NTS4001N

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Small Signal MOSFET

30 V, 270 mA, Single N-Channel, SC-70

Features

- Low Gate Charge for Fast Switching
- Small Footprint 30% Smaller than TSOP-6
- ESD Protected Gate
- Pb-Free Package is Available

Applications

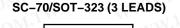
- Low Side Load Switch
- Li-Ion Battery Supplied Devices Cell Phones, PDAs, DSC
- Buck Converters
- Level Shifts

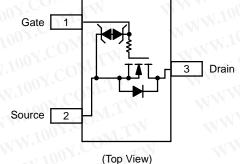
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

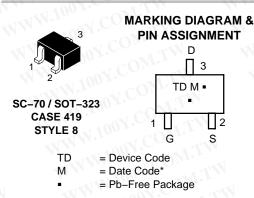
Parameter Drain-to-Source Voltage Gate-to-Source Voltage			Symbol	Value	Units
			V _{DSS} 30		V
			V _{GS}	±20	V
Continuous Drain	Steady	T _A = 25 °C	Ι _D	270	mA
Current (Note 1)	State	T _A = 85 °C	NY.COL	200	
Power Dissipation (Note 1)	Steady State	T _A = 25 °C	PD	330	mW
Pulsed Drain Current	I _{DM}	800	mA		
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode)			Is	270	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			74T-100	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface mounted on FR4 board using 1 in sq. pad size


(Cu area = 1.127 in sq. [1 oz] including traces).


ON


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max	
30 V ·	1.0 Ω @ 4.0 V	270 mA	
	1.5 Ω @ 2.5 V	270 IIIA	

 (Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTS4001NT1	SC-70	3000/Tape & Reel
NTS4001NT1G	SC-70 (Pb-Free)	3000/Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

WWW.100Y.C NTS4001N

NWW.LLOOY.COMATW	WWWW. 100Y.CO.M.TW
	NTS4001N
ELECTRICAL CHARACTERIST	ICS (T _J = 25°C unless otherwise stated)

Parameter	Symbol	Test Cor	ndition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	Wa	W.IW.	Wn. MO	N	WW.	N.COM	WT
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 100 μA		30	WW.IV	N.COM	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	WW.100 COM.TY		1	60	00Y.CC	mV/ °C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V	′ _{DS} = 30 V	N	WWW.	1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±10 V		Wa	WWW	±1.0	μΑ
ON CHARACTERISTICS (Note 2)		WW.10	COM.	TTN I	WW	N.Ion	COM
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 100 \ \mu A$		0.8	1.2	1.5	CV
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J	WWW.	100 X.CO	W.T.W	-3.4	NN.100	mV/ °C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.0 V,	l _D = 10 mA	WT	1.0	1.5	Ω
		V _{GS} = 2.5 V,	I _D = 10 mA	ONLY	1.5	2.0	O.V.C
Forward Transconductance	9FS	$V_{DS} = 3.0 \text{ V}, \text{ I}_{D} = 10 \text{ mA}$		COM.	80	WW	mS
CHARGES AND CAPACITANCES	M.TW	11	W.1001.	COM.T	N.	V	V.100 r.
Input Capacitance	C _{ISS}	7	V 100	Mon	20	33	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 V, f = V_{DS} = 3$		Y.Com	19	32	
Reverse Transfer Capacitance	C _{RSS}		WWW.	OY.COM	7.25	12	
Total Gate Charge	Q _{G(TOT)}	Wn	WWW.1	N.CO	0.9	1.3	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 5.0 V, V	/ _{DS} = 24 V,	N.C	0.2		NWW.
Gate-to-Source Charge	Q _{GS}	$I_D = 0$.1 Â	.100 -	0.3		VWW.
Gate-to-Drain Charge	Q _{GD}	MIT		N.1001.	0.2	< 1	
SWITCHING CHARACTERISTICS (No	te 3)	WT.Mo.	N.	W.100Y	T.Moo		
Turn-On Delay Time	td _(ON)	WIM	WV	T 1001	17	1	ns
Rise Time	tr	V _{GS} = 4.5 V, V		100	23	IN	WV
Turn-Off Delay Time	td _(OFF)	$I_{\rm D} = 10$ mÅ, $R_{\rm G} = 50 \ \Omega$		WW.	94	WT	4
Fall Time	tf .			NWW.L	82	Wn	
DRAIN-SOURCE DIODE CHARACTE	RISTICS	COMU		WW	LUN F CO	M.	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 10 mA	$T_J = 25^{\circ}C$	Was	0.65	0.7	V
	WW	$i_{\rm S} = 10$ mA	$T_J = 125^{\circ}C$	W	0.43	OMITY	1
			4 0 0 4/ -		F 0		N 11

 $V_{GS} = 0 V, dI_S/dt = 8.0 A/\mu s,$

 $I_{\rm S} = 10 \, \rm mA$

WWW.100Y.COM.TW

2. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

Reverse Recovery Time

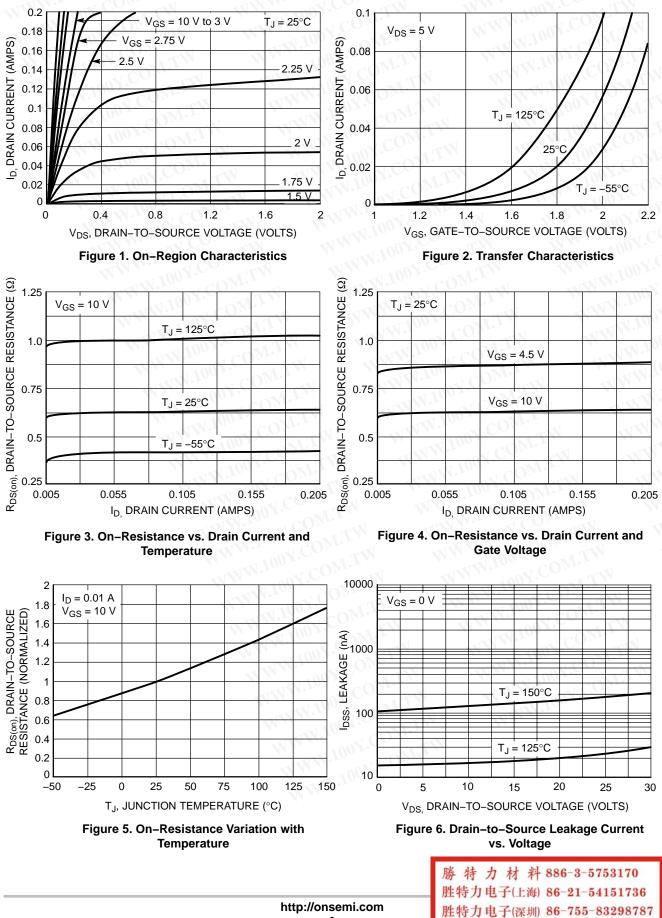
3. Switching characteristics are independent of operating junction temperatures. MWW.100Y.COM

t_{RR}

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

5.0

WWW.I

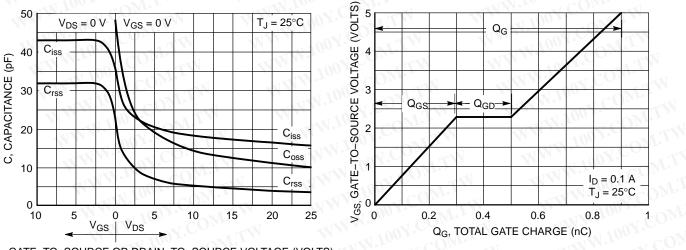

WWW.100Y.COM

WWW.100Y.COM.TW

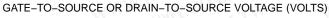
100Y.COM.TW

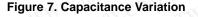
ns

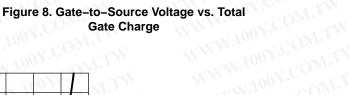
NTS4001N

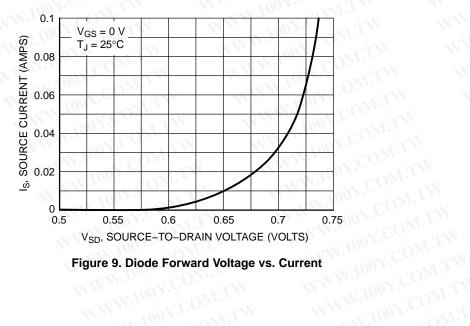


TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

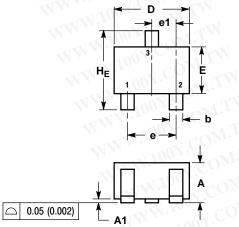

http://onsemi.com


Http://www. 100y. com. tw


NTS4001N


WWW.100Y.COM.TW WWW.100Y.COM.TW TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

WWW.100Y.COM.TW



WWW.100Y.COM. 力材料 886-3-5753170 特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

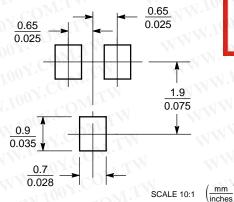
PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 **ISSUE M**

A2 С .

NOTES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982 CONTROLLING DIMENSION: INCH. 2.

10	N	IILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2	0.7 REF				0.028 REF		
b	0.30	0.35	0.40	0.012	0.014	0.016	
С	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.10	2.20	0.071	0.083	0.087	
E	1.15	1.24	1.35	0.045	0.049	0.053	
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1	0.65 BSC			0.026 BSC			
ALT.	0.425 REF			0.017 REF			
HE	2.00	2.10	2.40	0.079	0.083	0.095	


STYLE 8 PIN 1. GATE

SOURCE
DRAIN

mm

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice ON Semiconductor and to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications Intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative