Preferred Device ### **Complementary Silicon Plastic Power Transistors** These devices are designed for use as high-frequency drivers in audio amplifiers. ### **Features** • DC Current Gain Specified to 4.0 Amperes $h_{FE} = 40 \text{ (Min)} @ I_C = 3.0 \text{ Adc}$ = 20 (Min) @ $I_C = 4.0 \text{ Adc}$ • Collector-Emitter Sustaining Voltage - V_{CEO(sus)} = 120 Vdc (Min); MJE15028, MJE15029 = 150 Vdc (Min); MJE15030, MJE15031 • High Current Gain – Bandwidth Product $f_T = 30 \text{ MHz (Min)} @ I_C = 500 \text{ mAdc}$ • TO-220AB Compact Package Pb–Free Packages are Available* ### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|----------------|-----------| | Collector-Emitter Voltage
MJE15028, MJE15029
MJE15030, MJE15031 | V _{CEO} | 120
150 | Vdc | | Collector-Base Voltage
MJE15028, MJE15029
MJE15030, MJE15031 | V _{CB} | 120
150 | Vdc | | Emitter-Base Voltage | V_{EB} | 5.0 | Vdc | | Collector Current – Continuous – Peak | I _C | 8.0
16 | Adc | | Base Current | I _B | 2.0 | Adc | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | P _D | 50
0.40 | W
W/°C | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | P _D | 2.0
0.016 | W
W/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to
+150 | .°C | ### THERMAL CHARACTERISTICS | Characteristics | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 2.5 | °C/W | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 62.5 | °C/W | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw ### ON Semiconductor® http://onsemi.com ### 8 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 120-150 VOLTS, 50 WATTS TO-220AB CASE 221A-09 STYLE 1 ### **MARKING DIAGRAM** MJE150xx = Device Code x = 28, 29, 30, or 31 = Pb-Free Package G = Pb-Free Package A = Assembly Location Y = Year WW = Work Week #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. **Preferred** devices are recommended choices for future use and best overall value. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### WWW.100Y.COM.TW **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |--|-----------------------|----------------------|--|--| | DFF CHARACTERISTICS | T V | MM | WY.Co. | WT | | Collector–Emitter Sustaining Voltage (Note 1) (I _C = 10 mAdc, I _B = 0) MJE15028, MJE15029 MJE15030, MJE15031 | V _{CEO(sus)} | 120
150 | 1007·CC | Vdc | | Collector Cutoff Current (V _{CE} = 120 Vdc, I _B = 0) (V _{CE} = 150 Vdc, I _B = 0) MJE15028, MJE15029 MJE15030, MJE15031 | I _{CEO} | MMA | 0.1
0.1 | mAdc | | Collector Cutoff Current (V _{CB} = 120 Vdc, I _E = 0) (V _{CB} = 150 Vdc, I _E = 0) MJE15028, MJE15029 MJE15030, MJE15031 | I _{CBO} | _W | 10
10 | μAdc | | Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0) | I _{EBO} | - | 10 | μAdc | | ON CHARACTERISTICS (Note 1) | CORTA | | WWW | 100 Y.C. | | DC Current Gain | C h _{FE} | 40
40
40
20 | AM. | A. 100 | | DC Current Gain Linearity (V _{CE} From 2.0 V to 20 V, I _C From 0.1 A to 3 A) (NPN to PNP) | ON PEON | | y p
2
3 | MM:100 | | Collector–Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.1 Adc) | V _{CE(sat)} | M.TW | 0.5 | Vdc | | Base–Emitter On Voltage ($I_C = 1.0 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$) | V _{BE(on)} | OM.TY | 1.0 | Vdc | | DYNAMIC CHARACTERISTICS | VN.100 X. | COM.T | -1 | | | Current Gain – Bandwidth Product (Note 2)
(I _C = 500 mAdc, V _{CE} = 10 Vdc, f _{test} = 10 MHz) | ti 00 x | 30 | | MHz | | Pulse Test: Pulse Width $\leq 300~\mu s$, Duty Cycle $\leq 2.0\%$. $f_T = \left h_{fe}\right \bullet f_{test}.$ $T_A T_C$ $\underbrace{SL}_{NO} 3.0 60$ | | 电子(上海)电子(深圳) | 886-3-5
86-21-5
86-755-
. 100y. con | 4151736
83298787 | | 3.0 60 AMER DISSIPATION (WATTS) 2.0 40 To | | MMM.70 | | | | 0 0 0 0 40 60 80 100 | 120 140 1 | 60 | | | Figure 1. Power Derating T, TEMPERATURE (°C) Figure 2. Thermal Response Figure 3. Forward Bias Safe Operating Area Figure 4. Reverse-Bias Switching Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation then the curves indicate. The data of Figures 3 and 4 is based on $T_{J(pk)} = 150^{\circ} C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} < 150^{\circ} C$. $T_{J(pk)}$ may be calculated from the data in Figure 2. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Figure 5. Capacitances Figure 6. Small-Signal Current Gain Figure 7. Current Gain-Bandwidth Product ### NPN — MJE15028 MJE15030 ### PNP — MJE15029 MJE15031 Figure 8. DC Current Gain **PNP** Figure 9. "On" Voltage 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw http://onsemi.com Figure 10. Turn-On Times Figure 11. Turn-Off Times 特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw ### ORDERING INFORMATION | Device | Package | Shipping | |-----------|---------------------|-----------------| | MJE15028 | TO-220 | 50 Units / Rail | | MJE15028G | TO-220
(Pb-Free) | 50 Units / Rail | | MJE15029 | TO-220 | 50 Units / Rail | | MJE15029G | TO-220
(Pb-Free) | 50 Units / Rail | | MJE15030 | TO-220 | 50 Units / Rail | | MJE15030G | TO-220
(Pb-Free) | 50 Units / Rail | | MJE15031 | TO-220 | 50 Units / Rail | | MJE15031G | TO-220
(Pb-Free) | 50 Units / Rail | TO-220AB CASE 221A-09 **ISSUE AA** 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw - DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | - | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.405 | 9.66 | 10.28 | | С | 0.160 | 0.190 | 4.07 | 4.82 | | D | 0.025 | 0.035 | 0.64 | 0.88 | | F. | 0.142 | 0.147 | 3.61 | 3.73 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.155 | 2.80 | 3.93 | | 5 | 0.018 | 0.025 | 0.46 | 0.64 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | ٦ | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Ø | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.39 | | T | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | ٧ | 0.045 | | 1.15 | | | Z | , 44 | 0.080 | | 2.04 | STYLE 1: BASE PIN 1. - COLLECTOR - **EMITTER** - COLLECTOR ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.