特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Preferred Device

NPN Silicon Planar Epitaxial Transistor

This NPN Silicon Epitaxial transistor is designed for use in linear and switching applications. The device is housed in the SOT-223 package which is designed for medium power surface mount applications.

Features

- PNP Complement is PZT2907AT1
- The SOT-223 package can be soldered using wave or reflow
- SOT-223 package ensures level mounting, resulting in improved thermal conduction, and allows visual inspection of soldered joints
- The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die
- Available in 12 mm tape and reel
- Pb-Free Packages are Available

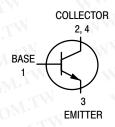
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage (Open Collector)	V _{EBO}	6.0	Vdc
Collector Current	l _C	600	mAdc
Total Power Dissipation up to T _A = 25°C (Note 1)	P _D	1.5	W
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Junction Temperature	Ту	150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Device mounted on an epoxy printed circuit board 1.575 inches x 1.575 inches x 0.059 inches; mounting pad for the collector lead min. 0.93 inches².

THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	83.3	°C/W
Lead Temperature for Soldering, 0.0625" from case Time in Solder Bath	TL	260 10	°C Sec

ON Semiconductor

http://onsemi.com

SOT-223 PACKAGE NPN SILICON TRANSISTOR SURFACE MOUNT

SOT-223 (TO-261) CASE 318E-04 STYLE 1

MARKING DIAGRAM

= Assembly Location Α WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
PZT2222AT1	SOT-223	3000 Tape & Reel
PZT2222AT1G	SOT-223 (Pb-Free)	3000 Tape & Reel
PZT2222AT3	SOT-223	10,000 Tape & Reel
PZT2222AT3G	SOT-223 (Pb-Free)	10,000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

WWW.100X.C PZT2222AT1

WWW.100Y.COM.TW V.100Y.COM.TW ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	PZT2222AT1				
I FCTRICAL C	HARACTERISTICS (T _A = 25°C unless otherwise noted)				
M. Jon-	Characteristic	Symbol	Min	Max	Unit
FF CHARACTE	RISTICS	W WY	111.	V.CON	TW
Collector-Emitter	Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V _{(BR)CEO}	40	V.GON	Vdc
Collector-Base Br	reakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _{(BR)CBO}	75	×1-CO	Vdc
Emitter-Base Bre	akdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	6.0	- CC	Vdc
Base-Emitter Cut	off Current (V _{CE} = 60 Vdc, V _{BE} = - 3.0 Vdc)	I _{BEX}		20	nAdc
Collector-Emitter	Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = - 3.0 Vdc)	I _{CEX}	MA	10	nAdc
Emitter-Base Cut	off Current (V _{EB} = 3.0 Vdc, I _C = 0)	I _{EBO}	MAN	100	nAdc
collector-Base Colle		I _{CBO}	411	10 10	nAdc μAdc
N CHARACTER		COM	1	WW.	NY.CO
OC Current Gain $(I_C = 0.1 \text{ mAdc}, I_C = 1.0 \text{ mAdc}, I_C = 10 \text{ mAdc}, I_C = 10 \text{ mAdc}, I_C = 150 \text{ mAdc}, I_C = 150 \text{ mAdc}, I_C = 500 \text{ mAdc}, I_C = 500 \text{ mAdc}$	h _{FE}	35 50 70 35 100 50 40	- - - 300 - -	M.100, 100, 100, 100, 100, 100, 100, 100,	
Collector-Emitter $(I_C = 150 \text{ mAdo})$ $(I_C = 500 \text{ mAdo})$	V _{CE(sat)}	LTW	0.3 1.0	Vdc	
Base-Emitter Saturation $(I_C = 150 \text{ mAdd})$ $(I_C = 500 \text{ mAdd})$	V _{BE(sat)}	0.6	1.2 2.0	Vdc	
nput Impedance (V _{CE} = 10 Vdc, (V _{CE} = 10 Vdc,	h _{ie}	2.0 0.25	8.0 1.25	kΩ	
/oltage Feedback (V _{CE} = 10 Vdc, (V _{CE} = 10 Vdc,	h _{re}	A CON	8.0x10 ⁻⁴ 4.0x10 ⁻⁴	- 17	
Small-Signal Curr (V _{CE} = 10 Vdc, (V _{CE} = 10 Vdc,	h _{fe}	50 75	300 375	_	
Output Admittanc $(V_{CE} = 10 \text{ Vdc},$ $(V_{CE} = 10 \text{ Vdc},$	h _{oe}	5.0 25	35 200	μmhos	
Noise Figure (V _{Cl}	$_{\rm E}$ = 10 Vdc, I _C = 100 μ Adc, f = 1.0 kHz)	F	W.100	4.0	dB
NAMIC CHARA	ACTERISTICS	VI VI	W.100	COM	
ırrent-Gain – Ba (I _C = 20 mAdc,	f _T	300	ONY.COP	MHz	
utput Capacitan	C _c	MAN.	8.0	pF	
put Capacitance	e (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _e	_	25	pF
ITCHING TIME	ES (T _A = 25°C)	William			
elay Time			_	10	ns
Rise Time	- I _{B(on)} = 15 mAdc, V _{EB(off)} = 0.5 Vdc) Figure 1	t _r	_	25]
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _s	_	225	ns
Fall Time $I_{B(on)} = I_{B(off)} = 15 \text{ mAdc}$ Figure 2		t _f	 	60	4

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

V_{i} 0 t_{r} t_{p} t_{p}

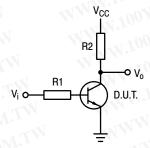
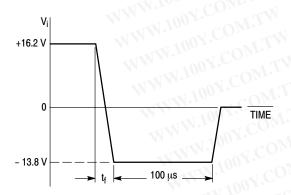



Figure 1. Input Waveform and Test Circuit for Determining Delay Time and Rise Time

 $V_i = -0.5$ V to +9.9 V, $V_{CC} = +30$ V, R1 = 619 Ω , R2 = 200 Ω .

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

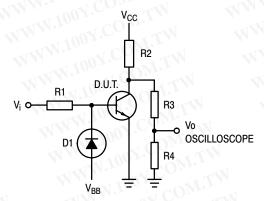
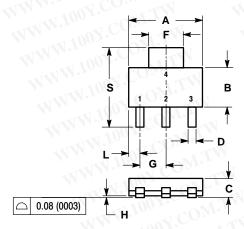


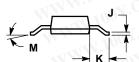
Figure 2. Input Waveform and Test Circuit for Determining Storage Time and Fall Time

PZT2222AT1

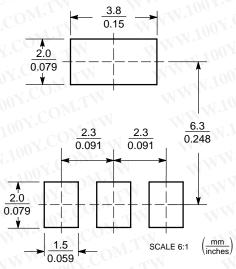
PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE K


特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.


	INC	HES	MILLIM	ETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.249	0.263	6.30	6.70		
В	0.130	0.145	3.30	3.70		
С	0.060	0.068	1.50	1.75		
D	0.024	0.035	0.60	0.89		
⊲F	0.115	0.126	2.90	3.20		
G	0.087	0.094	2.20	2.40		
Н	0.0008	0.0040	0.020	0.100		
3	0.009	0.014	0.24	0.35		
K	0.060	0.078	1.50	2.00		
L	0.033	0.041	0.85	1.05		
M	0°	10 °	0 °	10 °		
S	0.264	0.287	6.70	7.30		

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

SOLDERING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.