PA95

## FEATURES

－HIGH VOLTAGE－900V（ $\pm 450 \mathrm{~V}$ ）
－LOW QUIESCENT CURRENT－1．6mA
－HIGH OUTPUT CURRENT－ 100 mA
－PROGRAMMABLE CURRENT LIMIT

## APPLICATIONS

－HIGH VOLTAGE INSTRUMENTATION
－PROGRAMMABLE POWER SUPPLIES UP TO $\pm 430 V$
－MASS SPECTROMETERS
－SEMICONDUCTOR MEASUREMENT EQUIPMENT

## DESCRIPTION

The PA95 is a high voltage，MOSFET operational amplifier designed as a low cost solution for driving continuous output currents up to 100 mA and pulse currents up to 200 mA into capacitive loads．The safe operating area（SOA）has no second breakdown limitations and can be observed for all load types by choosing an appropriate current limiting resistor．The MOSFET output stage is biased $A B$ for linear operation． External compensation provides flexibility in choosing band－ width and slew rate for the application．APEX＇s Power SIP04 package uses a minimum of board space allowing for high density circuit boards．The Power SIP package is electrically isolated．

## EQUIVALENT SCHEMATIC



勝 特 力 材 料 886－3－5753170胜特力 电子（上海）86－21－54151736胜特力 电子（深圳）86－755－83298787


PATENT PENDING

## TYPICAL APPLICATION

Piezo positioning may be applied to the focusing of seg－ mented mirror systems．The composite mirror may be com－ posed of hundreds of elements，each requiring focusing under computer control．In such complex systems the PA95 reduces the costs of power supplies and cooling with its advantages of low cost and low quiescent power consumption while increas－ ing circuit density with the SIP package．


EXTERNAL CONNECTIONS
PACKAGE SIP04

＊ $.01 \mu \mathrm{~F}$ or greater ceramic power supply bypassing required．

PHASE COMPENSATION

| GAIN $\quad C_{C}$ |  |
| :---: | :---: |
| $\geq 100 \quad$ | 2.2 pF |
| R $_{\text {LIM }}=$ | $\frac{.7}{I_{\text {LIM }}}$ |

## ABSOLUTE MAXIMUM RATINGS

| SUPPLY VOLTAGE，$+\mathrm{V}_{s}$ to $-\mathrm{V}_{\mathrm{S}}$ | 900 V |
| :--- | :--- |
| OUTPUT CURRENNT，source，sink | 200 mA, within SOA |
| POWER DISSIPATION，continuous＠ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 30 W |
| INPUT VOLTAGE，differential | $\pm 20 \mathrm{~V}$ |
| INPUT VOLTAGE，common mode | $\pm V_{S}$ |
| TEMPERATURE，pin solder -10 s max． | $260^{\circ} \mathrm{C}$ |
| TEMPERATURE，junction ${ }^{\circ}$ | $150^{\circ} \mathrm{C}$ |
| TEMPERATURE | -40 to $+85^{\circ} \mathrm{C}$ |
| OPERATING TEMPERAT，storage | -25 to $+85^{\circ} \mathrm{C}$ |

## SPECIFICATIONS



NOTES：1．Unless otherwise noted：$T_{C}=25^{\circ} \mathrm{C}, \mathrm{DC}$ input specifications are $\pm$ value given．Power supply voltage is typical rating． $\mathrm{C}_{\mathrm{c}}=4.7 \mathrm{pF}$ ．
2．Long term operation at the maximum junction temperature will result in reduced product life．Derate internal power dissipation to achieve high MTTF．
3．Although supply voltages can range up to $\pm 450 \mathrm{~V}$ the input pins cannot swing over this range．The input pins must be at least 30 V from either supply rail but not more than 500 V from either supply rail．See text for a more complete description of the common mode voltage range．
4．Rating applies if the output current alternates between both output transistors at a rate faster than 60 Hz ．
5．Derate max supply rating $.625 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ below $25^{\circ} \mathrm{C}$ case．No derating needed above $25^{\circ} \mathrm{C}$ case．

## CAUTION The PA95 is constructed from MOSFET transistors．ESD handling procedures must be observed．

 The exposed substrate contains beryllia（BeO）．Do not crush，machine，or subject to temperatures in excess of $850^{\circ} \mathrm{C}$ to avoid generating toxic fumes．






QUIESCENT CURRENT


POWER RESPONSE



OPERATING CONSIDERATIONS

## GENERAL

Please read Application Note 1 ＂General Operating Consid－ erations＂which covers stability，supplies，heat sinking，mount－ ing，current limit，SOA interpretation，and specification inter－ pretation．Visit www．apexmicrotech．com for design tools that help automate tasks such as calculations for stability，internal power dissipation，current limit；heat sink selection；Apex＇s complete Application Notes library；Technical Seminar Work－ book；and Evaluation Kits．

## CURRENT LIMIT

For proper operation，the current limit resistor（ $\mathrm{R}_{\mathrm{LIM}}$ ）must be connected as shown in the external connection diagram．The minimum value is 3.5 ohm，however for optimum reliability the resistor value should be set as high as possible．The value is calculated as follows；with the maximum practical value of 150 ohms．

$$
R_{\mathrm{LIM}}=\frac{.7}{\mathrm{I}_{\mathrm{LIM}}}
$$

## COMMON MODE INPUT RANGE

Operational amplifiers are usually designed to have a com－ mon mode input voltage range that approximates the power supply voltage range．However，to keep the cost as low as possible and still meet the requirements of most applications the common mode input voltage range of the PA95 is re－ stricted．The input pins must always be a least 30 V from either supply voltage but never more than 500 V ．This means that the PA95 cannot be used in applications where the supply volt－ ages are extremely unbalanced．For example，supply voltages of +800 V and -100 V would not be allowed in an application where the non－inverting pin is grounded because in normal operation both input pins would be at 0 V and the difference voltage between the positive supply and the input pins would be 800 V ．In this kind of application，however，supply voltages +500 V and -100 V does meet the input common mode voltage range requirements since the maximum difference voltage between the inputs pins and the supply voltage is 500 V （the maximum allowed）．The output has no such restrictions on its voltage swing．The output can swing within 24 V of either supply voltage regardless of value so long as the total supply voltage does not exceed 900V．

## INPUT PROTECTION

Although the PA95 can withstand differential input voltages up to $\pm 20 \mathrm{~V}$ ，additional external protection is recommended．In most applications 1N4148 or 1N914 signal diodes are suffi－ cient（D1，D2 in Figure 1a）．In more demanding applications where low leakage or low capacitance are of concern 2N4416 or 2N5457－2N5459 JFETs connected as diodes will be re－ quired（Q1，Q2 in Figure 1b）．In either case the input differential voltage will be clamped to $\pm .7 \mathrm{~V}$ ．This is sufficient overdrive to produce maximum power bandwidth．Note that this protection does not automatically protect the amplifier from excessive common mode input voltages．

## POWER SUPPLY PROTECTION

Unidirectional zener diode transient suppressors are recom－
mended as protection on the supply pins．The zeners clamp transients to voltages within the power supply rating and also clamp power supply reversals to ground．Whether the zeners are used or not，the system power supply should be evaluated for transient performance including power－on overshoot and power－off polarity reversal as well as line regulation．

Conditions which can cause open circuits or polarity rever－ sals on either power supply rail should be avoided or protected against．Reversals or opens on the negative supply rail is known to induce input stage failure．Unidirectional transzorbs prevent this，and it is desirable that they be both electrically and physically as close to the amplifier as possible．

## STABILITY

The PA95 is stable at gains of 10 or more with a NPO（COG） compensation capacitor of 4.7 pF ．The compensation capaci－ tor，Cc，in the external connections diagram must be rated at 1000 V working voltage and mounted closely to pins 4 and 6 to prevent spurious oscillation．A compensation capacitor less than 4.7 pF is not recommended．

## EXTERNAL COMPONENTS

The compensation capacitor Cc must be rated for the total supply voltage．An NPO（COG）capacitor rated a 1 kV is recom－ mended．

Of equal importance are the voltage rating and voltage coefficient of the gain setting feedback resistor．Typical volt－ age ratings of low wattage resistors are 150 to 250 V ．Up to 500 V can appear across the feedback resistor．High voltage rated resistors can be obtained．However a 1 megohm feed－ back resistor composed of five 200k resistors in series will produce the proper voltage rating．

## CAUTIONS

The operating voltages of the PA95 are potentially lethal． During circuit design develop a functioning circuit at the lowest possible voltages．Clip test leads should be used for＂hands off＂measurements while troubleshooting．


