

DARLINGTON POWER TRANSISTOR 2SC4810

NPN SILICON EPITAXIAL TRANSISTOR (DARLINGTON CONNECTION) FOR HIGH-SPEED SWITCHING

The 2SC4810 is a high-speed Darlington power transistor. This transistor is ideal for high-precision control such as PWM control for pulse motors or brushless motors in OA and FA equipment.

In addition, this transistor features a package that can be auto-mounted in radial taping specifications, thus contributing to mounting cost reduction.

FEATURES

- · Auto-mounting possible in radial taping specifications
- · Resin-molded insulation type package with power rating of 1.8 W in stand-alone conditions
- On-chip C-to-E reverse diode
- · Fast switching speed

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Parameter	Symbol	Ratings	Unit
Collector to base voltage	Vсво	100	OV
Collector to emitter voltage	VCEO	100	CV.
Emitter to base voltage	VEBO	8.0	V
Collector current (DC)	Ic(DC)	±5.0	Α
Collector current (pulse)	Ic(pulse)*	±10	A
Base current (DC)	I _{B(DC)}	0.5	A
Total power dissipation	Рт	1.8	W
Junction temperature	C Ti	150	°C
Storage temperature	Tstg	-55 to +150	°C

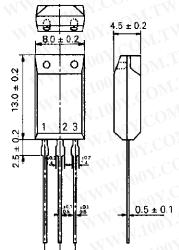
^{*} PW \leq 300 μ s, duty cycle \leq 10%

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

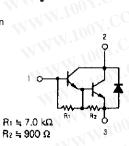
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

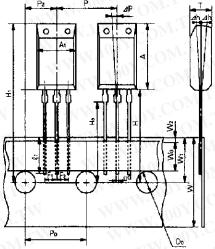
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Uni
Collector to emitter voltage	VCEO(SUS)	$I_C = 5$ A, $I_B = 5$ mA, $L = 180 \mu\text{H}$	100	TW		V
Collector to emitter voltage	VCEX(SUS)	Ic = 5 A, Is = 5 mA L = 180 µH, clamped	100	M.TW	- 7	V
Collector cutoff current	Ісво	Vcb = 100 V, IE = 0	1001.	OMIT	1.0	μΑ
Emitter cutoff current	ІЕВО	V _{EB} = 5 V, I _C = 0	100X.	TOM.	5.0	mA
DC current gain	hFE1*	Vce = 2.0 V, Ic = 2.0 A	2,000		20,000	_
DC current gain	hFE2*	Vce = 2.0 V, Ic = 4.0 A	500	I.Co.	(TV)	_
Collector saturation voltage	V _{CE(sat)} *	Ic = 2.0 A, I _B = 2.0 mA	100	0.9	1.5	V
Base saturation voltage	V _{BE(sat)} *	Ic = 2.0 A, I _B = 2.0 mA	WW.	1.5	2.0	V
Turn-on time	ton	$I_C = 2.0 \text{ A}, I_{B1} = -I_{B2} = 2.0 \text{ mA}$	MMI	0.5	Dive	μs
Storage time	tstg	R _L = 25 Ω, $Vcc \cong 50 \text{ V}$ Refer to the test circuit.	WWW.	2.5	OM	(μs
Fall time	tr	neter to the test circuit.	TINV	0.6	$CO_{M_{I}}$	μs


Pulse test PW \leq 350 μ s, duty cycle \leq 2%

hfe CLASSIFICATION

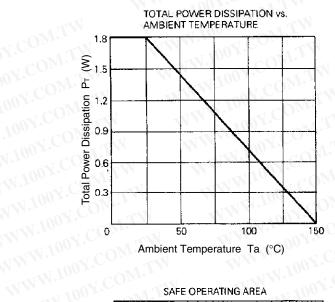
Marking	M	L	N.100 K CO
h _{FE1}	2,000 to 5,000	4,000 to 10,000	8,000 to 20,000

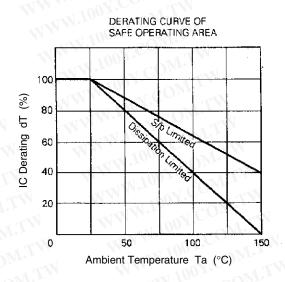

PACKAGE DRAWING (UNIT: mm)

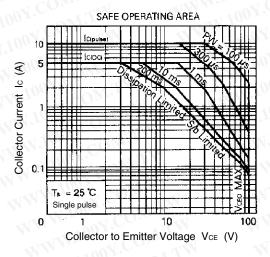

TAPING SPECIFICATION

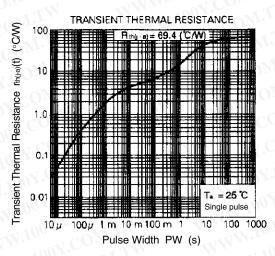
Electrode Connection

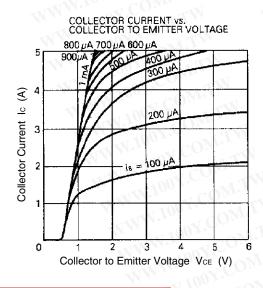
1. Base 2 Collector 3. Emitter

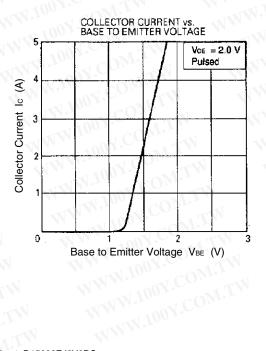


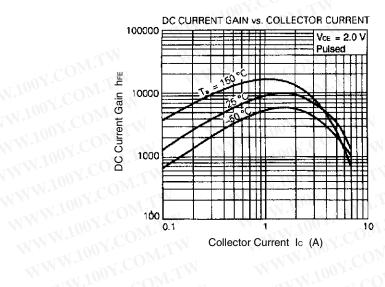

A1 8.0 ± 0.2 A 13.0 ± 0.2 D0 44.0 ± 0.2 d 0.5 ± 0.1 F1 2.5 ± 0.4 F2 2.5 ± 0.4 H 20.0 MAX H0 16.0 ± 0.5 H1 32.2 MAX Ah 0 ± 1.0 2.5 MIN. P 12.7 ± 1.0 P0 12.7 ± 0.3 P1 12.7 ± 0.3 P2 12.7 ± 0.3 P3 12.7 ± 0.3 P4 12.7 ± 0.3 P5 12.7 ± 0.3 P6 12.7 ± 0.3 P7 12.7 ± 0.3 P1 12.7 ± 0.3 P2 12.7 ± 0.3 P3 12.7 ± 0.3 P4 12.7 ± 0.3 P5 12.7 ± 0.3 P6 12.7 ± 0.3 P7 12.7 ± 0.3 P8 12.7 ± 0.3 P9 12.7 ± 0.3 P1 12.7 ± 0.3 P1 12.7 ± 0.3 P1 12.7 ± 0.3 P2 12.7 ± 0.3 P3 12.7 ± 0.3 P4 13.7 ± 0.3 P5 13.7 ± 0.3 P7 13.7 ± 0.3 P8 13.7 ± 0.3 P9 13.7 ± 0.3 P1		11110
Fi $2.5^{+}.0.1$ F2 $2.5^{+}.0.1$ H 20.0 MAX. Ho 16.0 ± 0.5 Hi 32.2 MAX. Ah 0 ± 1.0 ℓ_1 2.5 MIN. P 12.7 ± 1.0 Po 12.7 ± 0.3 P2 6.35 ± 0.5 AP 0 ± 1.3 T 4.5 ± 0.2 W $18.0^{+}.0.5$ We 5.0 MIN. Wi 9.0 ± 0.5	A ₁	8.0 ± 0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Α	13.0 ± 0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D٥	$\phi 4.0 \pm 0.2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	d	0.5 ± 0.1
$\begin{array}{lll} H & 20.0 \text{ MAX.} \\ H_0 & 16.0 \pm 0.5 \\ H_1 & 32.2 \text{ MAX.} \\ dh & 0 \pm 1.0 \\ \ell_1 & 2.5 \text{ MIN.} \\ P & 12.7 \pm 1.0 \\ P_0 & 12.7 \pm 0.3 \\ P_2 & 6.35 \pm 0.5 \\ dP & 0 \pm 1.3 \\ T & 4.5 \pm 0.2 \\ W & 18.010.5 \\ W_0 & 5.0 \text{ MIN.} \\ W_1 & 9.0 \pm 0.5 \\ \end{array}$	F١	2,5+0.4
H ₀ 16.0 \pm 0.5 H ₁ 32.2 MAX. Δh 0 \pm 1.0 2.5 MIN. P 12.7 \pm 1.0 P ₀ 12.7 \pm 0.3 P ₂ 6.35 \pm 0.5 ΔP 0 \pm 1.3 T 4.5 \pm 0.2 W 18.0 \pm 0.5 W ₀ 5.0 MIN. W ₁ 9.0 \pm 0.5	F ₂	2.5+0.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	20.0 MAX.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ho	16.0 ± 0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hi	32.2 MAX.
$\begin{array}{c cccc} P & 12.7 \pm 1.0 \\ P_0 & 12.7 \pm 0.3 \\ P_2 & 6.35 \pm 0.5 \\ dP & 0 \pm 1.3 \\ T & 4.5 \pm 0.2 \\ W & 18.0^{+0.5}_{-0.5} \\ W_0 & 5.0 \text{ MIN.} \\ W_1 & 9.0 \pm 0.5 \\ \end{array}$	⊿h	0 ± 1.0
$\begin{array}{ccccc} P_0 & 12.7 \pm 0.3 \\ P_2 & 6.35 \pm 0.5 \\ dP & 0 \pm 1.3 \\ T & 4.5 \pm 0.2 \\ W & 18.0^{+1.0}_{-0.5} \\ W_0 & 5.0 \text{ MIN.} \\ W_1 & 9.0 \pm 0.5 \\ \end{array}$	ℓ_1	2.5 MIN.
$\begin{array}{cccc} P_2 & 6.35 \pm 0.5 \\ dP & 0 \pm 1.3 \\ T & 4.5 \pm 0.2 \\ W & 18.0^{+1.0}_{-0.5} \\ W_4 & 5.0 \text{ MIN.} \\ W_1 & 9.0 \pm 0.5 \\ \end{array}$	P	12.7 ± 1.0
$\begin{array}{cccc} dP & 0 \pm 1.3 \\ T & 4.5 \pm 0.2 \\ W & 18.0^{+1.9}_{-0.5} \\ W_0 & 5.0 \text{ MIN.} \\ W_1 & 9.0 \pm 0.5 \\ \end{array}$	Po	12.7 ± 0.3
T 4.5 ± 0.2 W 18.0±1.0 We 5.0 MIN. W1 9.0 ± 0.5	P ₂	6.35 ± 0.5
W 18.0° 1.0° 1.0° 1.0° 1.0° 1.0° 1.0° 1.0° 1	₫P	0 ± 1.3
Wo 5.0 MIN. W1 9.0 ± 0.5	T	
W ₁ 9.0 ± 0.5		18.0 <u>*</u> 1.0
A A . M	Wa	5.0 MIN.
W ₂ 0.7 MIN.	W ₁	9.0 ± 0.5
- 11 J. 17 1	W ₂	0.7 MIN.
		174

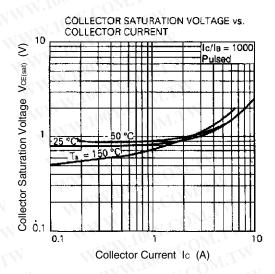

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

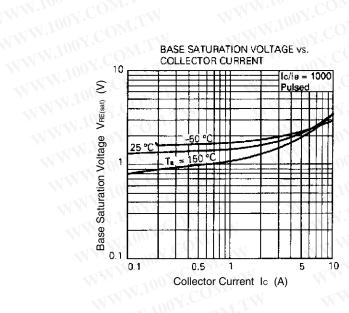


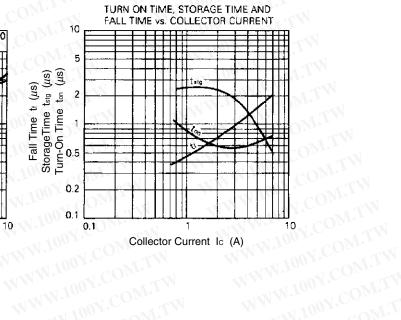

TYPICAL CHARACTERISTICS (Ta = 25°C)

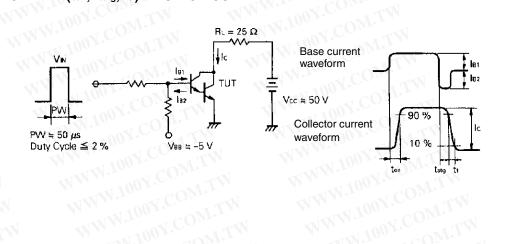









勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TENTAN 100Y.COM.

SWITCHING TIME (ton, tstg, tf) TEST CIRCUIT

100X.COM.TW

W.100Y

.100Y.COM.T

WWW.100Y.COM.TW 勝特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

W.100Y.COM.TW

WWW.100Y

WWW.100Y.COM

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

- The information in this document is current as of July, 2001. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

- (Note)
- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).