX Demonstration Board       128         PICSTART Plus Entry Level Development Programmer       127         PIE1 Register       26         Pin Functions       69–86         RC6/TX/CK       69–86         PRC7/RX/DT       69–86         PORTA       3°         PORTA       3°         POwer Control/Status Register (PCON)       96         Power-On Reset (POR)       96         Power-up Timer (PWRT)       96         Porgram Memory Organization       11         PWM (CCP Module)       56         Simplified PWM       56         Simplified PWM <td< td=""><td>Package Marking Information</td><td>140</td></td<>	Package Marking Information	140
PCL and PCLATH.       26         Stack       26         PCON Register       27         PICDEM 1 Low Cost PICmicro Demonstration Board       127         PICDEM 17 Demonstration Board       128         PICDEM 2 Low Cost PIC16CXX Demonstration Board       127         PICDEM 3 Low Cost PIC16CXX Demonstration Board       128         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       128         PICTOR       3 Low Cost PIC16CXXX Demonstration Board       126         PICTOR       8 Low Cost PIC16CXXX Demonstration Board       126         PICTOR       9 Low Cost PIC16CXXX Demonstration Board       127         PICTOR       9 Low Cost PIC16CXXX Demonstration Board       128         PICTOR       9 Low Cost PIC16CXXX Demonstration Board       126         PICTOR       9 Low Cost PIC16CXX Demonstration Board       126         PORTA       9 Low Cost PICTX/CK       69       69         Power Control/Status Register (PCON)       96       96<		
Stack       26         PCON Register       27         PICDEM 1 Low Cost PICmicro Demonstration Board       127         PICDEM 17 Demonstration Board       128         PICDEM 2 Low Cost PIC16CXX Demonstration Board       127         PICDEM 3 Low Cost PIC16CXX Demonstration Board       128         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       128         PICSTART Plus Entry Level Development Programmer       127         PIE1 Register       26         Pin Functions       69–86         RC7/RX/DT       69–86         PORTA       37         PORTB       36         Power Control/Status Register (PCON)       98         Power-On Reset (POR)       98         Power-Up Timer (PWRT)       96         Portoral Status Register Netwice Programmer       127         Program Memory Organization       14         PWM (CCP Module)       56         Simplified PWM       56         CCPR1H:CCPR1L Registers       56         Duty Cycle       56         Example Frequencies/Resolutions       56         Set-Up for PWM Operation       56		
PCON Register       27         PICDEM 1 Low Cost PICmicro Demonstration Board       127         PICDEM 17 Demonstration Board       128         PICDEM 2 Low Cost PIC16CXX Demonstration Board       127         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       128         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       128         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       128         PICTORM 3 Low Cost PIC16CXX Demonstration Board       128         PICTORM 3 Low Cost PIC16CXX Demonstration Board       128         PIC1000000000000000000000000000000000000		
PICDEM 1 Low Cost PICmicro Demonstration Board       121         PICDEM 17 Demonstration Board       122         PICDEM 2 Low Cost PIC16CXX Demonstration Board       123         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       123         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       124         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       125         PICTORM 3 Low Cost PIC16CXXX Demonstration Board       126         PICSTART Plus Entry Level Development Programmer       127         PIE1 Register       26         Pin Functions       69–86         RC7/RX/DT       69–86         PIR1 Register       26         Port RB Interrupt       105         PORTB       36         Power Control/Status Register (PCON)       96         Power-On Reset (POR)       96         Power-Up Timer (PWRT)       96         Porgram Memory Organization       14         PWM (CCP Module)       56         Simplified PWM       56         CCPR1H:CCPR1L Registers       56         Duty Cycle       56         Example Frequencies/Resolutions       56         Set-Up for PWM Operation       56		
PICDEM 17 Demonstration Board       128         PICDEM 2 Low Cost PIC16CXX Demonstration Board       127         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       128         PICDEM 3 Low Cost PIC16CXXX Demonstration Board       128         PICSTART Plus Entry Level Development Programmer.       127         PIE1 Register       26         Pin Functions       RC6/TX/CK       69–86         RC7/RX/DT       69–86         PIR1 Register       26         Port RB Interrupt       105         PORTA       37         PORTB       36         Power Control/Status Register (PCON)       96         Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         Pace Register       52,56         Program Memory Organization       14         PWM (CCP Module)       56         Block Diagram       56         Simplified PWM       56         CCPR1H:CCPR1L Registers       56         Duty Cycle       56         Example Frequencies/Resolutions       56         Period       56         Set-Up for PWM Operation       56		
PICDEM 2 Low Cost PIC16CXX Demonstration Board 12         PICDEM 3 Low Cost PIC16CXXX Demonstration Board 124         PICSTART Plus Entry Level Development Programmer 125         PIE1 Register		
PICDEM 3 Low Cost PIC16CXXX Demonstration Board . 126         PICSTART Plus Entry Level Development Programmer 127         PIE1 Register		
PICSTART Plus Entry Level Development Programmer		
PIE1 Register       24         Pin Functions       RC6/TX/CK         RC7/RX/DT       69–86         PIR1 Register       26         Port RB Interrupt       105         PORTA       37         PORTB       36         Power Control/Status Register (PCON)       98         Power-Down Mode (SLEEP)       107         Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         Packagister       52,56         PRO MATE II Universal Device Programmer       127         Program Memory Organization       14         PWM (CCP Module)       56         Block Diagram       56         Simplified PWM       56         CCPR1H:CCPR1L Registers       56         Duty Cycle       55         Example Frequencies/Resolutions       55         Period       56         Set-Up for PWM Operation       56		
Pin Functions       69–86         RC6/TX/CK       69–86         RC7/RX/DT       69–86         PIR1 Register       26         Port RB Interrupt       105         PORTA       37         PORTB       36         Power Control/Status Register (PCON)       98         Power-Down Mode (SLEEP)       107         Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         Pack Register       52,56         PRO MATE II Universal Device Programmer       127         Program Memory Organization       14         PWM (CCP Module)       56         Block Diagram       56         Simplified PWM       56         CCPR1H:CCPR1L Registers       56         Duty Cycle       55         Example Frequencies/Resolutions       56         Period       56         Set-Up for PWM Operation       56		
RC6/TX/CK       69–86         RC7/RX/DT       69–86         PIR1 Register       26         Port RB Interrupt.       105         PORTA       37         PORTB       36         Power Control/Status Register (PCON)       96         Power-Down Mode (SLEEP)       107         Power-On Reset (POR)       96         Power-up Timer (PWRT)       96         PR2 Register       52,56         PRO MATE II Universal Device Programmer       127         Program Memory Organization       14         PWM (CCP Module)       56         Block Diagram       56         Simplified PWM       56         CCPR1H:CCPR1L Registers       56         Duty Cycle       55         Example Frequencies/Resolutions       56         Period       56         Set-Up for PWM Operation       56		25
RC7/RX/DT.       69–86         PIR1 Register       26         Port RB Interrupt.       105         PORTA       37         PORTB       36         Power Control/Status Register (PCON)       99         Power-Down Mode (SLEEP)       107         Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         PR2 Register       52, 58         PRO MATE II Universal Device Programmer       127         Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       56         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       56         Set-Up for PWM Operation       56	Pin Functions	N.IV
PIR1 Register       26         Port RB Interrupt       105         PORTA       37         PORTB       36         Power Control/Status Register (PCON)       98         Power-Down Mode (SLEEP)       107         Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         PR2 Register       52, 58         PRO MATE II Universal Device Programmer       127         Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       56         Set-Up for PWM Operation       56		
Port RB Interrupt		
PORTA       3         PORTB       36         Power Control/Status Register (PCON)       99         Power-Down Mode (SLEEP)       107         Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         PR2 Register       52, 58         PRO MATE II Universal Device Programmer       127         Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       56         Set-Up for PWM Operation       56	PIR1 Register	
PORTB       36         Power Control/Status Register (PCON)       99         Power-Down Mode (SLEEP)       107         Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         PR2 Register       52, 58         PRO MATE II Universal Device Programmer       127         Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       58         Set-Up for PWM Operation       59	Port RB Interrupt	105
Power Control/Status Register (PCON)       99         Power-Down Mode (SLEEP)       107         Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         PR2 Register       52, 58         PRO MATE II Universal Device Programmer       127         Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       58         Set-Up for PWM Operation       59	PORTA	
Power-Down Mode (SLEEP)       107         Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         PR2 Register       52, 58         PRO MATE II Universal Device Programmer       127         Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       58         Set-Up for PWM Operation       59	PORTB	36
Power-On Reset (POR)       98         Power-up Timer (PWRT)       98         PR2 Register       52, 58         PRO MATE II Universal Device Programmer       12         Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       58         Set-Up for PWM Operation       59	Power Control/Status Register (PCON)	
Power-up Timer (PWRT)       98         PR2 Register       52, 58         PRO MATE II Universal Device Programmer       12         Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       58         Set-Up for PWM Operation       59	Power-Down Mode (SLEEP)	107
Power-up Timer (PWRT)       98         PR2 Register       52, 58         PRO MATE II Universal Device Programmer       12         Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       58         Set-Up for PWM Operation       59		
PR2 Register       52, 56         PRO MATE II Universal Device Programmer       12         Program Memory Organization       14         PWM (CCP Module)       56         Block Diagram       56         Simplified PWM       56         CCPR1H:CCPR1L Registers       56         Duty Cycle       56         Example Frequencies/Resolutions       56         Set-Up for PWM Operation       56		
PRO MATE II Universal Device Programmer       12         Program Memory Organization       14         PWM (CCP Module)       56         Block Diagram       56         Simplified PWM       56         CCPR1H:CCPR1L Registers       56         Duty Cycle       55         Example Frequencies/Resolutions       56         Set-Up for PWM Operation       56	PR2 Register	
Program Memory Organization       14         PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       58         Set-Up for PWM Operation       59		
PWM (CCP Module)       58         Block Diagram       58         Simplified PWM       58         CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       56         Set-Up for PWM Operation       59		
Block Diagram       56         Simplified PWM       56         CCPR1H:CCPR1L Registers       56         Duty Cycle       56         Example Frequencies/Resolutions       56         Period       56         Set-Up for PWM Operation       56		
Simplified PWM		
CCPR1H:CCPR1L Registers       58         Duty Cycle       59         Example Frequencies/Resolutions       59         Period       58         Set-Up for PWM Operation       59		
Duty Cycle       59         Example Frequencies/Resolutions       59         Period       56         Set-Up for PWM Operation       59		
Example Frequencies/Resolutions		
Period		
Set-Up for PWM Operation 59		
TIVINZ 10 FINZ WAIGH		

WW

# 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Q	Http://www.100y.com.t	w
Q-Clock	W	
	naround-Production (QTP) Devices	
R		
RC Oscilla	ator	
RC Oscilla		
Block	Diagram	
Registers		
Maps		
	PIC16F627A	
	PIC16F628A	16, 17
	struction	
RETLW In	struction	121
RETURN	Instruction	121
Revision H	listory	155
<b>RLF</b> Instru	iction	
RRF Instru	uction	122
S		
Carial Can	amunication Interface (CCI) Madula Co	ALICADT

# WWW.100

RRF Instruction	
SV.COM WWW.L	
Serial Communication Interface (SCI) Module, S	See USART
Serialized Quick-Turnaround-Production (SQTP	) Devices 7
SLEEP Instruction	
Software Simulator (MPLAB SIM)	126
Special Event Trigger. See Compare	
Special Features of the CPU	
Special Function Registers	
Status Register	
SUBLW Instruction	
SUBWF Instruction	
SWAPF Instruction	123
WT 100Y.COM.TW V	
	40

### T

T1CKPS0 bit		
T1CKPS1 bit		C
T1OSCEN bit		U
T1SYNC bit		
T2CKPS0 bit		
T2CKPS1 bit		
Timer0		
Block Diagrams		
Timer0/WDT		
External Clock Input		
Interrupt		
Prescaler		
Switching Prescaler Assignment		
Timer0 Module		
Timer1		
Asynchronous Counter Mode		
Capacitor Selection		
External Clock Input		
External Clock Input Timing		
Oscillator	51	
Prescaler		٧
Resetting Timer1	51	$<\overline{}$
Resetting Timer1 Registers	51	V
Special Event Trigger (CCP)		
Synchronized Counter Mode		
Timer Mode		V
TMR1H	50	
TMR1L		V V
Timer2		v
Block Diagram		
Postscaler		

# PIC16F627A/628A/648A

PR2 register	52
Prescaler	52, 59
Timer2 Module	52
TMR2 output	52
TMR2 to PR2 Match Interrupt	58
Timing Diagrams	
Timer0	143
Timer1	143
USART	
Asynchronous Receiver	
USART Asynchronous Master Transmission	
USART Asynchronous Reception	
USART RX Pin Sampling	
USART Synchronous Reception	86
USART Synchronous Transmission	
Timing Diagrams and Specifications	
TMR0 Interrupt	
TMR1CS bit	
TMR1ON bit	
TMR2ON bit	
TOUTPS0 bit	
TOUTPS1 bit	
TOUTPS2 bit	
TOUTPS3 bit	
TRIS Instruction	
TRISA	
TRISB	36

# COMU

Iniversal Synchronous Asynchronous Bas	oiver Transmitter
Jniversal Synchronous Asynchronous Rec	
USART)	
Asynchronous Receiver Setting Up Reception	COM-1 -00
	82
Asynchronous Receiver Mode Address Detect	COM
Block Diagram	
	70
Asynchronous Mode Asynchronous Receiver	
Asynchronous Reception Asynchronous Transmission	
Asynchronous Transmitter	
Baud Rate Generator (BRG)	
Block Diagrams Transmit	× 100 1.
USART Receive	
BRGH bit	
Sampling	
Synchronous Master Mode	
Synchronous Master Reception	
Synchronous Master Transmission	
Synchronous Slave Mode	
Synchronous Slave Reception	
Synchronous Slave Transmit	
W.100 TOOM'T	
/oltage Reference	
Configuration	
Voltage Reference Module	67

### W

Voltage Reference Module	
WAN IN 100X.COMPTW	
Watchdog Timer (WDT) WWW, On-Line Support	
WWW.1002.COM.TW	
WW	

Х XORLW Instruction ..... XORWF Instruction

> 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

124

WWW.100Y.COM.T

WWW.100T

WWW.100Y.COM.T

100Y.COM.TW

COM.TW

W.100Y.COM.TW

# **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	-X /XX XXX       Temperature Package Pattern Range	Examples: a) PIC16F627A - E/P 301 = Extended Temp., PDIP package, 20 MHz, normal VDD limits, QTP pattern #301.
Device	PIC16F627A/628A/648A:Standard VDD range 3.0V to 5.5V PIC16F627A/628A/648ATVDD range 3.0V to 5.5V (Tape and Reel) PIC16LF627A/628A/648A:VDD range 2.0V to 5.5V PIC16LF627A/628A/648AT:VDD range 2.0V to 5.5V (Tape and Reel)	<ul> <li>b) PIC16LF627A - I/SO = Industrial Temp., SOIC package, 20 MHz, extended VDD limits.</li> </ul>
Temperature Range	I = -40°C to +85°C E = -40°C to +125°C	勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw
Package	P = PDIP SO = SOIC (Gull Wing, 300 mil body) SS = SSOP (209 mil) ML = QFN (28 Lead)	WWW.100Y.COM.TW WWW.100Y.COM.TW
Pattern	3-Digit Pattern Code for QTP (blank otherwise).	WWW.100X.COM.TW WWW.100X.COM.TW WWW.100X.COM.TW WWW.100X.COM.TW

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

#### Sales and Support

#### Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

#### **New Customer Notification System**

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

WW.100Y.COM

W.100Y.COM



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

# WORLDWIDE SALES AND SERVICE

### AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

#### Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-4338

Atlanta 3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston 2 Lan Drive, Suite 120

Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago 333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo 2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

#### Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

#### San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

### ASIA/PACIFIC

Australia Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

Tel: 86-10-85282100 Fax: 8 China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

#### China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

#### China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 15-16, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-82350361 Fax: 86-755-82366086

China - Hong Kong SAR

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

#### India

Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

#### Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Microchip Technology (Barbados) Inc., Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

### EUROPE

Austria Microchip Technology Austria GmbH Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 **United Kingdom** Microchip Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820