DATA SHEET

> 勝 特 力 材 料 $886-3-5753170$胜特力电子(上海) $86-21-54151736$胜特力电子(深圳) $86-755-83298787$ Http://www. 100 y. com. tw

NE／SE5539

High frequency operational amplifier

Product specification

DESCRIPTION

The NE／SE5539 is a very wide bandwidth，high slew rate，monolithic operational amplifier for use in video amplifiers，RF amplifiers，and extremely high slew rate amplifiers．

Emitter－follower inputs provide a true differential input impedance device．Proper external compensation will allow design operation over a wide range of closed－loop gains，both inverting and non－inverting，to meet specific design requirements．

FEATURES

－Bandwidth
－Unity gain－350MHz
－Full power－48MHz
－GBW－1．2GHz at 17 dB
－Slew rate： $600 / V \mu \mathrm{~s}$
－Avol：52dB typical
－Low noise $-4 n \vee \sqrt{ } \mathrm{~Hz}$ typical
－MIL－STD processing available

APPLICATIONS

－High speed datacom
－Video monitors \＆TV

PIN CONFIGURATION

Figure 1．Pin Configuration
－Satellite communications
－Image processing
－RF instrumentation \＆oscillators
－Magnetic storage
－Military communications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \＃
14－Pin Plastic Dual In－Line Package（DIP）	0 to $+70^{\circ} \mathrm{C}$	NE5539N	SOT27－1
14－Pin Plastic Small Outline（SO）package	0 to $+70^{\circ} \mathrm{C}$	NE5539D	SOT108－1
14－Pin Ceramic Dual In－Line Package	0 to $+70^{\circ} \mathrm{C}$	NE5539F	0581 B
14－Pin Ceramic Dual In－Line Package	-55 to $+125^{\circ} \mathrm{C}$	SE5539F	0581 B

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\text {CC }}$	Supply voltage	± 12	V
$\mathrm{P}_{\text {DMAX }}$	Maximum power dissipation， $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（still－air）${ }^{2}$ F package N package D package	$\begin{aligned} & 1.17 \\ & 1.45 \\ & 0.99 \end{aligned}$	$\begin{aligned} & w \\ & w \\ & w \end{aligned}$
$\mathrm{T}_{\text {A }}$	Operating temperature range NE SE	$\begin{gathered} 0 \text { to } 70 \\ -55 \text { to }+125 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	－65 to＋150	${ }^{\circ} \mathrm{C}$
T_{J}	Max junction temperature	150	${ }^{\circ} \mathrm{C}$
TSOLD	Lead soldering temperature（10sec max）	＋300	${ }^{\circ} \mathrm{C}$

NOTES：

1．Differential input voltage should not exceed 0.25 V to prevent excesive input bias current and common－mode voltage 2.5 V ．These voltage limits may be exceeded if current is limited to less than 10 mA ．
2．Derate above $25^{\circ} \mathrm{C}$ ，at the following rates：
F package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
N package at $11.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D package at $7.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

High frequency operational amplifier

EQUIVALENT CIRCUIT

Figure 2．Equivalent Circuit

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}= \pm 8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ；unless otherwise specified．

SYMBOL	PARAMETER	TEST CONDITIONS		SE5539			NE5539			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
V_{OS}	Input offset voltage	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega$	Over temp		2	5				mV
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3		2.5	5	
	$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$				5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input offset current		Over temp		0.1	3				$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1	1			2	
	$\Delta \mathrm{los} / \Delta \mathrm{T}$				0.5			0.5		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
I_{B}	Input bias current		Over temp		6	25				$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	13		5	20	
	$\Delta \mathrm{I}_{\mathrm{B}} / \Delta \mathrm{T}$				10			10		$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
CMRR	Common mode rejection ratio	$\mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~V}_{\mathrm{CM}} \pm 1.7 \mathrm{~V}$		70	80		70	80		dB
			Over temp	70	80					
R_{IN}	Input impedance				100			100		$\mathrm{k} \Omega$
$\mathrm{R}_{\text {OUT }}$	Output impedance				10			10		Ω

DC ELECTRICAL CHARACTERISTICS（Continued）
$\mathrm{V}_{\mathrm{CC}}= \pm 8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ；unless otherwise specified．

SYMBOL	PARAMETER	TEST CONDITIONS		SE5539			NE5539			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
V OUT	Output voltage swing	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \mathrm{GND} \text { and } \\ 470 \Omega \text { to }-\mathrm{V}_{\mathrm{CC}} \end{gathered}$	＋Swing －Swing				$\begin{aligned} & \hline+2.3 \\ & -1.7 \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & -2.2 \end{aligned}$		V
$\mathrm{V}_{\text {OUT }}$	Output voltage swing	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=25 \Omega \text { to } \mathrm{GND} \\ & \text { Over temp } \end{aligned}$	＋Swing －Swing	$\begin{aligned} & \hline+2.3 \\ & -1.5 \end{aligned}$	$\begin{aligned} & \hline+3.0 \\ & -2.1 \end{aligned}$					V
		$\begin{gathered} \mathrm{R}_{\mathrm{L}}=25 \Omega \text { to } \mathrm{GND} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	＋Swing －Swing	$\begin{aligned} & \hline+2.5 \\ & -2.0 \end{aligned}$	$\begin{aligned} & \hline+3.1 \\ & -2.7 \end{aligned}$					
ICC＋	Positive supply current	$\mathrm{V}_{\mathrm{O}}=0, \mathrm{R}_{1}=\infty$ ，Over temp			14	18				mA
		$\mathrm{V}_{\mathrm{O}}=0, \mathrm{R}_{1}=\infty, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			14	17		14	18	
Icc－	Negative supply current	$\mathrm{V}_{\mathrm{O}}=0, \mathrm{R}_{1}=\infty$ ，Over temp			11	15				mA
		$\mathrm{V}_{\mathrm{O}}=0, \mathrm{R}_{1}=\infty, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			11	14		11	15	
PSRR	Power supply rejection ratio	$\Delta \mathrm{V}_{\text {CC }}= \pm 1 \mathrm{~V}$ ，Over temp			300	1000				$\mu \mathrm{V} / \mathrm{V}$
		$\Delta \mathrm{V}_{\mathrm{CC}}= \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						200	1000	
Avol	Large signal voltage gain	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=+2.3 \mathrm{~V},-1.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \\ \mathrm{GND}, 470 \Omega \text { to }-\mathrm{V}_{\mathrm{CC}} \end{gathered}$					47	52	57	dB
Avol	Large signal voltage gain	$\mathrm{V}_{\mathrm{O}}=+2.3 \mathrm{~V},-1.7 \mathrm{~V}$	Over temp							dB
		$\mathrm{R}_{\mathrm{L}}=2 \Omega$ to GND	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				47	52	57	
Avol	Large signal voltage gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=+2.5 \mathrm{~V},-2.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \Omega \text { to } \mathrm{GND} \end{aligned}$	$\begin{aligned} & \hline \text { Over } \\ & \text { temp } \end{aligned}$	46		60				dB
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	48	53	58				

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}= \pm 6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ；unless otherwise specified．

SYMBOL	PARAMETER	TEST CONDITIONS			SE5539			UNITS
					MIN	TYP	MAX	
V_{OS}	Input offset voltage			Over temp		2	5	mV
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3	
los	Input offset current			Over temp		0.1	3	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1	1	
I_{B}	Input bias current			Over temp		5	20	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	10	
CMRR	Common－mode rejection ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 1.3 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega$			70	85		dB
${ }^{\text {ICC }+}$	Positive supply current			Over temp		11	14	mA
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		11	13	
Icc－	Negative supply current			Over temp		8	11	mA
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{CmA}$		8	10	
PSRR	Power supply rejection ratio	$\Delta \mathrm{V}_{\mathrm{CC}}= \pm 1 \mathrm{~V}$		Over temp		300	1000	$\mu \mathrm{V} / \mathrm{V}$
				$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$				
$\mathrm{V}_{\text {OUT }}$	Output voltage swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \mathrm{GND} \\ & \text { and } 390 \Omega \text { to }-\mathrm{V}_{\mathrm{CC}} \end{aligned}$	Over	＋Swing	＋1．4	＋2．0		V
			temp	－Swing	－1．1	－1．7		
			$\mathrm{T}_{\mathrm{A}}=$	＋Swing	＋1．5	＋2．0		
			$25^{\circ} \mathrm{C}$	－Swing	－1．4	－1．8		

High frequency operational amplifier

AC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}= \pm 8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND and 470Ω to $-\mathrm{V}_{\mathrm{CC}}$ ，unless otherwise specified．

SYMBOL	PARAMETER	TEST CONDITIONS	SE5539			NE5539			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
BW	Gain bandwidth product	$\mathrm{A}_{\mathrm{CL}}=7, \mathrm{~V}_{\mathrm{O}}=0.1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$		1200			1200		MHz
	Small signal bandwidth	$A_{C L}=2, R_{L}=150 \Omega^{1}$		110			110		MHz
ts	Settling time	$\mathrm{A}_{\mathrm{CL}}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		15			15		ns
SR	Slew rate	$\mathrm{A}_{\mathrm{CL}}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		600			600		V／us
$\mathrm{t}_{\text {PD }}$	Propagation delay	$A_{C L}=2, R_{L}=150 \Omega^{1}$		7			7		ns
	Full power response	$\mathrm{A}_{\mathrm{CL}}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		48			48		MHz
	Full power response	$\mathrm{A}_{\mathrm{V}}=7, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		20			20		MHz
	Input noise voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, 1 \mathrm{MHz}$		4			4		$\mathrm{nV} / \mathrm{VHz}$
	Input noise current	1 MHz		6			6		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

NOTES：
1．External compensation．

AC ELECTRICAL CHARACTERISTICS

$V_{C C}= \pm 6 \mathrm{~V}, R_{L}=150 \Omega$ to $G N D$ and 390Ω to $-V_{C C}$ ，unless otherwise specified．

SYMBOL	PARAMETER	TEST CONDITIONS	SE5539			UNITS
			MIN	TYP	MAX	
BW	Gain bandwidth product	$\mathrm{A}_{\mathrm{CL}}=7$		700		MHz
	Small signal bandwidth	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		120		
ts	Settling time	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		23		ns
SR	Slew rate	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		330		V／us
$\mathrm{t}_{\text {PD }}$	Propagation delay	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		4.5		ns
	Full power response	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		20		MHz

NOTES：
1．External compensation．

TYPICAL PERFORMANCE CURVES

Figure 3．NE5539 Open－Loop Phase

Figure 4．NE5539 Open－Loop Gain

TYPICAL PERFORMANCE CURVES（Continued）

SE5539 Open－Loop Gain vs Frequency

SE5539 Open－Loop Phase vs Frequency

Power Bandwidth（NE）

Gain Bandwidth Product vs Frequency

NOTE:
\square

High frequency operational amplifier
NE／SE5539

CIRCUIT LAYOUT CONSIDERATIONS

As may be expected for an ultra－high frequency，wide－gain bandwidth amplifier，the physical circuit is extremely critical．

Bread－boarding is not recommended．A double－sided copper－clad printed circuit board will result in more favorable system operation． An example utilizing a 28 dB non－inverting amp is shown in Figure 6.

SL00575

High frequency operational amplifier
NE／SE5539

NE5539 COLOR VIDEO AMPLIFIER

The NE5539 wideband operational amplifier is easily adapted for use as a color video amplifier．A typical circuit is shown in Figure 7 along with vector－scope1 photographs showing the amplifier differential gain and phase response to a standard five－step modulated staircase linearity signal（Figures 8， 9 and 10）．As can be seen in Figure 9，the gain varies less than 0.5% from the bottom to the top of the staircase．The maximum differential phase shown in Figure 10 is approximately $+0.1^{\circ}$ ．

The amplifier circuit was optimized for a 75Ω input and output termionation impedance with a gain of approximately 10 （20dB）．

NOTE：
1．The input signal was 200 mV and the output 2 V ． V_{CC} was $\pm 8 \mathrm{~V}$ ．

Figure 7．NE5539 Video Amplifier

Figure 8．Input Signal

Figure 9．Differential Gain＜0．5\％
NOTE：
Instruments used for these measurements were Tektronix 146 NTSC test signal generator，520A NTSC vectorscope，and 1480 waveform monitor．

勝 特 力 材 料 886－3－5753170胜特力 电子（上海）86－21－54151736胜特力 电子（深圳）86－755－83298787 Http：／／www． $100 y$ ．com．tw

High frequency operational amplifier

Figure 10．Differential Gain $+\mathbf{0 . 1}{ }^{\circ}$

Figure 11．Non－Inverting Follower

SL00581
Figure 12．Inverting Follower

High frequency operational amplifier

DIMENSIONS（inch dimensions are derived from the original mm dimensions）

UNIT	\mathbf{A} max．	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ $\boldsymbol{m a x}$.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}
$\mathbf{m m}$	4.2	0.51	3.2	$\mathbf{1 . 7 3}$	$\mathbf{1 . 1 3}$	0.53 $\mathbf{m a x}$								
inches	0.17	0.020	0.13	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2	

Note
1．Plastic or metal protrusions of 0.25 mm maximum per side are not included．

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT27－1	$050 \mathrm{G04}$	MO－001AA		$-92-11-17$		

High frequency operational amplifier

勝 特 力 材 料 886－3－5753170
胜特力电子（上海）86－21－54151736
胜特力电子（深圳）86－755－83298787
Http：／／www． 100 y ．com．tw

DIMENSIONS（inch dimensions are derived from the original mm dimensions）

UNIT	A	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$\mathbf{z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 8.75 \\ & 8.55 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	0.7 0.3	
inches	0.069	$\begin{array}{\|l\|} \hline 0.0098 \\ 0.0039 \end{array}$	$\begin{array}{\|l\|} \hline 0.057 \\ 0.049 \end{array}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0098 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.35 \\ & 0.34 \end{aligned}$	$\begin{aligned} & \hline 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.24 \\ & 0.23 \end{aligned}$	0.041	$\begin{aligned} & \hline 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \hline 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	0°

Note
1．Plastic or metal protrusions of 0.15 mm maximum per side are not included．

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT108－1	076E06S	MS－012AB			$91-08-13$	


```
勝特材料 886-3-5753170
胜特力电子(上海 86-21-54151736
胜特力电子(深圳) 86-755-83298787
    Http://www. 100y. com.tw
```


DEFINITIONS

Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development．Specifications may change in any manner without notice．
Preliminary Specification	Preproduction Product	
Product Specification	Full Production	This data sheet contains preliminary data，and supplementary data will be published at a ater date Philips semiconductors reserves the right to mate changes at any time without notice ino oder toimarove design at any time withoutnotice in orderto improve design and supply the best possible product．

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes，without notice，in the products， including circuits，standard cells，and／or software，described or contained herein in order to improve design and／or performance．Philips Semiconductors assumes no responsibility or liability for the use of any of these products，conveys no license or title under any patent，copyright， or mask work right to these products，and makes no representations or warranties that these products are free from patent，copyright，or mask work right infringement，unless otherwise specified．Applications that are described herein for any of these products are for illustrative purposes only．Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification．

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances，devices， or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury．Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale．

