INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

74HC/HCT125Quad buffer/line driver; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

Quad buffer/line driver; 3-state

74HC/HCT125

FEATURES

· Output capability: bus driver

I_{CC} category: MSI

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

GENERAL DESCRIPTION

The 74HC/HCT125 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT125 are four non-inverting buffer/line drivers with 3-state outputs. The 3-state outputs (nY) are controlled by the output enable input ($n\overline{OE}$). A HIGH at $n\overline{OE}$ causes the outputs to assume a HIGH impedance OFF-state.

The "125" is identical to the "126" but has active LOW enable inputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	MANUON COMITY	CONDITIONS	TY	Miron	
	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay nA to nY	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	9	12	ns
Cı	input capacitance	W 1007.	3.5	3.5	pF
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	22	24	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

C₁ = output load capacitance in pF

V_{CC} = supply voltage in V

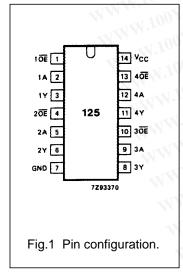
 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

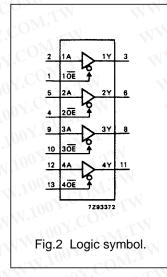
2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

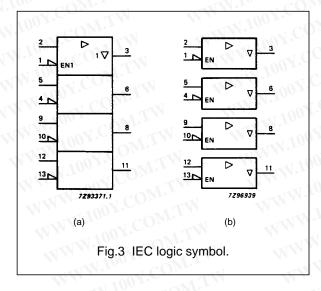
ORDERING INFORMATION

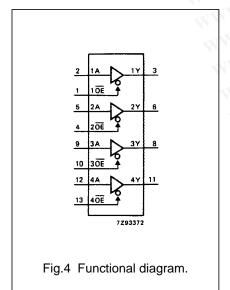
See "74HC/HCT/HCU/HCMOS Logic Package Information".

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787


Http://www.100y.com.tw


74HC/HCT125


Quad buffer/line driver; 3-state


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION						
1, 4, 10, 13	1OE to 4OE	outputs enable inputs (active LOW)						
2, 5, 9, 12	1A to 4A	data inputs						
3, 6, 8, 11	1Y to 4Y	data outputs						
7	GND	ground (0 V)						
14	V _{CC}	positive supply voltage						

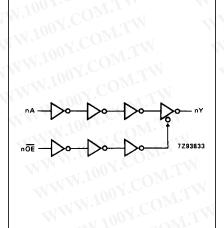


Fig.5 Logic diagram (one buffer).

FUNCTION TABLE

INP	OUTPUT				
nOE	nA	nY			
MAL OU	V.CL.	rW L			
W.Inc	HOM	Н			
H	X	Z			

Note

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

Philips Semiconductors **Product specification**

Quad buffer/line driver; 3-state

74HC/HCT125

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SYMBOL	W. 100x. COW.	T _{amb} (°C)								TEST CONDITIONS		
	PARAMETER	TW	-		74H	¢100 л.	OON.IV				WAVEFORMS	
	TAKAWETEK CO	+25			−40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING	
	MMM. 100X'CO.	min.	typ.	max.	min.	max.	min.	max.		(*)	M. 100X.	
t _{PHL} / t _{PLH}	propagation delay	ant.	30	100	MA	125	10 X.	150	ns	2.0	Fig.6	
	nA to nY	OM	11	20	W	25	001.	30	TW	4.5	WW 100	
		$\mathbb{C}_{\mathbf{O}_{D_{1}}}$	9	17	1	21	1007	26	WT	6.0		
: _{PZH} / t _{PZL}	3-state output enable time nOE to nY	$CO_{\tilde{I}}$	41	125		155	To	190	ns	2.0	Fig.7	
		- ((15	25		31	N.100	38	Wir	4.5	WWW.	
		1.0	12	21		26	W.10	32	$o_{M,T}$	6.0	WWW	
PHZ/ t _{PLZ}	3-state output disable time nOE to nY	OXIC	41	125		155	xxi 1	190	ns	2.0	Fig.7	
		ooy.	15	25		31 🕥	// // .	38		4.5	MM	
		. 001	12	21	N	26	WW	32	CON.	6.0	WW	
t _{THL} / t _{TLH}	output transition time	Inc	14	60	N.	75	NWV	90	ns	2.0	Fig.6	
		N.100	5	12	- 1	15	N V	18	*1 CC	4.5	XX XX	
		x 10	4	10	IM	13	M.	15	01.	6.0	I. A.	

Philips Semiconductors Product specification

Quad buffer/line driver; 3-state

74HC/HCT125

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

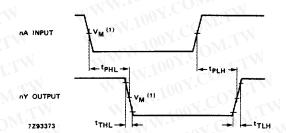
INPUT	UNIT LOAD COEFFICIENT
nA, n OE	1.00

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

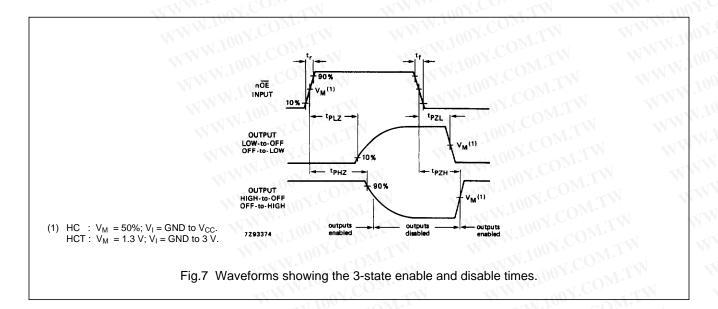
SYMBOL	PARAMETER	T _{amb} (°C)							M.TV	TEST CONDITIONS	
										N	WW.EEGDUG
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.	CO_{M}	TW	WWW
t _{PHL} / t _{PLH}	propagation delay nA to nY	1007	15	25	N	31	WW	38	ns	4.5	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time nOE to nY	N.100	15	28	N	35	NN	42	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time nOE to nY	W.10	15	25	WII	31	W	38	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time	WW	5	12	M.T	15	N	18	ns	4.5	Fig.6
	47	NWV	1.100	N.C	OM:	TW		WW	1.100	Y.CC	MITW

Philips Semiconductors Product specification


Quad buffer/line driver; 3-state

74HC/HCT125

AC WAVEFORMS


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT : V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the input (nA) to output (nY) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".