
Chip Monolithic

Ceramic Capacitors

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

muRata

Innovator in Electronics

Manufacturing Co., Ltd.

Cat.No.C02E-12

Part Numbering

Chip Monolithic Ceramic Capacitors

GR | M | 18 | 8 | B1 | 1H | 102 | K | A01 | K (Part Number) 8 4 6

●Product ID

2 Series

Product ID	Code	Series
- 11	M	Tin Plated Layer
GR	4	Only for Information Devices / Tip & Ring
	7	Only for Camera Flash Circuit
ER	В	High Frequency Type
GQ	M	High Frequency for Flow/Reflow Soldering
GM	A	Monolithic Microchip
GN	М	Capacitor Array
COM.T.	L	Low ESL Wide Width Type
LL	A	Eight-termination Low ESL Type
	M	Ten-termination Low ESL Type
GJ	M	High Frequency Low Loss Type Tin Plated Type
WI COM	2	for AC250V (r.m.s.)
GA	3	Safety Standard Recognized Type

3Dimension (LXW)

Code	Dimension (LXW)	EIA	S	1
02	0.4×0.2mm	01005	ON Q	
03	0.6×0.3mm	0201	X	
05	0.5×0.5mm	0202	With the array typ	e GNM s
08	0.8×0.8mm	0303	elements.	
11 100	1.25×1.0mm	0504		
15	1.0×0.5mm	0402		
18	1.6×0.8mm	0603		
1D	1.4×1.4mm	TWW.		
1X	Depends on individual s	standards.		
21	2.0×1.25mm	0805		
22	2.8×2.8mm	1111		
31	3.2×1.6mm	1206		
32	3.2×2.5mm	1210		
3X	Depends on individual s	standards.		
42	4.5×2.0mm	1808		
43	4.5×3.2mm	1812		
52	5.7×2.8mm	2211		
55	5.7×5.0mm	2220		
	MAM. 100X COM	V.TW		

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

4 Dimension (T)

Code	Dimension (T)		
2	0.2mm		
2	2-elements (Array Type)		
3	0.3mm		
4	4-elements (Array Type)		
5	0.5mm		
6	0.6mm 0.7mm 0.8mm 0.85mm 1.0mm 1.25mm		
7			
8			
9			
Α			
В			
C			
D	2.0mm		
E	2.5mm		
F 1	3.2mm		
M	1.15mm		
N	1.35mm		
R	1.8mm		
S	2.8mm		
Q	1.5mm		
Х	Depends on individual standards.		

With the array type GNM series, "Dimension(T)" indicates the number of WWW.100Y.COM.TW elements.

Continued on the following page.

WWW.100

WW.100Y.COM.TW WWW.100Y.COM.TW

WWW.100Y.C

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

5Temperature Characteristics

Temperature Characteristic Codes		-1				
Code	Public STD	Code	Referance Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Range
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C
2P	PH *1	JIS	20°C	20 to 85°C	-150±60ppm/°C	-25 to 85°C
2R	RH *1	JIS	20°C	20 to 85°C	-220±60ppm/°C	-25 to 85°C
28	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C
38	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C
3T	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C
5G	X8G *1	EIA	25°C	25 to 150°C	0±30ppm/°C	-55 to 150°C
6C	C0H *1	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C
6P	P2H *1	EIA	25°C	25 to 85°C	-150±60ppm/°C	-55 to 125°C
6R	R2H *1	EIA	25°C	25 to 85°C	-220±60ppm/°C	-55 to 125°C
6S	S2H *1	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C
6T	T2H *1	EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C
7U (U2J *1	EIA	25°C	25 to 85°C	-750±120ppm/°C	-55 to 125°C
B1	B *2	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C
В3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C
C7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C
F1 1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C
L8	X8L	EIA	25°C	-55 to 150°C	+15, -40%	-55 to 150°C
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C
R3	OO R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C
0.5	100Y.C	*2	2000	-25 to 20°C	-4700+100/-2500ppm/°C	25 +- 0500
9E	ZLM	*3	20°C	20 to 85°C	-4700+500/-1000ppm/°C	-25 to 85°C
WO	N. 100	COM	2500	FF to 10500	±10% *4	EE to 12500
W0	1007	1 -	25°C	-55 to 125°C	+22, -33% *5	-55 to 125°C

^{*1} Please refer to table for Capacitance Change under reference temperature.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WW.100Y.COM.TW

Continued on the following page.

WWW.100Y.C

^{*2} Capacitance change is specified with 50% rated voltage applied.

^{*3} Murata Temperature Characteristic Code.

^{*4} Apply DC350V bias.

^{*5} No DC bias.

* This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

●Capacitance Change from each temperature

JIS Code

	CUN'	-71	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V.C.		
NA	001. COM	-00		inge from 20°C (%)	S 4.	200
Murata Code	Max.	5°C Min.	Max.	5°C Min.	Max.	0°C Min.
1X	IVIAX.	IVIII I.	IVIAX.	- CANA	IVIAX.	IVIIII.
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18
2P	W.100 - J C	DIVI WI	1.32	0.41	0.88	0.27
2R	77.100 x.	OW.7	1.70	0.72	1.13	0.48
28	7007.	T. T.	2.30	1.22	1.54	0.81
2T	MAIL OUT	COL- TA	3.07	1.85	2.05	1.23
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36
3P	W 2x 100	T.M.T.	1.65	0.14	1.10	0.09
3R	1111-10	N.C-	2.03	0.45	1.35	0.30
38	W.I	V.COMP.	2.63	0.95	1.76	0.63
3T	-xxx.1	00 - COM	3.40	1.58	2.27	1.05
3U	M_M	1007	4.94	2.84	3.29	1.89
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75

CO			Capacitance Cha	nge from 25°C (%)			
Murata Code	-5	-55°C		-30°C		-10°C	
. COMITY	Max.	Min.	Max.	Min.	Max.	Mir	
5C/5G	0.58	-0.24	0.40	-0.17	0.25	-0.1	
6C	0.87	-0.48	0.59	-0.33	0.38	-0.2	
6P	2.33	0.72	1.61	0.50	1.02	0.3	
6R	3.02	1.28	2.08	0.88	1.32	0.5	
68	4.09	2.16	2.81	1.49	1.79	0.9	
6T CO	5.46	3.28	3.75	2.26	2.39	1.4	
7U	8.78	5.04	6.04	3.47	3.84	2.2	

6 Rated Voltage

4014	
Code	Rated Voltage
0G	DC4V
OJ	DC6.3V
1A	DC10V
1C	DC16V
1E	DC25V
1H	DC50V
2A	DC100V
2D	DC200V
2E	DC250V
YD	DC300V
2H	DC500V
2J	DC630V
3A	DC1kV
3D	DC2kV
3F	DC3.15kV
ВВ	DC350V (for Camera Flash Circuit)
E2	AC250V
GB	X2; AC250V (Safety Standard Recognized Type GB)
GC	X1/Y2; AC250V (Safety Standard Recognized Type GC)
GD	Y3; AC250V (Safety Standard Recognized Type GD)
GF	Y2, X1/Y2; AC250V (Safety Standard Recognized Type GF)

Capacitance

Expressed by three figures. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter "R". In this case, all figures are significant digits.

Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.COM.TW Continued on the following page.

WWW.100

WWW.100Y.C

* This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

8 Capacitance Tolerance

Code	Capacitance Tolerance	TC	Series	Capaci	tance Step
В	±0.1pF	СΔ	GRM/GJM	≦5pF	E24 Series,
a 11	LOSEVE	CΔ-SL	GRM/ERB/GQM	≦5pF	* 1pF
С	±0.25pF	СΔ	GJM	<10pF	E24 Series,
_	10.5=5	CΔ-SL	GRM	6.0 to 9.0pF	* 1pF
D	±0.5pF	СΔ	ERB/GQM/GJM	5.1 to 9.1pF	E24 Serie
ı F	±1%	СΔ	GRM03/15, GJM03/15	5.0 to 9.9pF	0.1pF
4	11111100	СΔ	GJM	≧10pF	E12 Serie
G	G ±2%	СΔ	GQM	≥10pF	E24 Serie
	WWW.	СД	GRM03/15, GJM03/15	2.0 to 9.9pF	0.1pF
1	100 Inc.	CΔ-SL	GRM/GA3	≥10pF	E12 Serie
J	±5%	СΔ	ERB/GQM/GJM	≥10pF	E24 Serie
	WWW	СД	GRM03/15, GJM03/15	1.0 to 4.9pF	0.1pF
11.	TWW.I	D. D. VZD. VED. ZLM	GRM/GR7/GA3	E6	Series
K	±10%	B, R, X7R, X5R, ZLM	GR4	E12 Series	
	M. M.	СД	GRM03/15, GJM03/15	0.2 to 1.9pF	0.1pF
Ohr	WWW WWW	Z5U	GRM	E3	Series
coM^{1}	1000/	B, R, X7R, X7S	GRM/GMA/LLL/LLA/LLM	CO E6	Series
M	±20%	X7R	GA2	E3	Series
	WW WY	СД	GRM03/15, GJM03/15	0.1 to 0.9pF	0.1pF
ZCON	+80%, -20%	F, Y5V	GRM	E3	Series
R	V.1.	Depen	ds on individual standards.	Ing TON	1. 2

^{*} E24 series is also available.

Packaging

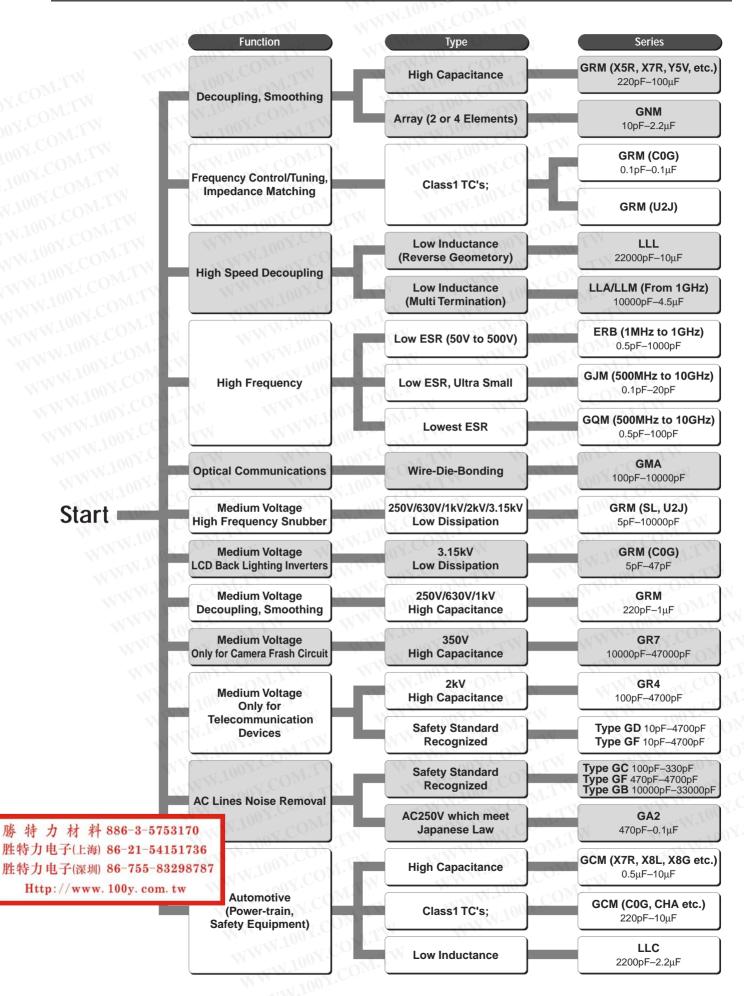
Expressed by three Packaging		勝 特 力 材 利 胜特力电子(上海 胜特力电子(深)
Code	Packaging	Http://ww
WW L 100	ø178mm Embossed Taping	Y.Co.
D	ø178mm Paper Taping	
K	ø330mm Embossed Taping	
W J 10	ø330mm Paper Taping	
E	ø178mm Special Packaging	
F	ø330mm Special Packaging	
В	Bulk	
С	Bulk Case	
T	Bulk Tray	
M. M.	WW.100Y.COM.TW WW.100Y.COM.TW W	

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WWW.100Y.CO.

WWW.100Y.CO.

WWW.100


WWW.100Y.COM.TW WWW.100Y.COM.TW

WWW.1007.CC

.com.T

Y.COM.

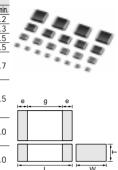
Selection Guide of Chip Monolithic Ceramic Capacitors

6

Chip Monolithic Ceramic Capacitors

Large Capacitance Type

■ Features


- 1. Smaller size and higher capacitance value
- 2. High reliability and no polarity
- 3. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency
- 4. Ta replacement

■ Applications

General electronic equipment

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Part Number	Dimensions (mm)								
Part Number	176	W	T.	e min.	g min.				
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2				
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3				
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.2	0.2 to 0.5	0.5				
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5				
GRM216	007		0.6 ±0.1	1					
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7				
GRM21B	- 03	7	1.25 ±0.1						
GRM316	1110	3-1	0.6 ±0.1	4					
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5				
GRM31M	400	1	1.15 ±0.1	0.3 10 0.8	1.5				
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2	_					
GRM32C	4.4.		1.6 ±0.2						
GRM32D	3.2 ±0.3	2.5 ±0.2	2.0 ±0.2	0.3	1.0				
GRM32E	111.7	-7	2.5 ±0.2	-41					
GRM43D	4		2.0 ±0.2	2 J. M.					
GRM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0				
GRM43S	W AL.		2.8 ±0.2		N.				
GRM55E	5.7 +0.4	5.0 +0.4	3 2 +0 2	0.3	2.0				

High Dielectric Constant Type X5R (R6) Characteristics

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188R61E474KA12	X5R (EIA)	25	0.47μF ±10%	1.60	0.80	0.80
GRM188R61E105KA12	X5R (EIA)	25	1.0μF ±10%	1.60	0.80	0.80
GRM21BR61E105KA99	X5R (EIA)	25	1.0μF ±10%	2.00	1.25	1.25
GRM219R61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.00	1.25	0.85
GRM21BR61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.00	1.25	1.25
GRM21BR61E335KA12	X5R (EIA)	25	3.3μF ±10%	2.00	1.25	1.25
GRM21BR61E475KA12	X5R (EIA)	25	4.7μF ±10%	2.00	1.25	1.25
GRM319R61E475KA12	X5R (EIA)	25	4.7μF ±10%	3.20	1.60	0.85
GRM31CR61E106KA12	X5R (EIA)	25	10μF ±10%	3.20	1.60	1.60
GRM32ER61E226KE15	X5R (EIA)	25	22μF ±10%	3.20	2.50	2.50
GRM188R61C474KA93	X5R (EIA)	16	0.47μF ±10%	1.60	0.80	0.80
GRM185R61C105KE44	X5R (EIA)	16	1.0μF ±10%	1.60	0.80	0.50
GRM188R61C105KA93	X5R (EIA)	16	1.0μF ±10%	1.60	0.80	0.80
GRM216R61C105KA88	X5R (EIA)	16	1.0μF ±10%	2.00	1.25	0.60
GRM188R61C225KE15	X5R (EIA)	16	2.2μF ±10%	1.60	0.80	0.80
GRM219R61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	0.85
GRM21BR61C225KA88	X5R (EIA)	16	2.2μF ±10%	2.00	1.25	1.25
GRM316R61C225KA88	X5R (EIA)	16	2.2μF ±10%	3.20	1.60	0.60
GRM21BR61C335KA88	X5R (EIA)	16	3.3μF ±10%	2.00	1.25	1.25
GRM21BR61C475KA88	X5R (EIA)	16	4.7μF ±10%	2.00	1.25	1.25
GRM319R61C475KA88	X5R (EIA)	16	4.7μF ±10%	3.20	1.60	0.85
GRM32ER61C226KE20	X5R (EIA)	16	22μF ±10%	3.20	2.50	2.50
GRM43ER61C226KE01	X5R (EIA)	16	22μF ±10%	4.50	3.20	2.50
GRM32ER61C476KE15	X5R (EIA)	16	47μF ±10%	3.20	2.50	2.50
GRM155R61A154KE19	X5R (EIA)	10	0.15μF ±10%	1.00	0.50	0.50
GRM155R61A224KE19	X5R (EIA)	10	0.22μF ±10%	1.00	0.50	0.50
GRM185R61A105KE36	X5R (EIA)	10	1.0μF ±10%	1.60	0.80	0.50
GRM188R61A225KE34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM188R61A225ME34	X5R (EIA)	10	2.2μF ±10%	1.60	0.80	0.80
GRM216R61A225KE24	X5R (EIA)	10-01-	2.2μF ±10%	2.00	1.25	0.60
GRM219R61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.00	1.25	0.85
GRM316R61A225KA01	X5R (EIA)	10	2.2μF ±10%	3.20	1.60	0.60
GRM219R61A335KE19	X5R (EIA)	10, 00	3.3μF ±10%	2.00	1.25	0.85
GRM21BR61A335KA73	X5R (EIA)	10	3.3μF ±10%	2.00	1.25	1.25
GRM316R61A335KE19	X5R (EIA)	10	3.3μF ±10%	3.20	1.60	0.60
GRM219R61A475KE34	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	0.85

Continued from the preceding page.

GRM21BR61A475KA73	(Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness (mm)
	X5R (EIA)	10	4.7μF ±10%	2.00	1.25	1.25
GRM316R61A475KE19	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.60
GRM319R61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.20	1.60	0.85
GRM21BR61A106KE19	X5R (EIA)	10	10μF ±10%	2.00	1.25	1.25
GRM21BR61A106ME19	X5R (EIA)	10	10μF ±20%	2.00	1.25	1.25
GRM319R61A106KA19	X5R (EIA)	10	10μF ±10%	3.20	1.60	0.85
GRM31MR61A106KE19	X5R (EIA)	10	10μF ±10%	3.20	1.60	1.15
GRM32NR61A226KE19	X5R (EIA)	10	22μF ±10%	3.20	2.50	1.35
GRM32ER61A476KE20	X5R (EIA)	10	47μF ±10%	3.20	2.50	2.50
GRM43ER61A476KE19	X5R (EIA)	10	47μF ±10%	4.50	3.20	2.50
GRM033R60J153KE01	X5R (EIA)	6.3	15000pF ±10%	0.60	0.30	0.30
GRM033R60J223KE01	X5R (EIA)	6.3	22000pF ±10%	0.60	0.30	0.30
GRM033R60J333KE01	X5R (EIA)	6.3	33000pF ±10%	0.60	0.30	0.30
GRM033R60J393KE19	X5R (EIA)	6.3	39000pF ±10%	0.60	0.30	0.30
GRM033R60J473KE19	X5R (EIA)	6.3	47000pF ±10%	0.60	0.30	0.30
GRM033R60J683KE19	X5R (EIA)	6.3	68000pF ±10%	0.60	0.30	0.30
GRM033R60J104KE19	X5R (EIA)	6.3	0.10μF ±10%	0.60	0.30	0.30
GRM155R60J154KE01	X5R (EIA)	6.3	0.15μF ±10%	1.00	0.50	0.50
GRM155R60J224KE01	X5R (EIA)	6.3	0.22μF ±10%	1.00	0.50	0.50
GRM155R60J334KE01	X5R (EIA)	6.3	0.33μF ±10%	1.00	0.50	0.50
GRM155R60J474KE19	X5R (EIA)	6.3	0.47μF ±10%	1.00	0.50	0.50
GRM155R60J105KE19	X5R (EIA)	6.3	1.0μF ±10%	1.00	0.50	0.50
GRM185R60J105KE21	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J105KE26	X5R (EIA)	6.3	1.0μF ±10%	1.60	0.80	0.50
GRM185R60J225KE26	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.50
GRM188R60J225KE01	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J225KE19	X5R (EIA)	6.3	2.2μF ±10%	1.60	0.80	0.80
GRM188R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	1.60	0.80	0.80
GRM219R60J475KE01	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J475KE32	X5R (EIA)	6.3	4.7μF ±10%	2.00	1.25	0.85
GRM219R60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	0.85
GRM219R60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	0.85
GRM21BR60J106KE01	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106KE19	X5R (EIA)	6.3	10μF ±10%	2.00	1.25	1.25
GRM21BR60J106ME01	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM21BR60J106ME19	X5R (EIA)	6.3	10μF ±20%	2.00	1.25	1.25
GRM319R60J106KE01	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	0.85
GRM319R60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	0.85
GRM31MR60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.20	1.60	1.15
GRM31CR60J156KE19	X5R (EIA)	6.3	15μF ±10%	3.20	1.60	1.60
GRM21BR60J226ME39	X5R (EIA)	6.3	22μF ±20%	2.00	1.25	1.25
GRM31CR60J226KE19	X5R (EIA)	6.3	22μF ±10%	3.20	1.60	1.60
GRM31CR60J226ME19	X5R (EIA)	6.3	22μF ±20%	3.20	1.60	1.60
GRM32DR60J226KA01	X5R (EIA)	6.3	22μF ±10%	3.20	2.50	2.00
GRM32DR60J336ME19	X5R (EIA)	6.3	33μF ±10%	3.20	2.50	2.00
GRM43DR60J336KE01	X5R (EIA)	6.3	33μF ±10%	4.50	3.20	2.00
GRM31CR60J476ME19	X5R (EIA)	6.3	47μF ±20%	3.20	1.60	1.60
GRM32ER60J476ME20	X5R (EIA)	6.3	47μF ±20%	3.20	2.50	2.50
GRM43ER60J476KE01	X5R (EIA)	6.3	47μF ±10%	4.50	3.20	2.50
	X5R (EIA)	6.3	100μF ±20%	3.20	2.50	2.50
GRM32ER60J107ME20	X5R (EIA)	6.3	100μF ±20%	4.50	3.20	2.80
GRM32ER60J107ME20 GRM43SR60J107ME20	X5R (EIA)	4	10μF ±20%	1.60	0.80	0.80

33

sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

High Dielectric Constant Type X6S/X7R/X7S (C8/R7/C7) Characteristics

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM188C80G475KE19	X6S(EIA)	4	4.7 +10%	1.60	0.80	0.80
GRM21BR71E225KA73	X7R (EIA)	25	2.2 ±10%	2.00	1.25	1.25
GRM55ER71E156KA01	X7R (EIA)	25	15 ±10%	5.70	5.00	2.50
GRM31CR71C106KAC7	X7R (EIA)	16	10 ±10%	3.20	1.60	1.60
GRM32ER71A226KE20	X7R (EIA)	CO 10	22 ±10%	3.20	2.50	2.50
GRM32ER71A226ME20	X7R (EIA)	10	22 ±20%	3.20	2.50	2.50
GRM43ER71A226KE01	X7R (EIA)	10	22 ±10%	4.50	3.20	2.50
GRM21BC71A335KA73	X7S(EIA)	C10	3.3 ±10%	2.00	1.25	1.25
GRM21BC71A475KA73	X7S(EIA)	10	4.7 ±10%	2.00	1.25	1.25

High Dielectric Constant Type Y5V (F5) Characteristics

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness 7 (mm)
GRM188F51A225ZE01	Y5V (EIA)	10	2.2 +80/-20%	1.60	0.80	0.80
GRM188F51A475ZE20	Y5V (EIA)	10	4.7 +80/-20%	1.60	0.80	0.80
GRM31CF51A226ZE01	Y5V (EIA)	10	22 +80/-20%	3.20	1.60	1.60
GRM32CF51A226ZA01	Y5V (EIA)	10	22 +80/-20%	3.20	2.50	1.60
GRM155F50J105ZE01	Y5V (EIA)	6.3	1.0 +80/-20%	1.00	0.50	0.50
GRM188F50J225ZE01	Y5V (EIA)	6.3	2.2 +80/-20%	1.60	0.80	0.80
GRM188F50J475ZE20	Y5V (EIA)	6.3	4.7 +80/-20%	1.60	0.80	0.80
GRM21BF50J106ZE01	Y5V (EIA)	6.3	10 +80/-20%	2.00	1.25	1.25
GRM31CF50J226ZE01	Y5V (EIA)	6.3	22 +80/-20%	3.20	1.60	1.60
GRM32EF50J107ZE20	Y5V (EIA)	6.3	100 +80/-20%	3.20	2.50	2.50

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Specifications and Test Methods

No	. Ite	em	W.100	A'COM	Specifications	WWW.IO	W.COm	Te	st Method	
1	Operating Tempera Range		R6 : -55 t F5 : -30 t	B3, F1 : -25 to +85°C -55 to +85°C -30 to +85°C -55 to +105°C, C7 : -55 to +125°C the previous pages. defects or abnormalities in the specified dimensions defects or abnormalities e than 50Ω · F and the specified tolerance *Table 1 GRM155 B3/R6 1A GRM185 B3/R6 1C GRM219 B3/R6 1C GRM219 B3/R6 1C GRM219 B3/R6 1C B3, R6, C7, C8 : 0.1 max. F5 : 0.2 max. *Table 1	WWW.I			°C		
2	Rated Vo	ltage	See the pr	revious page	SOM.TW	Reference temperature : 25°C (B1, B3, F1 : 20°C) The rated voltage is defined as the maximum voltage may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V° whichever is larger, should be maintained within the ravoltage range. Visual inspection Using calipers No failure should be observed when 250% of the rate is applied between the terminations for 1 to 5 seconds provided the charge/discharge current is less than 50r The insulation resistance should be measured with a D not exceeding the rated voltage at reference temperature 75%RH max. and within 1 minutes of charging, provide charge/discharge current is less than 50mA. The capacitance should be measured at reference ter at the frequency and voltage shown in the table. Capacitance Frequency Volta (2510)pF (163V max.) 1±0.1kHz 1.0±0.2 (2510)pF (163V max.) 1±0.1kHz 1.0±0.2 (2510)pF (10V min.)*1 1±0.1kHz 1	itor. voltage, V ^{p.p} or V ^{o.}			
3	Appearai	nce	No defects	s or abnorma	lities	x1 -x1X	Visual insp	pection	CX CX	
4	Dimensio	ons	Within the	specified dir	nensions	N N	Using calip	pers	-1	
5	Dielectric	Strength	No defects	s or abnorma	lities	LM A	is applied	between the term	inations for 1	to 5 seconds,
6	Insulation Resistan		More than	50Ω · F	100X.CON	M.TW	not exceed 75%RH m	ding the rated volta ax. and within 1 m	age at reference inutes of charge	ce temperature and ging, provided the
	001.0		Within the	specified tol	erance					
	ONY.C		V		#Table 1					
	-7.		-XXI			4 10 124 to 224				Voltage 1.0±0.2Vrms
7	Capacita	nce	LAL				C≦10)µF (6.3V max.)	1±0.1kHz	0.5±0.1Vrms
	1007		WT		GRM188 B3/R	6 1C/1A 225	_C>10	μF 100	120±24Hz	0.5±0.1Vrms
	W.100		M.T.W		< \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					ms about Table 1
N	NW.10	OY.CO	-10. 11. 10.		1 max.	N.COM.TI	frequency	and voltage show	n in the table.	W
			OM.I.			Ju - COM .				Voltage 1.0±0.2Vrms
8		on Factor	717							0.5±0.1Vrms
	Dissipation Factor (D.F.)		COM		GRM188 B3/R GRM219 B3/R	6 1C/1A 225 6 1A 475	*1 Ho	wever the voltage	is 0.5±0.1Vr	0.5±0.1Vrms ms about Table 1
	WW	No bias	F1 : W R6 : W F5 : W C7 : W	Vithin +30/-8 Vithin ±15% (Vithin +22/-8 Vithin ±22% (30% (−25 to +85℃) (−55 to +85℃) 32% (−30 to +85℃) (−55 to +125℃)		each spec The range reference shown in t In case of measured	ified temp. stage. s of capacitance of temperature value he table should be applying voltage, after 1 more min.	change compa e over the tem e within the sp the capacitan with applying	ared with the perature ranges ecified ranges.* ce change should
			N.100				*GRM43 I	B1/R6 0J/1A 336/	476 only : 1.0:	±0.2Vrms
		M. A.	N.1	41 41	11 11 000 0					Applying Voltage
9	Capacitance Temperature	W	NV.	性特力电	子(上海) 86-21	54151736	1 CO	−55±3 (for Ri −25±3 (for B	6, C7, C8)/ 1, B3, F1)	M:100X.C
	Characteristics	10	WWW				3			No bias
		50% of	B1: Within	+10/-30%	OM. 100y.	com. tw	ONY.C	85±3 (for B1, B3 125±3 (for	3, F1, R6, F5) or C7)/	MM.100
		the Rated		+30/-95%			1005			10.10
		Voltage	WW				N 1 1		N	50% of the rate
			-11				7			voltage
			111				8	85±3 (for	B1, F1)	L.WW.
			V	MM.T.	100 X COM	TW V	Perform a then set for	asurement for hig heat treatment at or 24±2 hours at r he initial measurer	150 +0/-10° oom temperat	C for one hour and

Specifications and Test Methods

Continued from the preceding page.

	Item	Specifications	Y.CONI.	Test Me	ethod	
TW LTW M.TV	N	No removal of the terminations or other defects should occur.	Solder the capacitin Fig. 1a using an parallel with the term. The soldering shour eflow method and soldering is uniforr *5N: GR□15/GRI	eutectic solde st jig for 10±1s uld be done eit should be cor n and free of d	r. Then apply sec. her with an ironducted with as efects such as	10N* force in n or using the are so that the
Adho	sive Strength		Type	а	b	С
()	_		GR□03	0.3	0.9	0.3
or rei	mination		GR□15	0.4	1.5	0.5
0_{Mr} .		Solder resist	GRM18	1.0	3.0	1.2
- 1		Baked electrode or	GRM21	1.2	4.0	1.65
00_{MI}		copper foil	GRM31	2.2	5.0	2.0
~		Fig. 1a	GRM32	2.2	5.0	2.9
		No. 119. 14	GRM43	3.5	7.0	3.7
		WWW.100 T. COM.1	GRM55	4.5	8.0	5.6
	Appearance	No defects or abnormalities	Solder the capacito	or on the test ii	a (alass enoxy	hoard) in the
OY.C	Capacitance	Within the specified tolerance	same manner and			
V.10	COM	TM MAN-100A'CON'LA	applied for a period directions (total of	6 hours).	OMITY	NI
WW.WWW.WWW.WW.WW.WW.WW.WW.WW.WW.WW.WW.W		No cracking or marking defects should occur. 20 50 Pressurizing speed: 1.0mm/sec. Pressurize R230 Flexure: ≤1	in Fig. 2a using an direction shown in done either with ar be conducted with of defects such as	eutectic solde Fig. 3a for 5± riron or using care so that th	r. Then apply a 1 sec. The solo the reflow met	a force in the dering should b hod and should
2 Deflec	ction	Capacitance meter		Fig. 2	a .	t : 1.6mm
2 Deflec	ction	Capacitance meter 45 45	OM.TW			t : 1.6mm R□15 : t : 0.8mm)
2 Deflec	ction	45 45	Туре	Fig. 2	(GR□03, GF	R□15 : t : 0.8mm)
2 Deflec	ction		Type GR□03	Fig. 2	(GR□03, GF b 0.9	R□15: t: 0.8mm) C 0.3
2 Deflec	ction	45 45	GR□03 GR□15	Fig. 2:	(GR□03, GF b 0.9 1.5	C 0.3 0.5
! Defle	ction	<u>45 45 </u> Fig.3a	GR□03 GR□15 GRM18	Fig. 2: a 0.3 0.4 1.0	(GR□03, GR b 0.9 1.5 3.0	C 0.3 0.5 1.2
Defle	ction	Fig.3a Fig.3a	GR□03 GR□15 GRM18 GRM21	Fig. 2: a 0.3 0.4 1.0 1.2	(GR□03, GR b 0.9 1.5 3.0 4.0	C 0.3 0.5 1.2 1.65
Deflec	ction	<u>45 45 </u> Fig.3a	GR□03 GR□15 GRM18 GRM21 GRM31	Fig. 2: a 0.3 0.4 1.0 1.2 2.2	(GR□03, GF b 0.9 1.5 3.0 4.0 5.0	C 0.3 0.5 1.2 1.65 2.0
2 Deflec	ction	Fig.3a Fig.3a Fig.45 Fig.34 Fig.45 R 特 力 材 料 886-3-5753170 R 特力电子(上海) 86-21-54151736	GR□03 GR□15 GRM18 GRM21 GRM31 GRM32	Fig. 2- a 0.3 0.4 1.0 1.2 2.2 2.2	(GR□03, GF b 0.9 1.5 3.0 4.0 5.0	C 0.3 0.5 1.2 1.65 2.0 2.9
2 Deflec		Fig.3a Fig.3a Fig.3a Fig.3a Fig.45 A N N N N N N N N N N N N N N N N N N	GR□03 GR□15 GRM18 GRM21 GRM31 GRM32 GRM43	Fig. 2. a 0.3 0.4 1.0 1.2 2.2 2.2 3.5	(GR□03, GF b 0.9 1.5 3.0 4.0 5.0 5.0 7.0	c 0.3 0.5 1.2 1.65 2.0 2.9 3.7
2 Deflec	ction	Fig.3a Fig.3a Fig.45 Fig.34 Fig.45 R 特 力 材 料 886-3-5753170 R 特力电子(上海) 86-21-54151736	GR□03 GR□15 GRM18 GRM21 GRM31 GRM32	Fig. 2- a 0.3 0.4 1.0 1.2 2.2 2.2	(GR□03, GF b 0.9 1.5 3.0 4.0 5.0	C 0.3 0.5 1.2 1.65 2.0 2.9

Continued on the following page.

Immerse the capacitor in a solution of ethanol (JIS-K-8101) and

After preheating, immerse in an eutectic solder solution for

 2 ± 0.5 seconds at 230 ±5 °C or Sn-3.0Ag-0.5Cu solder solution

rosin (JIS-K-5902) (25% rosin in weight proportion) .

Preheat at 80 to 120°C for 10 to 30 seconds.

for 2±0.5 seconds at 245±5°C.

75% of the terminations is to be soldered evenly and

continuously.

13

Solderability of

Termination

Specifications and Test Methods

Continued from the preceding page.

No. Ite	em	Specifications	ON COMP	Te	st Metho	d			
TW	Appearance Capacitance	No defects or abnormalities B1, B3, R6, C7, C8 : Within ±7.5%	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5Cu						
VILM	Change Q/D.F.	F1, F5 : Within ±20% B1, B3, R6, C7, C8 : 0.1 max.		solder solution at 270±5°C for 10±0.5 seconds. Set at room temperature for 24±2 hours, then measure.					
Resistance	1	F1, F5 : 0.2 max.				c constant type 10℃ for one he			
14 to Soldering	I.R.	More than 50Ω · F	then set at roo	m temperatur	e for 24±		our and		
Heat			Perform the initial measurement. *Preheating for GRM32/43/55						
TIME	Dielectric Strength	No defects	Step		perature	Т	ime		
$C_{O_{N_{2}}}$	W.	WWW. CON. CO.	100						
COM.	-XX	MM.Inc. COM.	2	170 t	o 200℃	1	min.		
COM	Appearance	No defects or abnormalities				in the same n	nanner and		
ON CON	Capacitance Change	B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20%	Fix the capacitor to the supporting jig in the same man under the same conditions as (10). Perform the five cycles according to the four heat treat shown in the following table.						
OV Y.CO	D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	8, R6, C7, C8 : 0.1 max. Set for 24±2 hours at room 5 : 0.2 max.			asure.			
Temperature	I.R.	More than $50\Omega \cdot F$	Step	Min.	- 4	Max.			
15 Sudden Change	COM.	LM MAN, TOOX COM, TA	Temp. (℃)	Operating Temp. +0/-3		Operating Temp. +3/-0	Room Temp.		
W.100X	Dielectric Strength No defects		Time (min.)	30±3	2 to 3	30±3	2 to 3		
N.M.100	Strength	M.TW WWW.100Y.COM.T	 Initial measurement for high dielectric constated Perform a heat treatment at 150+0/−10°C for then set at room temperature for 24±2 hours. Perform the initial measurement. 			10℃ for one ho	A V		
MMM	Appearance	No defects or abnormalities				d 90 to 95% hu			
High	Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	TN	500±12 hours. The charge/discharge current is less than 50m •Initial measurement					
Temperature High	D.F.	B1, B3, R6, C7, C8 : 0.2 max. F1, F5 : 0.4 max.	then let sit for	Perform a heat treatment at 150+0/−10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the					
Humidity (Steady)	I.R.	More than $12.5\Omega \cdot F$	Measurement Perform a hea	initial measurement. •Measurement after test Perform a heat treatment at 150+0/−10℃ for one hour then let sit for 24±2 hours at room temperature, then m					
W	Appearance	No defects or abnormalities	4.1	Apply 150% of the rated voltage for 1000±12 hours at the					
	Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	room tempera	imum operating temperature $\pm 3^{\circ}$ C. Let sit for 24 \pm 2 hours at n temperature, then measure. charge/discharge current is less than 50mA.					
47 5	D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.4 max.	•Initial measu	•Initial measurement			LCOM		
17 Durability	I.R.	More than $25\Omega \cdot F$	then let sit for initial measure •Measuremen	 •Initial measurement Perform a heat treatment at 150+0/−10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. •Measurement after test Perform a heat treatment at 150+0/−10°C for one hour and 					

WWW.100

WWW.100Y.COM.