特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

Power MOSFET

30 V, 10.3 A, Single N-Channel, SO-8

Features

- Low R_{DS(on)}
- Low Gate Charge
- Standard SO-8 Single Package
- Pb-Free Package is Available

Applications

- Notebooks, Graphics Cards
- Synchronous Rectification
- High Side Switch
- DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

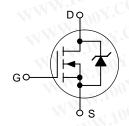
Parameter Drain-to-Source Voltage Gate-to-Source Voltage			Symbol	Value	Unit	
			V_{DSS}	30	V	
			V_{GS}	±20	V	
Continuous Drain	Steady	T _A = 25°C	I _D	8.6	Α	
Current (Note 1)	State	T _A = 85°C		6.2	1007	
MAN	t ≤ 10 s	T _A = 25°C	_	10.3	1	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	1.5	·W	
WWW	t ≤ 10 s	OM	1	2.2	W	
Continuous Drain	Steady T _A = 25°C	I _D	6.4	Α		
Current (Note 2)	State	T _A = 85°C		4.6	W	
Power Dissipation (Note 2)	MW.100	T _A = 25°C	P _D	0.83	W	
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	31	Α	
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 150	°C	
Source Current (Body Diode)			I _S	2.1	Α	
Single Pulse Drain–to–Source Avalanche Energy ($V_{DD}=25~V,~V_{GS}=10~V,~I_L~Peak=7.5~A,~L=10~mH,~R_G=25~\Omega)$			E _{AS}	150	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C	

THERMAL RESISTANCE MAXIMUM RATINGS

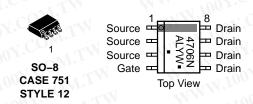
Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	83.5	°C/W
Junction-to-Ambient - t ≤ 10 s (Note 1)	$R_{\theta JA}$	58	W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	150	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are reliability may be affected.

- Surfacemounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).
- 2. Surfacemounted on FR4 board using the minimum recommended pad size.


exceeded, device functional operation is not implied, damage may occur and

ON Semiconductor®


http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX (Note 1)
30 V	9.0 mΩ @ 10 V	10.3 A
	11.4 mΩ @ 4.5 V	10.5 A

N-Channel

MARKING DIAGRAM/ PIN ASSIGNMENT

= Device Code = Assembly Location

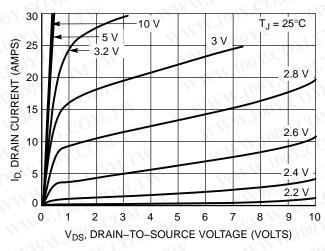
= WaferLot = Year = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]				
NTMS4706NR2	SO-8	2500/Tape & Reel				
NTMS4706NR2G	SO-8 (Pb-Free)	2500/Tape & Reel				

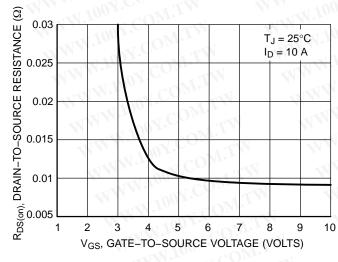
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Parameter	Symbol	Test Conditi	on	Min	Тур	Max	Unit
OFF CHARACTERISTICS	Symbol	rest conditi	OIII	<u>√ √ C</u>	тур	IVIAX	Onit
	1001		250 4	20	MAT Y	Li	Т ,,
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 2$	250 μΑ	30		N	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Y.COM.TW	MMA	v.100Y.	C(21)	W	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C	W.100	Mo	1.0	μΑ
YTW.CO.		of the	TJ = 125°C	100	1.0	50	
Gate-to-Source Leakage Current	I_{GSS}	$V_{DS} = 0 V, V_{GS} =$: ±20 V	1111	OX.CO.	±100	nA
ON CHARACTERISTICS (Note 3)	WW	·Inc COM·	V 4	MM	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC) Nr.	Į.
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2$	250 μΑ	1.0	100 × 1 C	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	N.100 Y.COM.TW			-4.8	$co_{W,I}$	mV/°C
Drain-to-Source On Resistance	$R_{DS(on)}$ $V_{GS} = 10 \text{ V}, I_D = 10.3 \text{ A}$		10.3 A	WW	9.0	12	mΩ
		V _{GS} = 4.5 V, I _D = 10 A			11.4	15	Te r
Forward Transconductance	9FS	$V_{DS} = 15 \text{ V}, I_{D} = 10 \text{ A}$			19	7.00	S
CHARGES, CAPACITANCES AND GA	ATE RESISTA	NCE	MITW	N.	10.10	Mr.	M.T.
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 24 V		V	950	20 A.c.	pF
Output Capacitance	C _{oss}			4	400	OON.C	
Reverse Transfer Capacitance	C _{rss}				100	· Van	
Total Gate Charge	Q _{G(TOT)}	WWW.toox.COM.T		N	10	15	nC
Threshold Gate Charge	Q _{G(TH)}			-31	1.25	M.To.	
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15$	$V, I_D = 10 A$		2.4	W.100	7.00
Gate-to-Drain Charge	Q_{GD}	MAMY TOOK CON		7.4	4.5		A.V.
Gate Resistance	R_{G}			LIW	1.82	- XX 1	Ω
SWITCHING CHARACTERISTICS (No	ote 4)	M MM	TOUX CO.	WILL	1	MM	1007
Turn-On Delay Time	t _{d(on)}	WWW W	· CO	W	7.5	12	ns
Rise Time	(t_r)	Vcs = 10 V Vpp = 15 V	V. In = 1.0 A	OM:	4.0	8.0	
Turn-Off Delay Time	t _{d(off)}	V_{GS} = 10 V, V_{DD} = 15 V, I_{D} = 1.0 A, R_{G} = 3.0 Ω		OM	24	40	W.10
Fall Time	t _f			COM	14	25	
DRAIN-SOURCE DIODE CHARACTE	RISTICS	W.TW W.	1001	Mon	11.11	- AN	WIT
Forward Diode Voltage	V _{SD}	T _J = 25°C		Y.C.	0.74	1.0	V
WWW	. TOOY.C	$V_{GS} = 0 \text{ V}, I_{S} = 2.1 \text{ A}$	T _J = 125°C	ON COM	0.57	4	4 W
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } d_{ S}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = 2.1 \text{ A}$		on V.CO	34		ns
Charge Time	t _a			C'	16	1	1
Discharge Time	t _b			100 1.	18		┪
Reverse Recovery Charge	Q _{RR}			100 ³	29		nC

^{3.} Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%.

^{4.} Switching characteristics are independent of operating junction temperatures. WWW.100Y.COM


TYPICAL PERFORMANCE CURVES

35 $V_{DS} \ge 10 \text{ V}$ 30 DRAIN CURRENT (AMPS) 25 20 15 $T_J = 125^{\circ}C$ 10 $T_J = 25^{\circ}C$ صُ 5 -55°C 1.5 2 2.5 3 3.5 VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

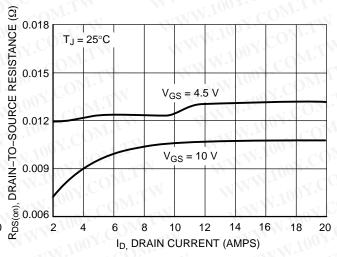
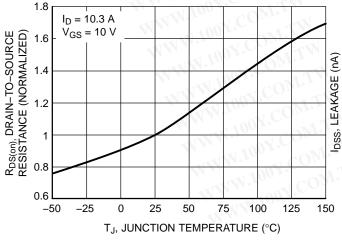



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On–Resistance vs. Drain Current and Gate Voltage

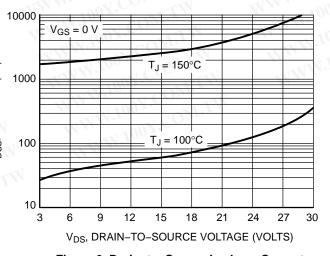
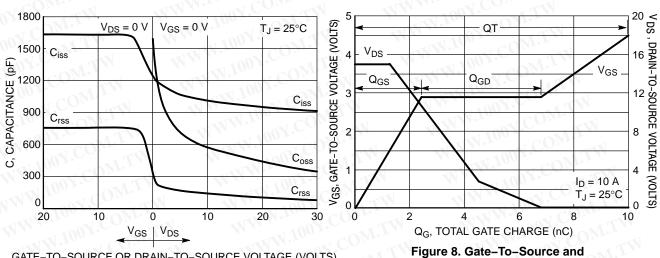



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

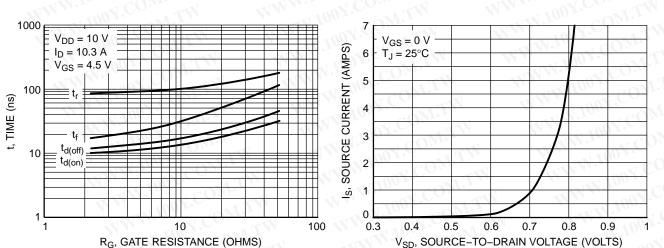
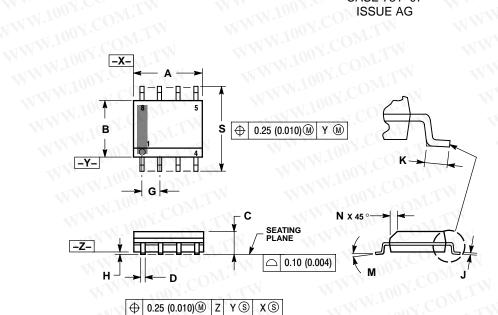


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736

Figure 10. Diode Forward Voltage vs. Current

Drain-To-Source Voltage vs. Total Charge


胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

W.100Y.COM. **PACKAGE DIMENSIONS**

SOIC-8 CASE 751-07 **ISSUE AG**

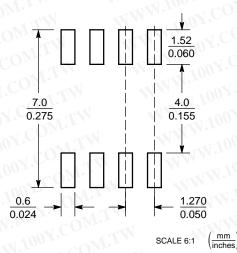
特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

NOTES:

- DIMENSIONING AND TOLERANCING PER
- DIMENSIONING AND TOLERANCING PER ANSI Y14-5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.80 5.00		0.189	0.197		
В	3.80 4.00		0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27 BSC		0.050 BSC			
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
М	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	5.80 6.20		0.244		

STYLE 12:

SOURCE PIN 1.

- SOURCE 2.
- SOURCE
- GATE DRAIN
- 5.
- DRAIN
- DRAIN DRAIN 8.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

WW.100Y.COM.TW WWW.100Y.COM.TW **NTMS4706N**

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

100Y.COM.TW

ON Semiconductor and under registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

WWW.100Y.COM.TW

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center -9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

WWW.100Y.COM.TW

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.