

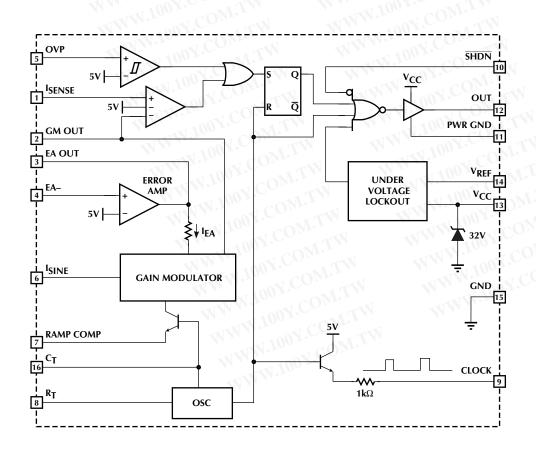
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

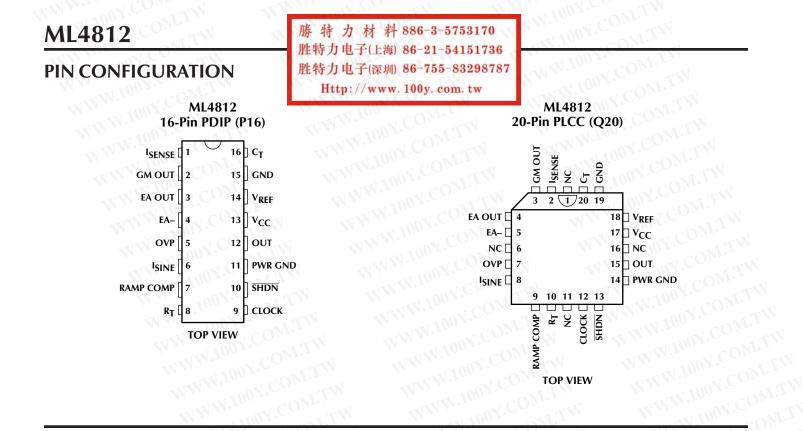
April 1998

ML4812*

GENERAL DESCRIPTION

The ML4812 is designed to optimally facilitate a peak current control boost type power factor correction system. Special care has been taken in the design of the ML4812 to increase system noise immunity. The circuit includes a precision reference, gain modulator, error amplifier, overvoltage protection, ramp compensation, as well as a high current output. In addition, start-up is simplified by an under-voltage lockout circuit with 6V hysteresis.


In a typical application, the ML4812 functions as a current mode regulator. The current which is necessary to terminate the cycle is a product of the sinusoidal line voltage times the output of the error amplifier which is regulating the output DC voltage. Ramp compensation is programmable with an external resistor, to provide stable operation when the duty cycle exceeds 50%.


Power Factor Controller

FEATURES

- Precision buffered 5V reference (±0.5%)
- Current-input gain modulator reduces external components and improves noise immunity
- Programmable ramp compensation circuit
- 1A peak current totem-pole output drive
- Overvoltage comparator helps prevent output voltage "runaway"
- Wide common mode range in current sense comparators for better noise immunity
- Large oscillator amplitude for better noise immunity
- * Some Packages Are End Of Life

BLOCK DIAGRAM (Pin Configuration Shown is for DIP Version)

PIN DESCRIPTION

PIN	DESCRI	PTION			
PIN	NAME	FUNCTION	PIN	NAME	FUNCTION
1	I _{SENSE}	Input from the current sense transformer to the non-inverting input of the PWM comparator.	8	RT	Oscillator timing resistor pin. A 5V source sets a current in the external resistor which is mirrored to charge C_{T} .
2	GM OUT	Output of gain modulator. A resistor to ground on this pin converts the current to a voltage.	9	CLOCK	Digital clock output.
		This pin is clamped to 5V and tied to the inverting input of the PWM	10	SHDN	A TTL compatible low level on this pin turns off the output.
3	ea out	comparator. Output of error amplifier.	11	PWR GND	Return for the high current totem pole output.
4	EA-	Inverting input to error amplifier.	12	OUT	High current totem pole output.
5	OVP	Input to over voltage comparator.	13	V _{CC}	Positive Supply for the IC.
6	I _{SINE}	Current gain modulator input.	14	V _{REF}	Buffered output for the 5V voltage reference.
7	RAMP	WWW.Loc	N.CO	WIL	
	COMP	Buffered output from the oscillator ramp (C_T). A resistor to ground sets the	15	GND	Analog signal ground.
		current which is internally subtracted from the product of I_{SINE} and I_{EA} in the gain modulator.	16	CT	Timing capacitor for the oscillator.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Current (I _{CC})	30mA
Output Current Source or Sink (OUT) DC	1.0A
Output Energy (capacitive load per cycle)	5µJ
Gain Modulator I _{SINE} Input (I _{SINE})	1.2mA
Error Amp Sink Current (EA OUT)	10mA
Oscillator Charge Current	2mA
Analog Inputs (I _{SENSE} , EA-, OVP)0.2	3V to 5.5V

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Junction Temperature	
20-Pin PLCC	

ML4812

OPERATING CONDITIONS

Temperature Range	
ML4812IX	–40°C to 85°C

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $V_{CC} = 15V$, $R_T = 14k\Omega$, $C_T = 1000pF$, $T_A = Operating Temperature Range (Notes 1, 2)$.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
OSCILLATOR	W. WWW WWW. MON	COM	N	MMM.	INT.CC
Initial Accuracy	$T_J = 25^{\circ}C$	91	98	105	kHz
Voltage Stability	12V < V _{CC} < 18V	COM.	0.3	WWW	%
Temperature Stability	CONTLANT WW.10	COM	2	WIG	%
Total Variation	Line, temperature	90	1.1	108	kHz
Ramp Valley to Peak	CONTRA MARK	1001.	3.3	N.	V.OC
R _T Voltage	N.T.W. WILL	4.8	5.0	5.2	V
Discharge Current (R _T open)	$T_{J} = 25^{\circ}C, V_{CT} = 2V$	7.8	8.4	9.0	mA
	$V_{CT} = 2V$	7.3	8.4	9.3	mA
Clock Out Voltage Low	$R_{L} = 16k\Omega$	1005	0.2	0.5	V
Clock Out Voltage High	$R_L = 16k\Omega$	3.0	3.5	W	V
REFERENCE	W.Inov.COM.	WW.	N.COM	WT	WW
Output Voltage	$T_{J} = 25^{\circ}C, I_{O} = 1mA$	4.95	5.00	5.05	V
Line Regulation	12V < V _{CC} < 25V	WW.	200	20	mV
Load Regulation	1mA < I _O < 20mA	WW	2	20	mV
Temperature Stability	W.1001. OM.I'	W T	0.4	ON.T.	%
Total Variation	Line, load, temp.	4.9	N.1001.	5.1	V
Output Noise Voltage	10Hz to 10kHz	A.A.	50	T.Mo	μV
Long Term Stability	T _J = 125°C, 1000 hours	W	5	25	mV
Short Circuit Current	V _{REF} = 0V	-30 🔨	-85	-180	mA
ERROR AMPLIFIER	WWW.LOON.COM		NWW.	OY.COM	
Input Offset Voltage	WWW.100 O.V.COM.	N	WWW.L	±15	mV
Input Bias Current	WW.100 COM.	N	-0.1	-1.0	μA
Open Loop Gain	1 < V _{EA OUT} < 5V	60	75		dB
PSRR	12V < V _{CC} < 25V	60	75		dB
Output Sink Current	$V_{EA OUT} = 1.1V, V_{EA-} = 6.2V$	2	12		mA
Output Source Current	$V_{EA OUT} = 5.0V, V_{EA-} = 4.8V$	-0.5	-1.0		mA
Output High Voltage	$I_{EA OUT} = -0.5 mA$, $V_{EA-} = 4.8 V$	5.3	5.5		V
Output Low Voltage	$I_{EA OUT} = 1mA, V_{EA-} = 6.2V$		0.5	1.0	V
Unity Gain Bandwidth			1.0		MHz

ML4812

ELECTRICAL CHARACTERISTICS (Continued)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
GAIN MODULATOR	WW.1002.COM.TH		VN.100	CONT.	
I _{SINE} Input Voltage	I _{SINE} = 500μA	0.4	0.7	0.9	V
Output Current (GM OUT)	$I_{SINE} = 500\mu A$, EA- = $V_{REF} - 20mV$	430	470	510	μA
WWW.LCODY.CODA	$I_{\text{SINE}} = 500 \mu \text{A}, \text{ EA}_{-} = \text{V}_{\text{REF}} + 20 \text{mV}$		3	10	μΑ
	$I_{SINF} = 1$ mA, EA- = V _{RFF} - 20mV	860	940	1020	μA
	$I_{SINE} = 500\mu A$, EA– = $V_{REF} - 20mV$, $I_{RAMP COMP} = 50\mu A$	TN T	455	1.100Y.C	μΑ
Bandwidth	NWW.100 CON		200	N.LOS	kHz
PSRR	12V < V _{CC} < 25V	U.L.	70	WW.IUV	dB
OVP COMPARATOR	TW WILLOUX	M.T.Y	1	NN.100	100
Input Offset Voltage	Output Off	-25	1	+5	mV
Hysteresis	Output On	95	105	115	mV
Input Bias Current	TW WWW. 100Y.	TIM	-0.3	-3	μΑ
Propagation Delay	CONTRACTOR WIT	COM	150	MMM	ns
PWM COMPARATOR: I _{SENSE}	COMP. MAN. MAN. MAN. MAN. MAN. MAN. MAN. MAN	N.COM.	WT	MMA	1.1008
Input Offset Voltage	CONT. TO ANY	V.COM	III	±15	mV
Input Offset Current	COM.1	N CON		±1	μΑ
Input Common Mode Range	CONTRACTOR	-0.2	M.	5.5	V
Input Bias Current	DI.COM.TH WITH	1001.0	-2	-10	μΑ
Propagation Delay	OV. CONTRA MAN	V.100Y.C	150		ns
I _{LIMIT} Trip Point	$V_{GM OUT} = 5.5V$	4.8	5	5.2	V
DUTPUT	100Y.COMTW WW	1001	.Con	W	MW
Output Voltage Low	$I_{OUT} = -20 \text{mA}$	100	0.1	0.4	V
	$I_{OUT} = -200 \text{mA}$	WW.	1.6	2.2	V
Output Voltage High	I _{OUT} = 20mA	13	13.5	WT.	V
	I _{OUT} = 200mA	12	13.4	Wn	V
Output Voltage Low in UVLO	$I_{OUT} = -5mA$, $V_{CC} = 8V$	WW.	0.1	0.8	V
Output Rise/Fall Time	C _L = 1000pF	Var	50	·0M.1	ns
Shutdown	VIH	2.0	N.1007.	CON.TY	V
	VIL	N. V.	W.1001	0.8	V
	$I_{IL}, V_{\overline{SHDN}} = 0V$	W.	100	-1.5	mA
	$I_{\rm IH}, V_{\rm SHDN} = 5V$	N	10	10	μΑ
UNDER-VOLTAGE LOCKOUT	WWW. LON.COM	N	WWW	NOY.COM	
Startup Threshold	WWW.Lus COM.	15	16	17	V
Shutdown Threshold	MWW.100 COM.	9	10	11	V
V _{REF} Good Threshold	NW.IOUT. CON.		4.4		V
SUPPLY	N. 1002.	1	1		1
Supply Current	Start-Up, V _{CC} = 14V, T _J = 25°C		0.8	1.2	mA
	Operating, $T_J = 25^{\circ}C$		20	25	mA
Internal Shunt Zener Voltage	$I_{CC} = 30 \text{mA}$	25	30	34	V

LOOX.COM

胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

100Y.COM.

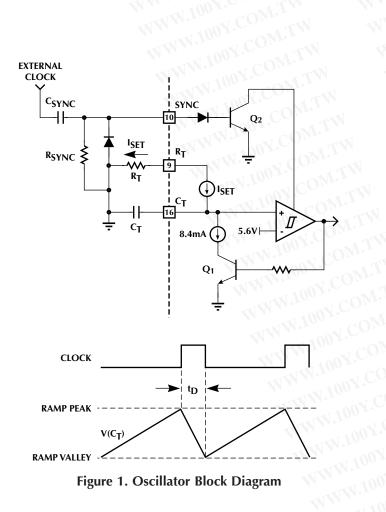
FUNCTIONAL DESCRIPTION

OSCILLATOR

The ML4812 oscillator charges the external capacitor (C_T) with a current (I_{SET}) equal to 5/ R_{SET} . When the capacitor voltage reaches the upper threshold, the comparator changes state and the capacitor discharges to the lower threshold through Q1. While the capacitor is discharging, Q2 provides a high pulse.

The Oscillator period can be described by the following relationship:

ML4812


 $T_{OSC} = T_{RAMP} + T_{DEADTIME}$

where:

$$V_{OUT} = \frac{V_{IN}}{1 - D_{ON}}$$

and:

$$T_{DEADTIME} = \frac{C_{T} \times V_{RAMP VALLEY TO PEA}}{8.4mA - I_{SET}}$$

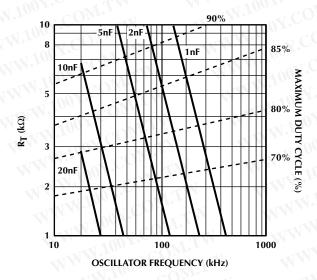


Figure 2. Oscillator Timing Resistance vs. Frequency

Figure 3. Output Saturation Voltage vs. Output Current

ML4812

FUNCTIONAL DESCRIPTION (Continued)

OUTPUT DRIVER STAGE

The ML4812 output driver is a 1A peak output high speed totem pole circuit designed to quickly drive capacitive loads, such as power MOSFET gates. (Figure 3)

ERROR AMPLIFIER

The ML4812 error amplifier is a high open loop gain, wide bandwidth, amplifier.(Figures 4-5)

GAIN MODULATOR

The ML4812 gain modulator is of the current-input type to provide high immunity to the disturbances caused by high power switching. The rectified line input sine wave is converted to a current via a dropping resistor. In this way, small amounts of ground noise produce an insignificant effect on the reference to the PWM comparator. The output of the gain modulator is a current of the form: I_{OUT} is proportional to $I_{SINE} \times I_{EA}$, where I_{SINE} is the current in the dropping resistor, and I_{EA} is a current proportional to

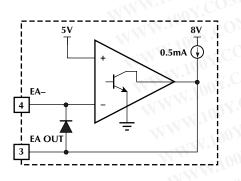


Figure 4. Error Amplifier Configuration

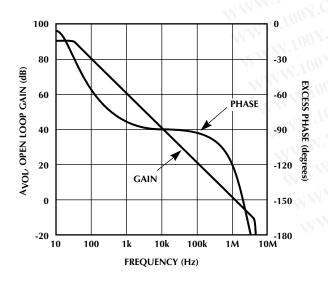
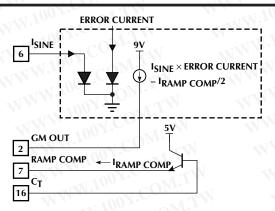


Figure 5. Error Amplifier Open-Loop Gain and Phase vs Frequency


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

the output of the error amplifier. When the error amplifier is saturated high, the output of the gain modulator is approximately equal to the I_{SINE} input current. The gain modulator output current is converted into the reference voltage for the PWM comparator through a resistor to ground on the gain modulator output. The gain modulator output is clamped to 5V to provide current limiting.


Ramp compensation is accomplished by subtracting 1/2 of the current flowing out of RAMP COMP through a buffer transistor driven by C_T which is set by an external resistor.

UNDER VOLTAGE LOCKOUT

On power-up the ML4812 remains in the UVLO condition; output low and quiescent current low. The IC becomes operational when V_{CC} reaches 16V. When V_{CC} drops below 10V, the UVLO condition is imposed. During the UVLO condition, the 5V V_{REF} pin is "off", making it usable as a "flag" for starting up a downstream PWM converter.

WWW.100Y

WWW.100Y.COM.TW WWW.100Y.COM.TW 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100Y.COM.TW

WW.100Y.COM.TW

LOOY.COM.T

WWW.100Y.COM.T

WWW.100Y

100Y.COM.T

WWW.100Y.COM.

WWW.100

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ML4812CP	0°C to 70°C	Molded PDIP (P16)
ML4812CQ	0°C to 70°C	Molded PLCC (Q20) (End Of Lit
ML4812IP	-40°C to 85°C	Molded PDIP (P16) (End Of Lif
ML4812IQ	-40°C to 85°C	Molded PLCC (Q20) (End Of Li

© Micro Linear 1998. 🔍 Micro Linear is a registered trademark of Micro Linear Corporation. All other trademarks are the property of their respective owners

Products described herein may be covered by one or more of the following U.S. patents: 4,897,611; 4,964,026; 5,027,116; 5,281,862; 5,283,483 5,418,502; 5,508,570; 5,510,727; 5,523,940; 5,546,017; 5,559,470; 5,565,761; 5,592,128; 5,594,376; 5,652,479; 5,661,427; 5,663,874; 5,672,959; 5,689,167; 5,714,897; 5,717,798. Japan: 2,598,946; 2,619,299; 2,704,176. Other patents are pending.

WWW.100Y.COM

Micro Linear reserves the right to make changes to any product herein to improve reliability, function or design. Micro Linear does not assume any liability arising out of the application or use of any product described herein, neither does it convey any license under its patent right nor the rights of others. The circuits contained in this data sheet are offered as possible applications only. Micro Linear makes no warranties or representations as to whether the illustrated circuits infringe any intellectual property rights of others, and will accept no responsibility or liability for use of any application herein. The customer is urged to consult with appropriate legal counsel before deciding on a particular application

2092 Concourse Drive San Jose, CA 95131 Tel: (408) 433-5200 Fax: (408) 432-0295 www.microlinear.com

