勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

Product Preview

Power MOSFET -2.48 Amps, -30 Volts

P-Channel Enhancement Mode Single Micro8 Package

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Miniature Micro8 Surface Mount Package
- Diode Exhibits High Speed, Soft Recovery
- Micro8 Mounting Information Provided

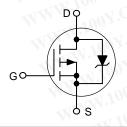
Applications

Power Management in Portable and Battery
 —Powered Products, i.e.:
 Cellular and Cordless Telephones and PCMCIA Cards

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

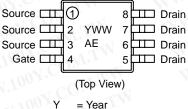
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-30	V
Gate-to-Source Voltage - Continuous	V_{GS}	±20	V
Thermal Resistance – Junction–to–Ambient (Note 1.) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C	R _{0JA} P _D I _D	160 0.78 -2.48 -1.98	°C/W W A A
Thermal Resistance – Junction–to–Ambient (Note 2.) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C	R _{OJA} P _D I _D I _D	70 1.78 -3.75 -3.0	°C/W W A A
Thermal Resistance – Junction–to–Ambient (Note 3.) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 5.)	R _{0JA} P _D I _D I _{DM}	210 0.60 -2.10 -1.67 -17	°C/W W A A
Thermal Resistance – Junction–to–Ambient (Note 4.) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 5.)	R _{θJA} P _D I _D I _{DM}	100 1.25 -3.02 -2.42 -24	°C/W W A A
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	\°C

- 1. Minimum FR-4 or G-10 PCB, Time ≤ 10 Seconds.
- Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), Time ≤ 10 Seconds.
- 3. Minimum FR-4 or G-10 PCB, Steady State.
- Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), Steady State.
- 5. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.


This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor

-2.48 AMPERES -30 VOLTS $85 \text{ m}\Omega$ @ V_{GS} = -10 V


Single P-Channel

Micro8 CASE 846A STYLE 1

MARKING DIAGRAM & PIN ASSIGNMENT

WW = Work Week

AE = Device Code

ORDERING INFORMATION

Device	Package	Shipping		
NTTS2P03R2	Micro8	4000/Tape & Reel		

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

MAXIMUM RATINGS (T _J = 25°C unless otherwise noted) (continued)		胜特力电子(深圳) 86-755-83298 Http://www.100y.com.tw			
Rating	Symbol	Value	Unit		
Single Pulse Drain–to–Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = -30$ Vdc, $V_{GS} = -10$ Vdc, Peak $I_L = -3.0$ Apk, $L = 65$ mH, $R_G = 25 \Omega$)	E _{AS}	292.5	mJ		
Maximum Lead Temperature for Soldering Purposes for 10 seconds	100T _L	260	°C		

Maximum Lead Temperature for Solo	dering Purposes for 10 seconds	N. V.	100TL	1 2	260	°C
ELECTRICAL CHARACTERISTI	CS (T _C = 25°C unless otherwise noted) *	MMA	1005	COR.	TW	
Chai	racteristic	Symbol	Min	Тур	Max	Un
OFF CHARACTERISTICS	M. TON TON THE	-11	M.Jos	-1 CO	1. 2	
Drain-to-Source Breakdown Voltag Temperature Coefficient (Positive		V _{(BR)DSS}	-30 -	- -30	V. - I. ()	Vo mV
Zero Gate Voltage Drain Current $(V_{GS} = 0 \text{ Vdc}, V_{DS} = -30 \text{ Vdc}, T_{J} (V_{GS} = 0 \text{ Vdc}, V_{DS} = -30 \text{ Vdc}, T_{J})$		I _{DSS}	M <u>ā</u> M	1007.C	-1.0 -25	μА
Gate-Body Leakage Current (V _{GS} =	= -20 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	THE STATE OF THE S	- N	-100	nA
Gate-Body Leakage Current (V _{GS} =	= +20 Vdc, V _{DS} = 0 Vdc)	I _{GSS}		11.700	100	nA
ON CHARACTERISTICS	M. 100 . CON	U.L.A.	- //	VIV. 100	-1 CON	1.1
Gate Threshold Voltage (V _{DS} = V _{GS} Temperature Coefficient (Negative		V _{GS(th)}	-1.0 -	-1.7 3.6	-3.0 -	Vo
Static Drain–to–Source On–State Resistance ($V_{GS} = -10$ Vdc, $I_D = -2.48$ Adc) ($V_{GS} = -4.5$ Vdc, $I_D = -1.24$ Adc)		R _{DS(on)}	- -	0.063 0.100	0.085 0.135	Ω
Forward Transconductance (V _{DS} =	-15 Vdc, I _D = −1.24 Adc)	9 _{FS}	ı –	3.1	Voo.	Mh
DYNAMIC CHARACTERISTICS	W.1., "M.100.	COM.	- 4 1	TXX	W.Inc	J CS
Input Capacitance	WIN 2 100	C _{iss}	_	500	W.±00	р
Output Capacitance	$(V_{DS} = -24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, $ f = 1.0 MHz)	C _{oss}		160	10′	OY.C
Reverse Transfer Capacitance	ON WWW.	C _{rss}	TA	65	- 1	
SWITCHING CHARACTERISTICS (N	lotes 6. and 7.)	ON COM	W		MAN AN	400
Turn-On Delay Time	COM.1	t _{d(on)}	VI	10	W.	n
Rise Time	$(V_{DD} = -24 \text{ Vdc}, I_D = -2.48 \text{ Adc},$	t _r	$M_{T_{i}}$	20	- EVV	1.10
Turn-Off Delay Time	$V_{GS} = -10 \text{ Vdc}, R_G = 6.0 \Omega)$	t _{d(off)}	ONATY	40		W.19
Fall Time	OY.CO.T.TW WW	t_f	. N . O.	35	0 1	
Turn-On Delay Time	OUX.CO. TW WY	t _{d(on)}		16	411	n
Rise Time	$(V_{DD} = -24 \text{ Vdc}, I_D = -1.24 \text{ Adc},$	t _r	Con	40	- 11	
Turn-Off Delay Time	$V_{GS} = -4.5 \text{ Vdc}, R_G = 6.0 \Omega$	t _{d(off)}	V.GON	30	- <	W
Fall Time	N.100 COW.1	t _f	TO	30	-	WW
Total Gate Charge	(Vpc = -24 Vdc	Q _{tot}	- C(15	22	n
Gate-Source Charge	$(V_{DS} = -24 \text{ Vdc}, V_{GS} = -4.5 \text{ Vdc},$	Q _{gs}	007.	3.2	_	
Gate-Drain Charge	$I_D = -2.48 \text{ Adc}$	Q _{gd}	1007.	4.0	W _	
BODY-DRAIN DIODE RATINGS (No	te 6.)	WWW	Your	Con		
Diode Forward On–Voltage	$(I_S = -2.48 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = -2.48 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$ $T_J = 125^{\circ}\text{C})$	V _{SD}	-	-0.92 -0.72	-1.3 -	Vo
Reverse Recovery Time	$(I_S = -1.45 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s})$	t _{rr}	-	38	_	n
		t _a	-	20	_	
		t _b	-	18	_	
Reverse Recovery Stored Charge		Q _{RR}	_	0.04	_	μ

^{6.} Indicates Pulse Test: Pulse Width = 300 μsec max, Duty Cycle = 2%.

^{7.} Switching characteristics are independent of operating junction temperature.

^{*} Handling precautions to protect against electrostatic discharge is mandatory.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

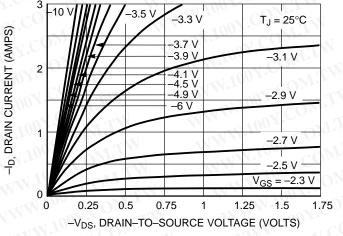


Figure 1. On–Region Characteristics

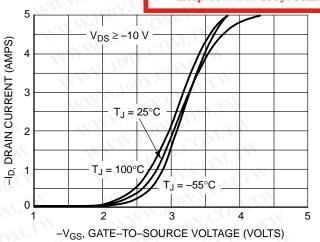


Figure 2. Transfer Characteristics

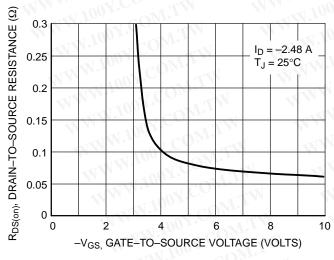


Figure 3. On–Resistance versus Gate–to–Source Voltage

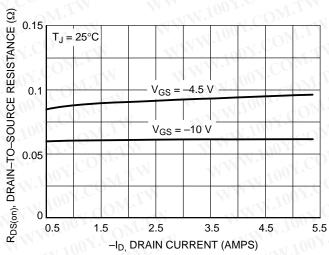


Figure 4. On–Resistance versus Drain Current and Gate Voltage

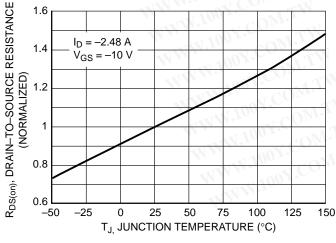


Figure 5. On–Resistance Variation with Temperature

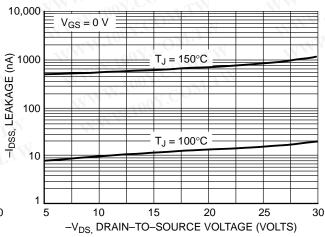
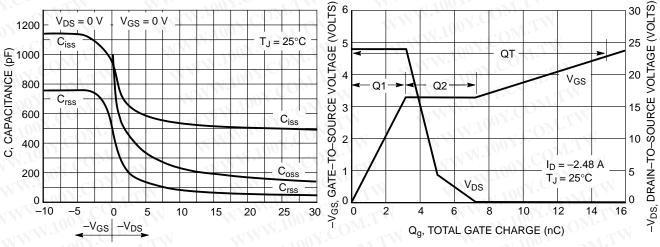



Figure 6. Drain-to-Source Leakage Current versus Voltage

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 8. Gate—to—Source and Drain—to—Source Voltage versus Total Charge

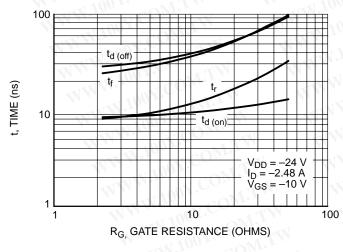


Figure 9. Resistive Switching Time Variation versus Gate Resistance

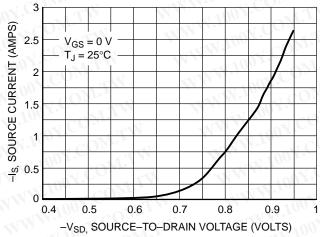


Figure 10. Diode Forward Voltage versus Current

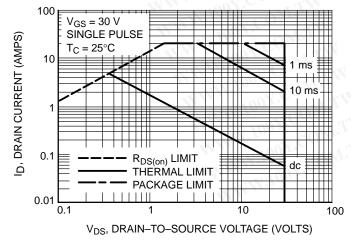


Figure 11. Maximum Rated Forward Biased Safe Operating Area

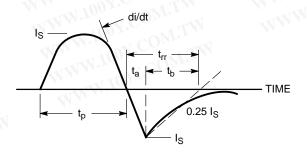


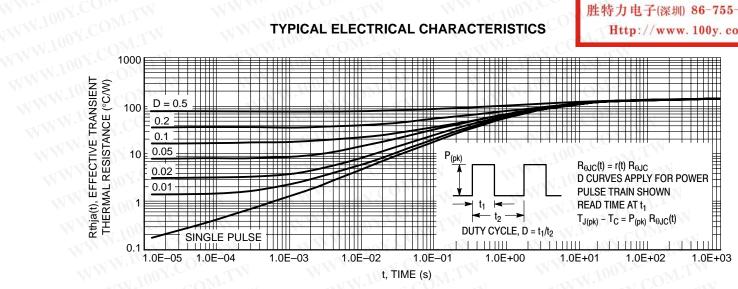
Figure 12. Diode Reverse Recovery Waveform

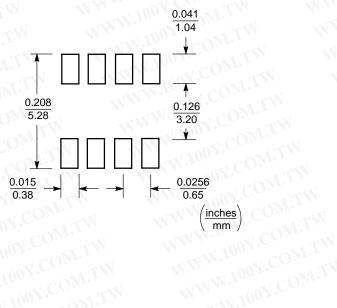
胜特力电子(深圳) 86-755-83298787 TYPICAL ELECTRICAL CHARACTERISTICS

Http://www. 100y. com. tw

勝 特 力 材 料 886-3-5753170

胜特力电子(上海) 86-21-54151736




Figure 13. Thermal Response

INFORMATION FOR USING THE Micro8 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection

interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process.

SOLDERING PRECAUTIONS

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.

- The soldering temperature and time shall not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes.
 Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.
- * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

TYPICAL SOLDER HEATING PROFILE

For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones and a figure for belt speed. Taken together, these control settings make up a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 14 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems, but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows

temperature versus time. The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177–189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints.

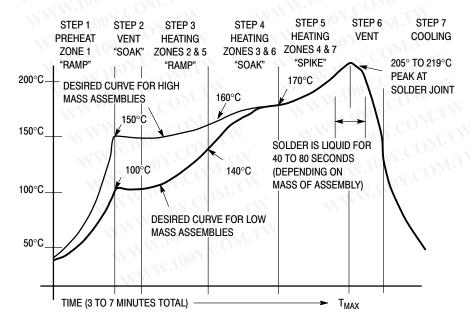
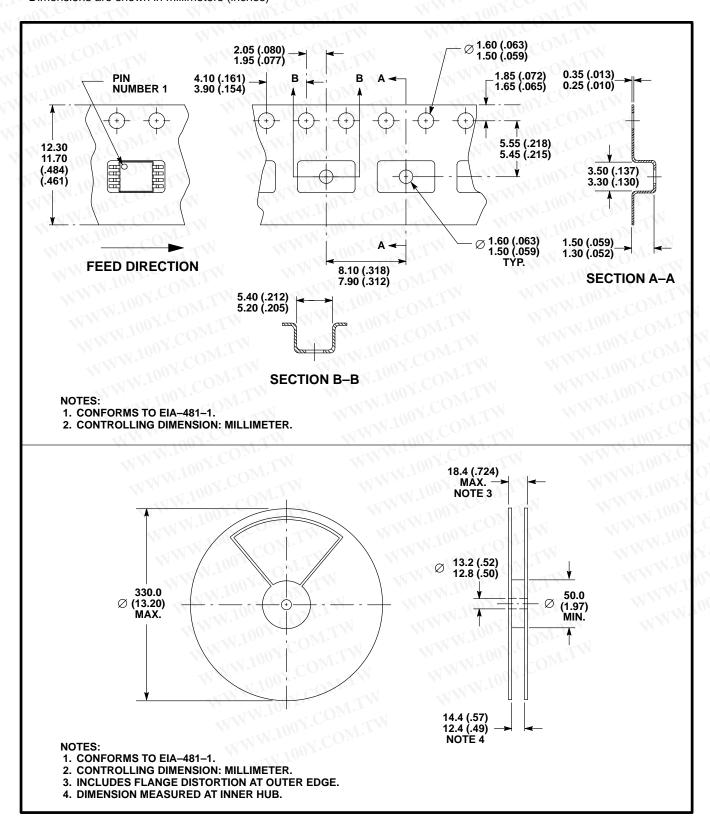


Figure 14. Typical Solder Heating Profile.

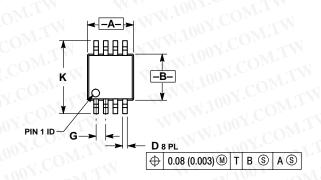

TAPE & REEL INFORMATION

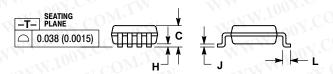
胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

勝 特 力 材 料 886-3-5753170

Http://www.100y.com.tw

Micro-8
Dimensions are shown in millimeters (inches)




PACKAGE DIMENSIONS

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

Micro8 CASE 846A-02 ISSUE E

WWW.100Y.COM.

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.

 DIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С		1.10	77-	0.043	
D	0.25	0.40	0.010	0.016	
G	0.65	0.65 BSC		BSC	
Н	0.05	0.15	0.002	0.006	
J	0.13	0.23	0.005	0.009	
K	4.75	5.05	0.187	0.199	
L	0.40	0.70	0.016	0.028	

STYLE 1:

WWW.100Y.COM

PIN 1. SOURCE 2. SOURCE

- SOURCE
- 4. GATE 5. DRAIN DRAIN
- 6. DRAIN
- 7. 8. DRAIN

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.