勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

MJ10023

Designer's™ Data Sheet

SWITCHMODE Series NPN Silicon Power Darlington Transistor with Base-Emitter Speedup Diode

The MJ10023 Darlington transistor is designed for high-voltage, high-speed power switching in inductive circuits where fall time is critical. It is particularly suited for line-operated switchmode applications such as:

- AC and DC Motor Controls
- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Fast Turn-Off Times
 - 150 ns Inductive Fall Time @ 25°C (Typ) 300 ns Inductive Storage Time @ 25°C (Typ)
- Operating Temperature Range 65 to + 200°C
- 100°C Performance Specified for:

Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages Leakage Currents

40 AMPERE NPN SILICON POWER DARLINGTON TRANSISTOR 400 VOLTS 250 WATTS

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector–Emitter Voltage	VCEO	400	Vdc
Collector–Emitter Voltage	VCEV	600	Vdc
Emitter Base Voltage	V _{EB}	80	Vdc
Collector Current — Continuous — Peak (1)	I _C M	40 80	Adc
Base Current — Continuous — Peak (1)	I _B	20 40	Adc
Total Power Dissipation @ T _C = 25°C @ T _C = 100°C Derate above 25°C	P _D CO	250 143 1.43	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{ÐJC}	0.7	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	N TLV.100	275 V.COM 275	°C

⁽¹⁾ Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

MJ10023

IW.100Y.COM.TW

	Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	WAY COME THE WAY	100 Y.CU	WILL	1	1	
Collector–Emitter Sustain (I _C = 100 mA, I _B = 0)	ning Voltage (Table 1)	VCEO(sus)	400	_	_	Vdc
Collector Cutoff Current (VCEV = Rated Value, (VCEV = Rated Value,	V _{BE(off)} = 1.5 Vdc) V _{BE(off)} = 1.5 Vdc, T _C = 150°C)	ICEV	$CO_{\overline{M}^{1}}$	N _	0.25 5.0	mAdc
Collector Cutoff Current (VCE = Rated VCEV, I	R _{BE} = 50 Ω, T _C = 100°C)	ICER	I.COM	TVĪ	5.0	mAdc
Emitter Cutoff Current (V _{EB} = 2.0 V, I _C = 0)	WWW.100Y.COM.TW	I _{EBO}	7.C0	M.T Y	175	mAdc
SECOND BREAKDOWN	M. 1001.0W.IM	W.10	103.	MIT		
Second Breakdown Colle	ector Current with Base Forward Biased	I _{S/b}	100 X: C	See Fi	gure 13	
Clamped Inductive SOA	with Base Reverse Biased	RBSOA	JONY.C	See Fi	gure 14	
ON CHARACTERISTICS	(1) STANN TON COMMEN	WWW	- OV	COMP	-W	
DC Current Gain (I _C = 10 Adc, V _{CE} = 5	MAN TOO T COM!	hFE	50	CON	600	<u> </u>
Collector–Emitter Satura (I _C = 20 Adc, I _B = 1.0 (I _C = 40 Adc, I _B = 5.0 (I _C = 20 Adc, I _B = 10 A	Adc) Adc)	VCE(sat)	$NN\overline{\Delta}_{1'}$	00, 1 C0	2.2 5.0 2.5	Vdc
Base–Emitter Saturation (I _C = 20 Adc, I _B = 1.2 (I _C = 20 Adc, I _B = 1.2	Adc)	V _{BE} (sat)	MAIN.	100 ^{Y.C}	2.5 2.5	Vdc
Diode Forward Voltage (I _F = 20 Adc)	M.T.M. WWW.100X.COM	Vf	AAM.	2.5	5.0	Vdc
DYNAMIC CHARACTERIS	STICS TWO TO THE STILL STATE OF THE STATE OF	MITH	14	TW.100	CON	Liza
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0	, f _{test} = 1.0 kHz)	C _{ob}	150	M <u>M</u> .10	600	pF
SWITCHING CHARACTE	RISTICS	COM		TWW.	ov C	DMr.,
Resistive Load (Table 1		COMIT	,	Wire	100 -	OM.
Delay Time	$(V_{CC} = 250 \text{ Vdc}, I_C = 20 \text{ A}, I_{B1} = 1.0 \text{ Adc},$ $V_{BE(off)} = 5.0 \text{ V}, t_p = 50 \text{ μs},$ Duty Cycle $\leq 2.0\%$	t _d	_	0.03	0.2	μs
Rise Time		t _r	N _	0.4	1.2	μѕ
Storage Time		t _S	W-	0.9	2.5	μѕ
Fall Time		tf	TV	0.3	0.9	μs
Inductive Load, Clampe	ed (Table 1)	Ing COM	. TXXI	•	MMin	N.C
Storage Time	N. TOO. CONT. IN.	t _{sv}	1.1	1.9	4.4	μs
Crossover Time	(I _{CM} = 20 A, V _{CEM} = 250 V, I _{B1} = 1.0 A,	100t _c	MI	0.6	2.0	μs
Fall Time	$V_{BE(off)} = 5 \text{ V}, T_{C} = 100^{\circ}\text{C})$	t _{fi}	OVETV	0.3	W	μs
Storage Time	MAN TOOK COME AM	t _{SV}	T.T	1.0	M. A.	μs
Crossover Time	(I _{CM} = 20 A, V _{CEM} = 250 V, I _{B1} = 1.0 A,	t _C		0.3	AN W	μs
Fall Time	$V_{BE(off)} = 5 \text{ V}, T_{C} = 25^{\circ}\text{C})$	t _{fi}	COy	0.15		μs

⁽¹⁾ Pulse Test: PW = 300 μ s, Duty Cycle \leq 2%.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.CO

TOWN INNY.COM.TW

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 1. DC Current Gain

Figure 2. Collector Saturation Region

Figure 3. Collector-Emitter Saturation Voltage

Figure 4. Base-Emitter Saturation Voltage

Figure 5. Collector Cutoff Region

Figure 6. Cob, Output Capacitance

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Table 1. Test Conditions for Dynamic Performance

Figure 7. Inductive Switching Measurements

Figure 8. Typical Peak Reverse Base Current

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Figure 9. Typical Inductive Switching Times

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined.

t_{SV} = Voltage Storage Time, 90% I_{B1} to 10% V_{CEM}

t_{rv} = Voltage Rise Time, 10-90% V_{CEM}

tfi = Current Fall Time, 90-10% ICM

tti = Current Tail, 10-2% ICM

t_C = Crossover Time, 10% V_{CEM} to 10% I_{CM}

An enlarged portion of the inductive switching waveform is

shown in Figure 7 to aid on the visual identity of these terms.

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN–222A:

$$PSWT = 1/2 VCCIC(t_C)f$$

In general, t_{rV} + $t_{fi} \equiv t_C$. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user orinented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_{C} and t_{SV}) which are guaranteed at 100°C .

RESISTIVE SWITCHING

Figure 10. Typical Turn-On Switching Times

Figure 11. Typical Turn-Off Switching Times

Figure 12. Thermal Response

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw The Safe Operating Area figures shown in Figures 13 and 14 are specified for these devices under the test conditions shown.

Figure 13. Maximum Forward Bias Safe Operating Area

Figure 14. Maximum RBSOA, Reverse Bias Safe Operating Area

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_C = 25\,^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25\,^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 13 may be found at any case temperature by using the appropriate curve on Figure 15.

T_{J(pk)} may be calculated from the data in Figure 12. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn—off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage—current condition allowable during reverse biased turn—off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 14 gives the RBSOA characteristics.

Figure 15. Power Derating

PACKAGE DIMENSIONS

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.COM.TW

WWW.100Y.COM.TW