

September 1983 Revised February 1999

MM74HC139 **Dual 2-To-4 Line Decoder**

General Description

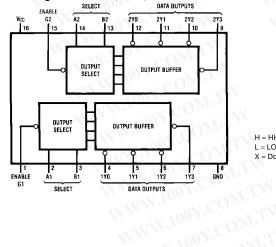
The MM74HC139 decoder utilizes advanced silicon-gate CMOS technology, and is well suited to memory address decoding or data routing applications. It possesses the high noise immunity and low power consumption usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL logic.

The MM74HC139 contain two independent one-of-four decoders each with a single active low enable input (G1, or G2). Data on the select inputs (A1, and B1 or A2, and B2) cause one of the four normally high outputs to go LOW.

The decoder's outputs can drive 10 low power Schottky TTL equivalent loads, and are functionally as well as pin equivalent to the 74LS139. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delays -Select to outputs (4 delays): 18 ns Select to output (5 delays): 28 ns Enable to output: 20 ns
- Low power: 40 µW quiescent supply power
- Fanout of 10 LS-TTL devices
- Input current maximum 1 μA, typical 10 pA

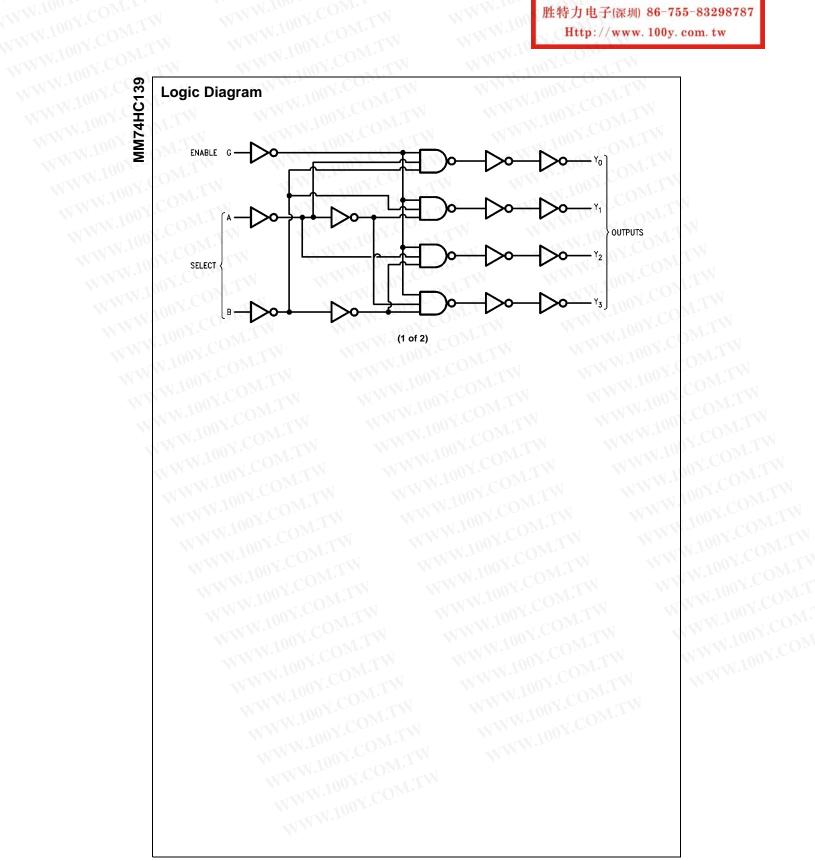

Ordering Code:

Order Number	Package Number	Package Description
MM74HC139M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC139SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC139MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP) JEDEC MO-153, 4.4mm Wide
MM74HC139N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP


Truth Table

ln	puts		Outputs			
Enable	nable Select		ON			
G	В	Α	Y0	Y1	Y2	Υ3
H	X	X	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	L.	Н	Н	OL.	Н	Н
L	Н	101	Н	Н	L	Н
LW	Н	Н	H	Н	Н	L

WWW.100Y.COM.T

H = HIGH Level

L = LOW Level X = Don't Care

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (V_{IN}) -1.5 to V_{CC} +1.5V DC Output Voltage (VOUT) -0.5 to $V_{CC} + 0.5V$ Clamp Diode Current (I_{IK}, I_{OK}) ±20 mA DC Output Current, per pin (I_{OUT}) ±25 mA DC V_{CC} or GND Current, per pin (I_{CC}) ±50 mA Storage Temperature Range (T_{STG}) -65°C to +150°C Power Dissipation (P_D) (Note 3) 600 mW S.O. Package only 500 mW Lead Temperature (T_L) (Soldering 10 seconds) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	Vcc	V
(V _{IN} , V _{OUT})			
Operating Temperature Range (T _A)	-40	+85	_°C
Input Rise or Fall Times			
$(t_r, t_f) \ V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are those	e values l	peyond wh	ich dam-

age to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

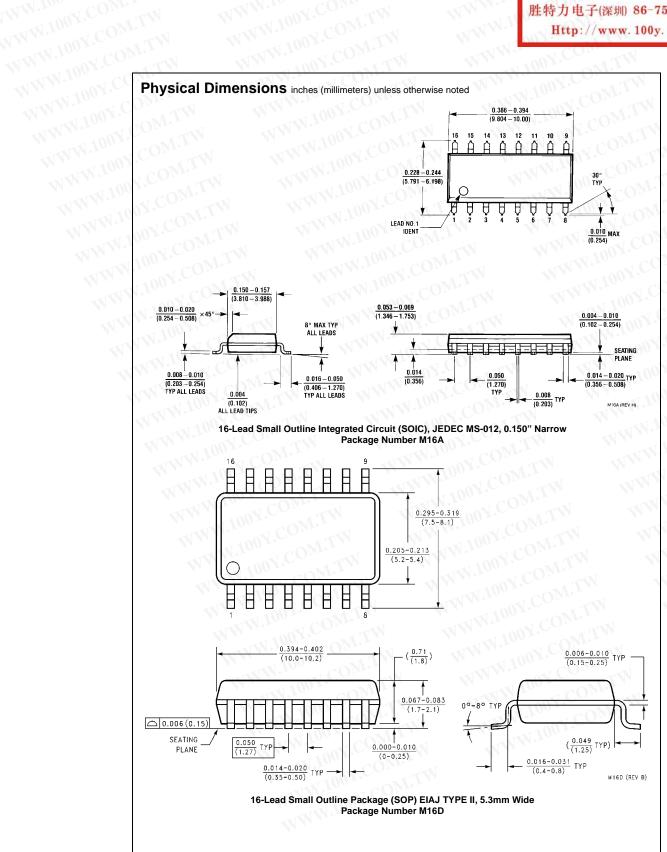
Symbol	Parameter	Conditions	V . 0	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Parameter	Conditions	V _{CC}	Typ Guaranteed Limits			imits	Units
V _{IH}	Minimum HIGH Level	LIN M.	2.0V	00 x	1.5	1.5	1.5	V
	Input Voltage	-<1 -<	4.5V	~ \$7	3.15	3.15	3.15	V
	- 100 Y.		6.0V	100 x	4.2	4.2	4.2	V
V_{IL}	Maximum LOW Level	-111	2.0V	~01	0.5	0.5	0.5	V
	Input Voltage	1.1.	4.5V	1.100	1.35	1.35	1.35	V
	M. CO.	TVV.	6.0V	. 00	1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}	-31	W.In.	- 0	OM.	-13	W
0	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	V
	-XIVI.100	UM.	4.5V	4.5	4.4	4.4	4.4	V
	M. 1001'r	TIN	6.0V	6.0	5.9	5.9	5.9	V
	TINN.IO	$V_{IN} = V_{IH}$ or V_{IL}	- 4	M MA.		COR	N	NV
	M A. 100 X.	$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
	TIWW.	I _{OUT} ≤ 5.2 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}			N.In.	COM	- T	
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	0	0.1	0.1	0.1	V
A.	100	COM.	4.5V	0	0.1	0.1	0.1	V
	WWW	MY.CO TYN	6.0V	0	0.1	0.1	0.1	V
	T.W.L	$V_{IN} = V_{IH}$ or V_{IL}	<		NW.	ast CO	-XX	
	WW	I _{OUT} ≤ 4.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V	4	±0.1	±1.0	±1.0	μΑ
	Current	. Con	W	-		T. CON.	WT	
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$				T and Y.	TIM	

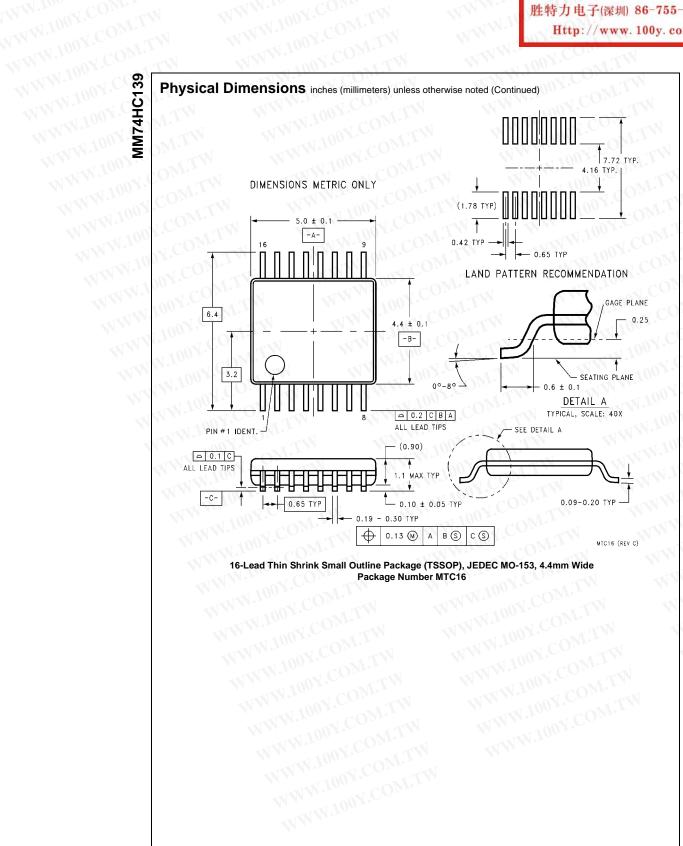
Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

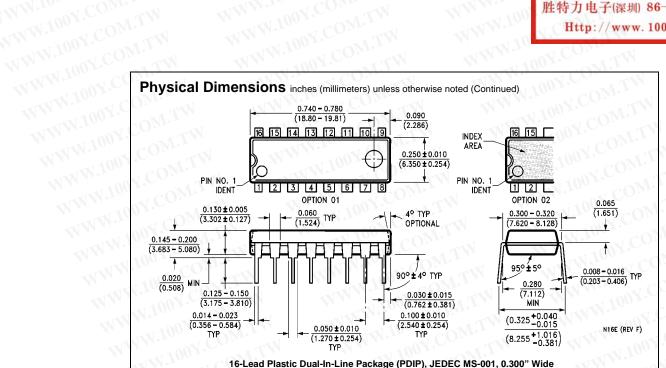
AC Electrical Characteristics

WWW.100Y.COM.TW

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Binary Select to any Output 4 levels of delay	OM.TW	18	30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Binary Select to any Output 5 levels of delay	.COM.TW	28	38	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Enable to any Output	Y.COM.TW	19	30	ns


AC Electrical Characteristics


Symbol	Parameter	Conditions	V _{cc}	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	$T_A = -55$ to $125^{\circ}C$	Units
				Тур	Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation	(Note 5)	2.0V	110	175	219	254	ns
	Delay Binary Select to	TAN .	4.5V	22	35	44	51	ns
	any Output 4 levels of delay	MM.	6.0V	18	30	38	44	ns
t _{PHL} , t _{PLH}	Maximum Propagation	(Note 6)	2.0V	165	220	275	320	ns
	Delay Binary Select to any	11 11 .	4.5V	33	44	55	64	ns
	Output 5 levels of delay		6.0V	28	38	47	54	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	115	175	219	254	ns
	Delay Enable to any	TAT V	4.5V	23	35	44	51	ns
	Output	// ·	6.0V	19	30	38	44	ns
t _{TLH} , t _{TLH}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
	any.Co	VI VI	6.0V	7	13	16	19	ns
C _{IN}	Maximum Input	-1	-11N	3	10	10	10	pF
	Capacitance		Mar.		1.0	TITI	111.	- 1
C _{PD}	Power Dissipation Capacitance (Note 7)	(Note 7)	WW	75	OY.C	MITW	W	pF


Note 5: 4 levels of delay are A to Y1, Y3 and B to Y2, Y3,

Note 6: 5 levels of delay are A to Y0, Y2 and B to Y0, Y1.

Note 7: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, WWW.100Y.CON $I_S = C_{PD} V_{CC} f + I_{CC}$ WWW.100Y.COM.TW

Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.