High Voltage Transistors

NPN Silicon

勝特力材料 886-3-5753170
胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
Http://www. 100y. com. tw

Symbol

VCEO

Vсво

VEBO

IC

MMBTA42

300

300

6.0

500

COLLECTOR

2 EMITTER

Unit

Vdc

Vdc

Vdc

mAdc

1 BASE

MMBTA43

200

200

6.0

MMBTA42LT f*

DEVICE MARKING

MAXIMUM RATINGS

Collector-Emitter Voltage

Collector-Base Voltage

Emitter-Base Voltage

MMBTA42LT1 = 1D; MMBTA43LT1 = M1E

THERMAL CHARACTERISTICS

Collector Current — Continuous

Rating

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, ⁽¹⁾ $T_A = 25^{\circ}C$	PD	225	mW
Derate above 25°C	100 r. COM.	1.8	mW/°C
Thermal Resistance, Junction to Ambient	R _{0JA}	556	°C/W
Total Device Dissipation Alumina Substrate, ⁽²⁾ $T_A = 25^{\circ}C$	N.10(PD	300	mW
Derate above 25°C	N.1001.	2.4	mW/°C
Thermal Resistance, Junction to Ambient	R _{θJA}	417	°C/W
Junction and Storage Temperature	TJ, Tstg	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	WW.100	. COM.			W.100
Collector – Emitter Breakdown Voltage ⁽³⁾ ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	MMBTA42 MMBTA43	V(BR)CEO	300 200	=4	Vdc
Collector – Base Breakdown Voltage (IC = 100 μ Adc, IE = 0)	MMBTA42 MMBTA43	V _(BR) CBO	300 200		Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \ \mu Adc, I_C = 0$)	WW	V _{(BR)EBO}	6.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 200 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 160 \text{ Vdc}, I_E = 0)$	MMBTA42 MMBTA43	СВО		0.1 0.1	μAdc
Emitter Cutoff Current $(V_{EB} = 6.0 \text{ Vdc}, I_{C} = 0)$ $(V_{EB} = 4.0 \text{ Vdc}, I_{C} = 0)$	MMBTA42 MMBTA43	IEBO	_	0.1 0.1	μAdc

1. FR–5 = 1.0 x 0.75 x 0.062 in.

2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

3. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

Preferred devices are Motorola recommended choices for future use and best overall value.

Thermal Clad is a trademark of the Bergquist Company

REV 1

MMBTA42LT1 MMBTA43LT1

WW.100Y.COM.TW

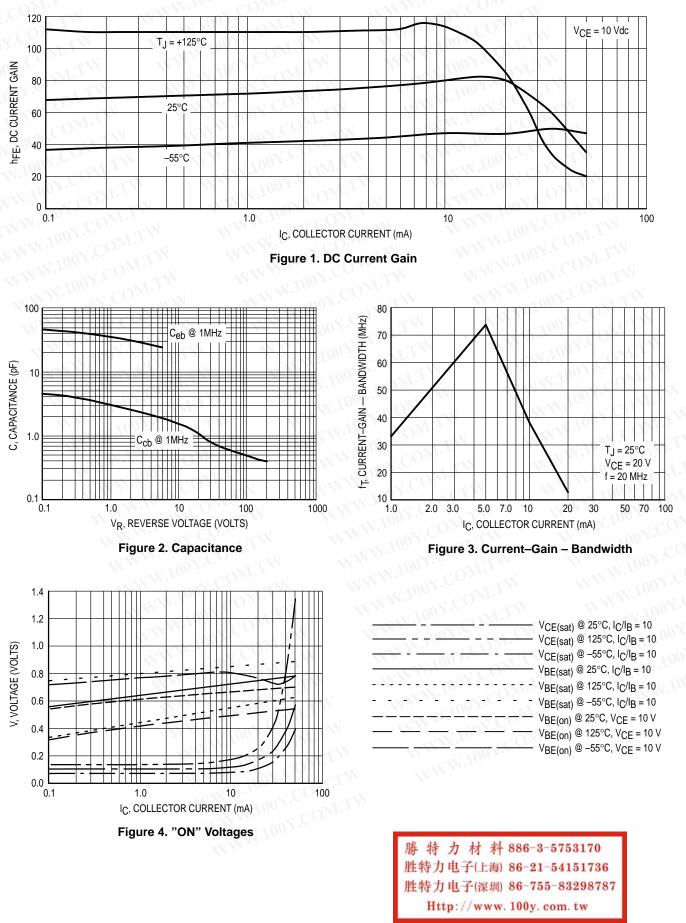
Characteristic		Symbol	Min	Max	Un	
ON CHARACTERISTICS ⁽³⁾	WW WT	100Y.C	TIM	9		
DC Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)	Both Types Both Types	hFE Y	25 40		-	
(I _C = 30 mAdc, V _{CE} = 10 Vdc)	MMBTA42 MMBTA43	WW.100	40 40			
Collector-Emitter Saturation Voltage ($I_C = 20 \text{ mAdc}, I_B = 2.0 \text{ mAdc}$)	MMBTA42 MMBTA43	V _{CE(sat)}	00 <u>V.</u> CO	0.5 0.5	Vd	
Base–Emitter Saturation Voltage ($I_C = 20 \text{ mAdc}, I_B = 2.0 \text{ mAdc}$)	OY.COM.TW	V _{BE(sat)}	100Y.C	0.9	Vd	
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	100Y.COM.TW	fT	50	CON.	MF	
Collector–Base Capacitance (V _{CB} = 20 Vdc, I _E = 0, f = 1.0 MHz)	MMBTA42 MMBTA43	C _{cb}	WW.10	3.0 4.0	pF	

WWW.100Y.COM. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%. WWW.100Y.COM.TW WWW.100Y.COM.TW

WWW.I

WWW.100X.CO

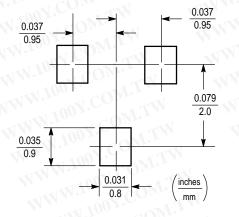
WWW.100Y.COM.TW WWW.100Y.COM.TV 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW


WW.100Y.COM.TW

N.COM.TW

WWW.100Y.CON

I.WWW



INFORMATION FOR USING THE SOT-23 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SOT-23 POWER DISSIPATION

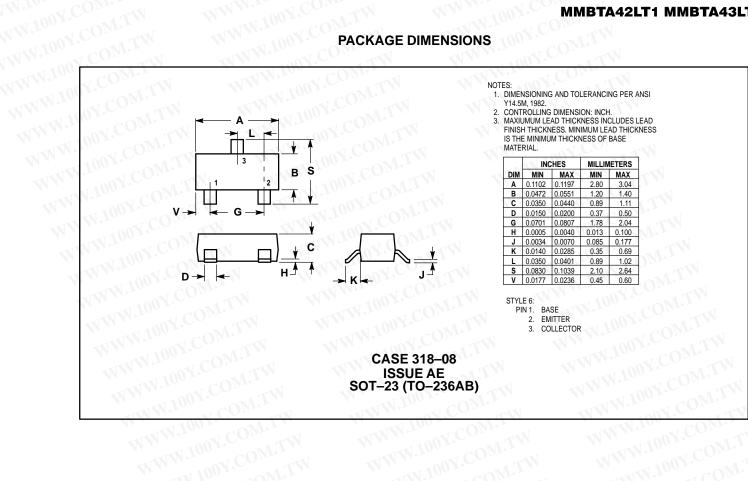
The power dissipation of the SOT–23 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R_{\theta JA}$, the thermal resistance from the device junction to ambient, and the operating temperature, T_A . Using the values provided on the data sheet for the SOT–23 package, P_D can be calculated as follows:

$$P_{D} = \frac{T_{J}(max) - T_{A}}{R_{\theta}JA}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device which in this case is 225 milliwatts.

$$P_{D} = \frac{150^{\circ}C - 25^{\circ}C}{556^{\circ}C/W} = 225 \text{ milliwatts}$$

The 556°C/W for the SOT–23 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 225 milliwatts. There are other alternatives to achieving higher power dissipation from the SOT–23 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad[™]. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.


SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.
- The soldering temperature and time shall not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.

* Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

WW.100Y.COM.T PACKAGE DIMENSIONS

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM