勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Preferred Device

PNP Silicon Epitaxial Transistor

This PNP Silicon Epitaxial Transistor is designed for use in low voltage, high current applications. The device is housed in the SOT-223-4 package, which is designed for medium power surface mount applications.

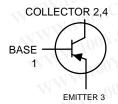
- High Current: $I_C = -1.0 \text{ A}$
- The SOT-223-4 Package can be soldered using wave or reflow.
- SOT-223-4 package ensures level mounting, resulting in improved thermal conduction, and allows visual inspection of soldered joints.
 The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die.
- Available in 12 mm Tape and Reel
 Use BCP69T1 to order the 7 inch/1000 unit reel.
 Use BCP69T3 to order the 13 inch/4000 unit reel.
- NPN Complement is BCP68
- Pb–Free Package May be Available. The G–Suffix Denotes a Pb–Free Lead Finish

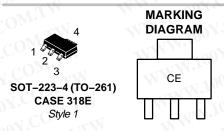
MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	-20	Vdc
Collector-Base Voltage	V_{CBO}	-25	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current	Ic	-1.0	Adc
Total Power Dissipation @ T _A = 25°C (Note 1) Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance – Junction–to–Ambient (Surface Mounted)	$R_{\theta JA}$	83.3	°C/W
Lead Temperature for Soldering, 0.0625 in from case	TL	260	°C
Time in Solder Bath	001.C	10	Sec


1. Device mounted on a glass epoxy printed circuit board 1.575 in. x 1.575 in. x 0.059 in.; mounting pad for the collector lead min. 0.93 sq. in.



ON Semiconductor®

http://onsemi.com

MEDIUM POWER
PNP SILICON
HIGH CURRENT
TRANSISTOR
SURFACE MOUNT

CE = Specific Device Code

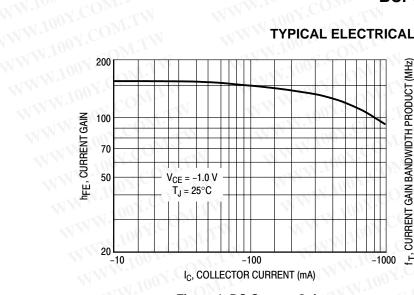
ORDERING INFORMATION

Device	Package	Shipping [†]
BCP69T1	SOT-223-4	1000 / Tape & Reel
BCP69T1G	SOT-223-4	1000 / Tape & Reel
ВСР69Т3	SOT-223-4	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

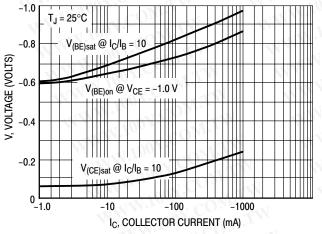
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

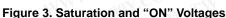

VWW.100Y.COM.TW W.100Y.COM.T

Characteristics	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	MM	100Y	Live	V	
Collector–Emitter Breakdown Voltage ($I_C = -100 \mu Adc$, $I_E = 0$)	V _{(BR)CES}	-25	COM	- W	Vdc
Collector–Emitter Breakdown Voltage ($I_C = -1.0 \text{ mAdc}$, $I_B = 0$)	V _{(BR)CEO}	-20	A.COM	TVT	Vdc
Emitter–Base Breakdown Voltage ($I_E = -10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	-5.0	CON	- TV	Vdc
Collector–Base Cutoff Current (V _{CB} = -25 Vdc, I _E = 0)	I _{CBO}	- VI-VI-VI		-10	μAdo
Emitter–Base Cutoff Current (V _{EB} = -5.0 Vdc, I _C = 0)	I _{EBO}	- TON 1	007	-10	μAdo
ON CHARACTERISTICS	TW	MM	100 Y.C.	WT.Wo	
DC Current Gain $(I_C = -5.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$ $(I_C = -500 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$ $(I_C = -1.0 \text{ Adc}, V_{CE} = -1.0 \text{ Vdc})$	TWhFE	50 85 60	M:100X	- 375 -	
Collector–Emitter Saturation Voltage (I _C = -1.0 Adc, I _B = -100 mAdc)	V _{CE(sat)}		1W-100	-0.5	Vdc
Base–Emitter On Voltage ($I_C = -1.0 \text{ Adc}$, $V_{CE} = -1.0 \text{ Vdc}$)	V _{BE(on)}	- 111	T 100	-1.0	Vdc
DYNAMIC CHARACTERISTICS	WILL	V	11	00Y.C	M.T
Current–Gain – Bandwidth Product ($I_C = -10 \text{ mAdc}$, $V_{CE} = -5.0 \text{ Vdc}$)	f _T TW	- 1	60	1007-CE	MHz

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw





(MHz) **CURRENT GAIN BANDWIDTH PRODUCT** 200 100 $V_{CE} = -10 \text{ V}$ $T_J = 25^{\circ}C$ 70 f = 30 MHz 50 30 <u>L</u> -100 -1000 IC, COLLECTOR CURRENT (mA)

Figure 1. DC Current Gain

Figure 2. Current Gain Bandwidth Product

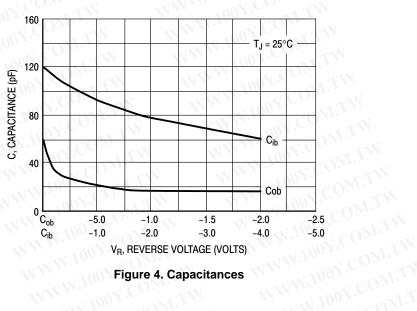


Figure 4. Capacitances

PACKAGE DIMENSIONS

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.249	0.263	6.30	6.70	
В	0.130	0.145	3.30	3.70	
С	0.060	0.068	1.50	1.75	
D	0.024	0.035	0.60	0.89	
F	0.115	0.126	2.90	3.20	
G	0.087	0.094	2.20	2.40	
Н	0.0008	0.0040	0.020	0.100	
J	0.009	0.014	0.24	0.35	
K	0.060	0.078	1.50	2.00	
L	0.033	0.041	0.85	1.05	
M	0°	10 °	0 °	10 °	
S	0.264	0.287	6.70	7.30	

STYLE 1: PIN 1 BAS

- PIN 1. BASE 2. COLLECTOR
 - 3. EMITTER 4. COLLECTOR
- **SOLDERING FOOTPRINT***

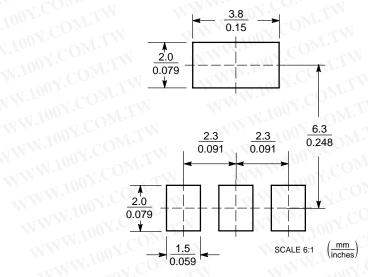


Figure 5. SOT-223

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SENSEFET is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free LISA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.