## DATA SHEET

## COMPOUND FIELD EFFECT POWER TRANSISTOR

# μ**ΡΑ1523Β**

## P-CHANNEL POWER MOS FET ARRAY SWITCHING INDUSTRIAL USE

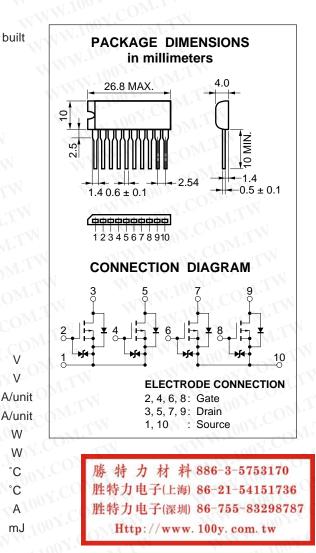
#### DESCRIPTION

NEC

The µPA1523B is P-channel Power MOS FET Array that built in 4 circuits designed for solenoid, motor and lamp driver.

#### **FEATURES**

- Full Mold Package with 4 Circuits
- –4 V driving is possible
- Low On-state Resistance RDS(on)1 = 0.8  $\Omega$  MAX. (@VGS = -10 V, ID = -1 A)  $R_{DS(on)2} = 1.3 \Omega MAX.$  (@Vgs = -4 V, ID = -1 A)
- Low Input Capacitance Ciss = 190 pF TYP


#### ORDERING INFORMATION

| Type Number | Package      |
|-------------|--------------|
| μPA1523BH   | 0 10 Pin SIP |

#### ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Drain to Source Voltage (Vgs = 0) VDSS Gate to Source Voltage (VDs = 0) VGSS(AC) Drain Current (DC) D(DC) Drain Current (pulse) D(pulse) **Total Power Dissipation** PT1 \*2 **Total Power Dissipation** PT2 \*3 **Channel Temperature** Тсн Storage Temperature Tstg As \*4 Single Avalanche Current EAs \*4 Single Avalanche Energy

- \*1 PW  $\leq$  10  $\mu$ s, Duty Cycle  $\leq$  1%
- 4 Circuits, T<sub>A</sub> = 25 °C \*3



4 Circuits, Tc = 25 °C \*2

-60

∓20

**∓**2.0

78.0

28

3.5

150

-55 to + 150

-2.0

0.4

V

W

W

°C

°C

A

mJ

Starting TcH = 25 °C, \*4  $V_{DD} = -30 \text{ V}, \text{ Vgs} = -20 \text{ V} \rightarrow 0, \text{ Rg} = 25 \Omega,$  $L = 100 \ \mu H$ 

Build-in Gate Diodes are for protection from static electricity in handing. In case high voltage over Voss is applied, please append gate protection circuits.

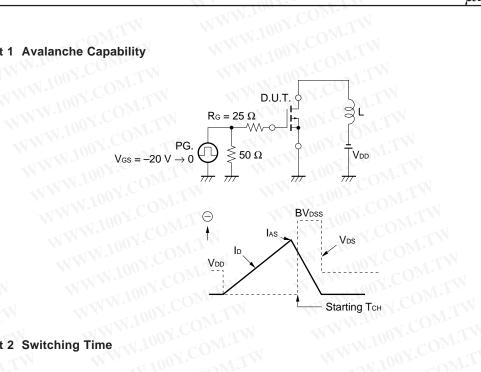
The information in this document is subject to change without notice.

WWW.10

WWW.100Y.COM

| CHARACTERISTIC                | SYMBOL   | TEST CONDITIONS                                                                     | MIN.   | TYP.  | MAX.        | UNI |
|-------------------------------|----------|-------------------------------------------------------------------------------------|--------|-------|-------------|-----|
| Drain Leakage Current         | loss     | $V_{DS} = -60 V, V_{GS} = 0$                                                        | COM    |       | -10         | μA  |
| Gate Leakage Current          | lgss     | $V_{GS} = \mp 20 \text{ V}, \text{ V}_{DS} = 0$                                     | CON    | TN    | <b>∓</b> 10 | μA  |
| Gate Cutoff Voltage           | VGS(off) | $V_{DS} = -10 \text{ V}, \text{ ID} = -1.0 \text{ mA}$                              | -1.0   | M.T.W | -2.0        | V   |
| Forward Transfer Admittance   | Yfs      | $V_{DS} = -10 \text{ V}, \text{ ID} = -1.0 \text{ A}$                               | 0.8    | VT.M  |             | S   |
| Drain to Source ON-Resistance | RDS(on)1 | $V_{GS} = -10 \text{ V}, \text{ Id} = -1.0 \text{ A}$                               | NOY.C' | 0.5   | 0.8         | Ω   |
| Drain to Source ON-Resistance | RDS(on)2 | $V_{GS} = -4.0 \text{ V}, \text{ ID} = -1.0 \text{ A}$                              | 100Y.C | 0.8   | 1.3         | Ω   |
| Input Capacitance             | Ciss     | $V_{DS} = -10 V$ , $V_{GS} = 0$ , f = 1.0 MHz                                       | Yook   | 190   | W           | pF  |
| Output Capacitance            | Coss     | OV.COM.TW WWV                                                                       | 1.100  | 115   | WT.         | pF  |
| Reverse Transfer Capacitance  | Crss     |                                                                                     | 4.100  | 43    | W           | pF  |
| Turn-on Delay Time            | td(on)   | $I_D = -1.0 \text{ A}, \text{ V}_{GS(on)} = -10 \text{ V},$                         | W.10   | 8     | Wr.         | ns  |
| Rise Time                     | tr       | $V_{DD} \doteq -30 \text{ V}, \text{ RL} = 30 \Omega$                               | N.W.I  | 53    | OW.         | ns  |
| Turn-off Delay Time           | td(off)  | V.100X.COM.TW W                                                                     | WIN.   | 400   | OM.I        | ns  |
| Fall Time                     | tr       | W100Y.COM.TW                                                                        |        | 230   | COM.        | ns  |
| Total Gate Charge             | QG       | $V_{GS} = -10 \text{ V}, \text{ Id} = -2.0 \text{ A}, \text{ Vdd} = -48 \text{ V}$  | N.     | 10    | Mon         | nC  |
| Gate to Source Charge         | QGS 📢    |                                                                                     | MM     | 1.10  | Y.Co        | nC  |
| Gate to Drain Charge          | Qgd      | WW. LOOY.COM TW                                                                     | WN     | 3.5   | 01.00       | nC  |
| Body Diode Forward Voltage    | VF(S-D)  | IF = 2.0 A, VGS = 0                                                                 | W      | 1.0   | DOY.CC      | V   |
| Reverse Recovery Time         | trr      | $I_F = 2.0 \text{ A}, \text{ V}_{GS} = 0, \text{ di/dt} = 50 \text{ A}/\mu\text{s}$ | V      | 180   | .vov.C      | ns  |
| Reverse Recovery Charge       | Qrr      | WW.10° COM.                                                                         |        | 250   | .Va         | nC  |

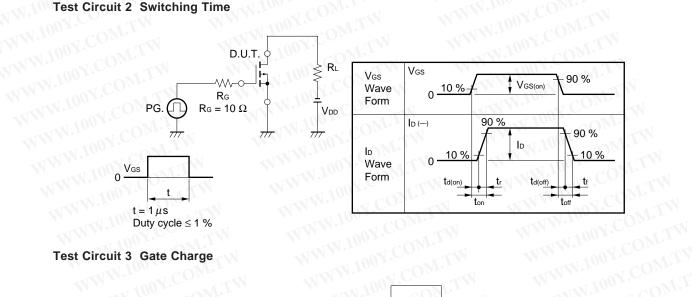
WWW.100Y.COM.TW


WW.100X.CC

CONT.TW

WWW.100Y.COM.TW WWW.100Y.COM.TW 特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

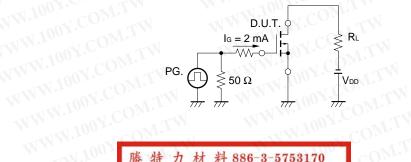
#### Test Circuit 1 Avalanche Capability


NEC



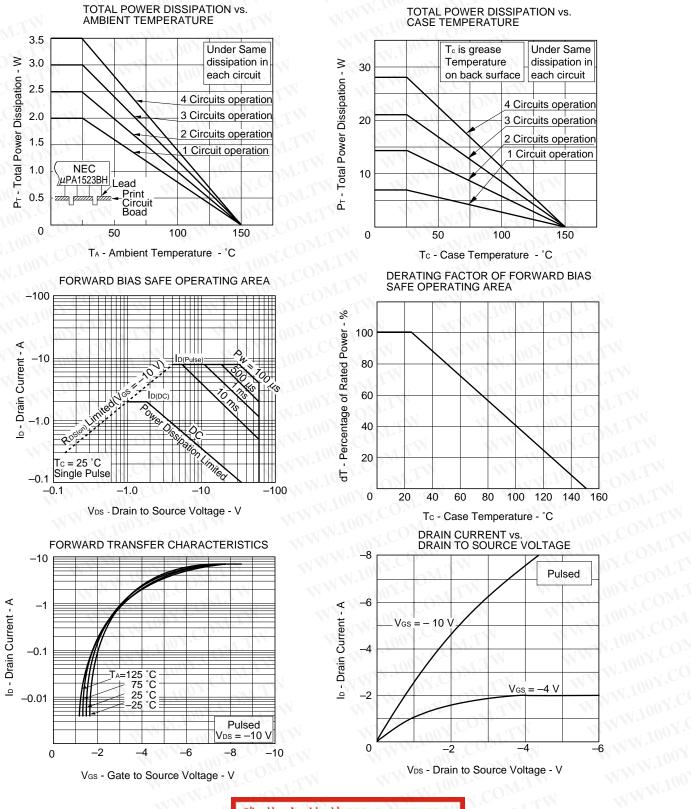
WW.100Y.C

WWW


WWW.100Y.COM.TW COM.TW Test Circuit 2 Switching Time WWW.100Y.



**Test Circuit 3 Gate Charge** 


WWW.1007

WWW.100Y.COM.T

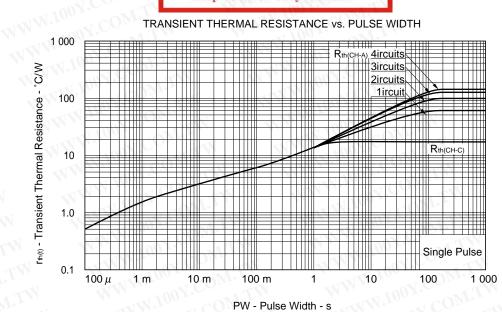


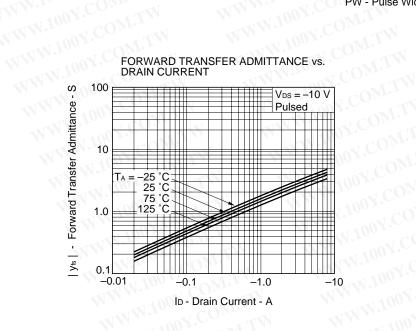
勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw WWW.100Y.COM.TW

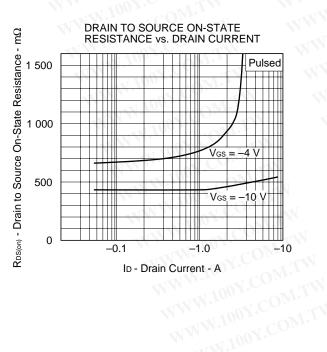
TYPICAL CHARACTERISTICS ( $T_A = 25$  °C)



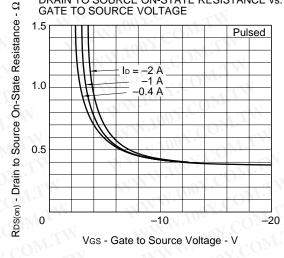
勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


WWW.100Y.

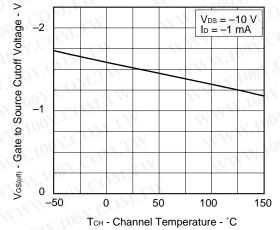

## NEC

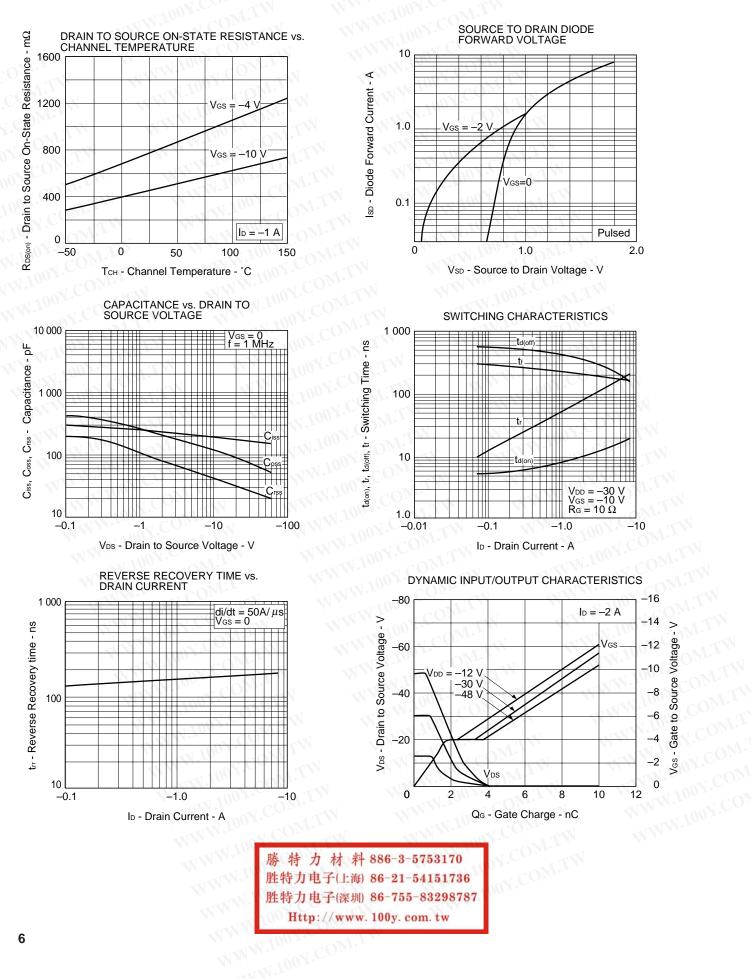

### 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

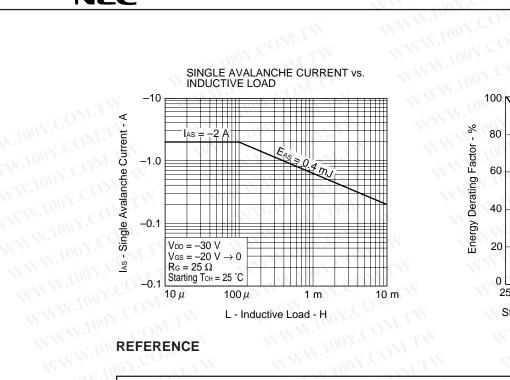
### μ**PA1523B**

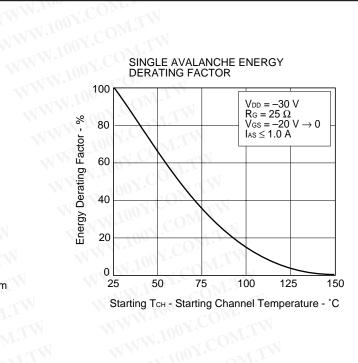

TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH







DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE




GATE TO SOURCE CUTOFF VOLTAGE vs. CHANNEL TEMPERATURE









# REFERENCE

WWW.100Y

| Document Name                                                   | Document |
|-----------------------------------------------------------------|----------|
| NEC semiconductor for device reliability/quality control system | TEI-120  |
| Quality grade on NEC semiconductor devices                      | IEI-1209 |
| Semiconductor device mounting technology manual                 | C10535I  |
| Semiconductor device package manual                             | C109433  |
| Guide to quality assurance for semiconductor devices            | MEI-120  |
| Semiconductor selection guide                                   | X10679I  |
| Power MOS FET features and application switching power supply   | TEA-103  |
| Application circuits using Power MOS FET                        | TEA-103  |
| Safe operating area of Power MOS FET                            | TEA-103  |

WWW.100

WW.100X.CC

WWW.

<u>x.c</u>om.TW

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW WWW.100Y.COM.1

[MEMO]

WWW.100Y.COM.T 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw W.100Y.COM

WWW.100Y.CO

WWW.100Y.COM.TW

OOY.COM.

WWW.100Y.COM.T No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The guality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

WWW.100Y.CON

WWW.TO

W.100Y.COM.T

WWW.100Y.COM

Anti-radioactive design is not implemented in this product.

WWW.100Y.COM

WWW.100

W.100X.COM.T

WWW.100Y.COM.

WWW.100Y.COM.TW

W.100Y.COM.T M4 94.11

WWW.

WWW.100X.CO