

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

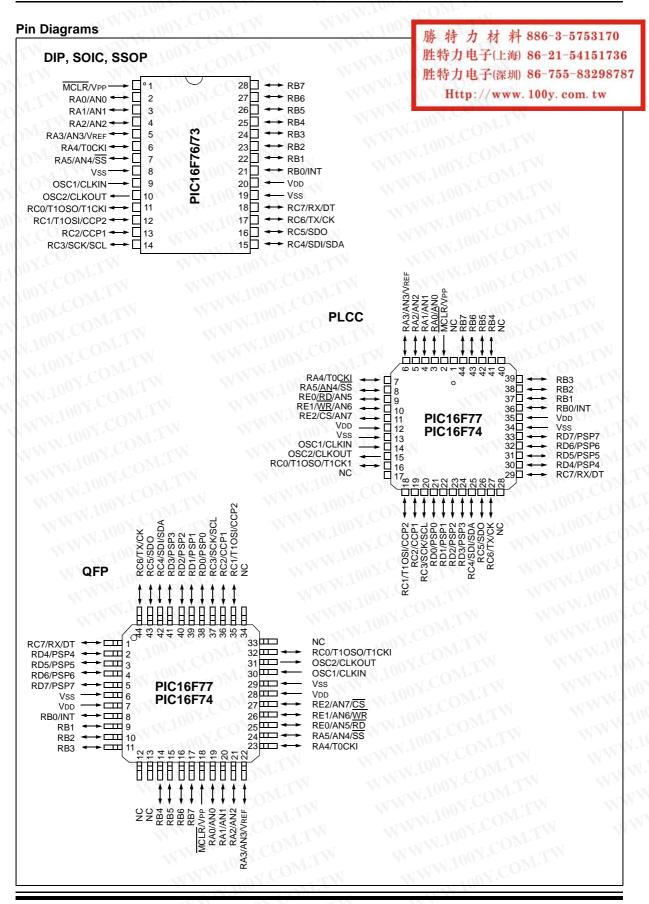
Devices Included in this Data Sheet:

- PIC16F73 PIC16F76
- PIC16F74

Microcontroller Core Features:

- High-performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle

PIC16F77


- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- Up to 8K x 14 words of FLASH Program Memory, Up to 368 x 8 bytes of Data Memory (RAM)
- Pinout compatible to the PIC16C73B/74B/76/77
- Pinout compatible to the PIC16F873/874/876/877
- Interrupt capability (up to 12 sources)
- Eight level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- · Low power, high speed CMOS FLASH technology
- · Fully static design
- In-Circuit Serial Programming[™] (ICSP) via two pins
- Processor read access to program memory
- Wide operating voltage range: 2.0V to 5.5V
- High Sink/Source Current: 25 mA
- Industrial temperature range
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz
 - 20 μA typical @ 3V, 32 kHz
 - < 1 μ A typical standby current

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw **Pin Diagram**

MCLR/VPP		\mathbf{O}	40	► RB7
RA0/AN0	2		39	- → RB6
RA1/AN1 🔶	3		38	RB5
RA2/AN2 🛶 🕨	4		37	→ RB4
RA3/AN3/Vref	5		36	RB3
RA4/T0CKI	6		35	_ ← → RB2
RA5/AN4/SS 🔶 🕨	7	. G O	34	
RE0/RD/AN5	8	PIC16F77/74	33	RB0/INT
RE1/WR/AN6 +	9	5	32	VDD
RE2/CS/AN7 -	10		31	🗆 🔶 Vss
VDD	L 11	9	30	RD7/PSP7
Vss	12	<u>5</u>	29	RD6/PSP6
OSC1/CLKIN	· 🗖 13	Ē	28	RD5/PSP5
OSC2/CLKOUT	14	1001	27	RD4/PSP4
RC0/T1OSO/T1CKI 🛶 🕨	15		26	RC7/RX/DT
RC1/T1OSI/CCP2	L 16		25	RC6/TX/CK
RC2/CCP1 -	L 17		24	RC5/SDO
RC3/SCK/SCL	18		23	RC4/SDI/SD
RD0/PSP0	L 19		22	RD3/PSP3
RD1/PSP1 -	 20		21	RD2/PSP2

Peripheral Features:

- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Two Capture, Compare, PWM modules - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 220 ns
- PWM max. resolution is 10-bit
- 8-bit multi-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI[™] (Master mode) and I²C[™] (Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel <u>Slave Port</u> (P<u>SP</u>) 8-bits wide, with external RD, WR and CS controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

DS30325A-page 2

Advance Information

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

Key Features PICmicro™ Mid-Range Reference Manual (DS33023)	PIC16F73	PIC16F74	PIC16F76	PIC16F77
Operating Frequency	DC - 20 MHz			
RESETS (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words, 100 E/W cycles)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
Interrupts	11	12	11	12
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	SSP, USART	SSP, USART	SSP, USART	SSP, USART
Parallel Communications		PSP	1777 –	PSP
8-bit Analog-to-Digital Module	5 Input Channels	8 Input Channels	5 Input Channels	8 Input Channels
Instruction Set	35 Instructions	35 Instructions	35 Instructions	35 Instructions

1.0 DEVICE OVERVIEW

This document contains device specific information. Additional information may be found in the PICmicro[™] Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules. There are four devices (PIC16F73, PIC16F74, PIC16F76 and PIC16F77) covered by this data sheet. The PIC16F76/73 devices are available in 28-pin packages and the PIC16F77/74 devices are available in 40-pin packages. The 28-pin devices do not have a Parallel Slave Port implemented.

The following two figures are device block diagrams sorted by pin number; 28-pin for Figure 1-1 and 40-pin for Figure 1-2. The 28-pin and 40-pin pinouts are listed in Table 1-1 and Table 1-2, respectively.

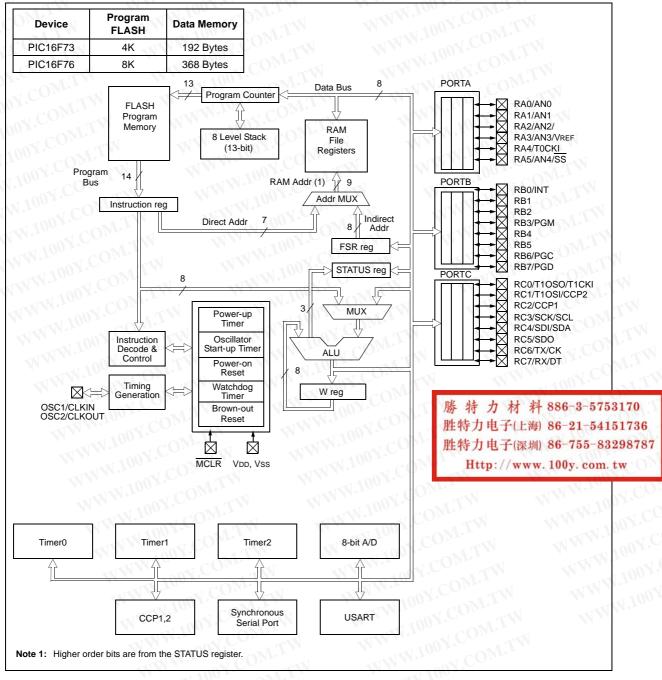
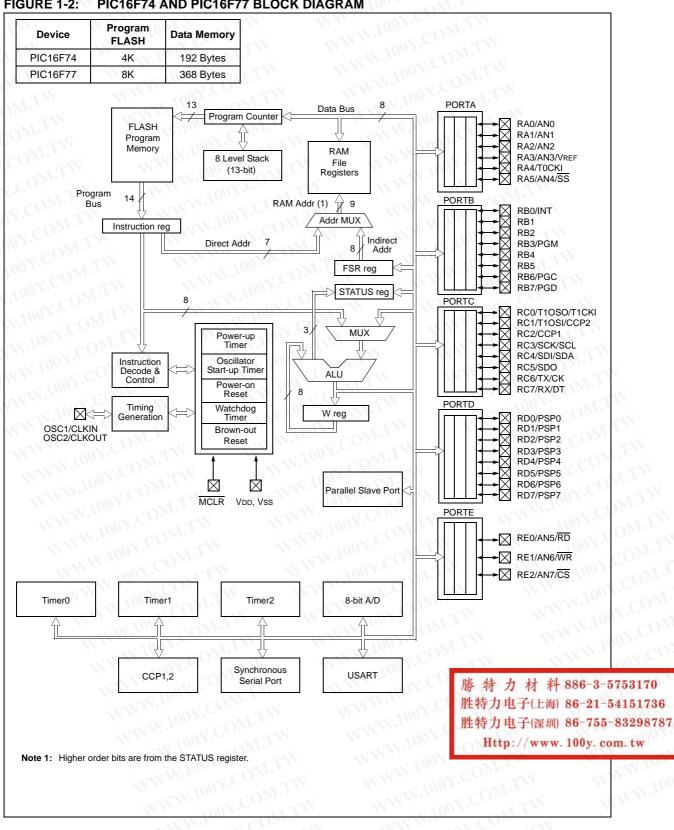



FIGURE 1-1: PIC16F73 AND PIC16F76 BLOCK DIAGRAM

FIGURE 1-2: PIC16F74 AND PIC16F77 BLOCK DIAGRAM

TABLE 1-1: PIC16F73 AND PIC16F76 PINOUT DESCRIPTION

9 10 1 2 3 4 5	9 10 1 2 3	I O I/P	ST/CMOS ⁽³⁾ — ST	tal Oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. Master clear (RESET) input or programming voltage input or High
1 2 3 4	1	COM.I	ST	which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. Master clear (RESET) input or programming voltage input or High
2 3 4	2	CI/P	ST	
3 4				Voltage Test mode control. This pin is an active low RESET to the device.
3 4		-1 CU	1.1	PORTA is a bi-directional I/O port.
4	2	1/0	TTL	RA0 can also be analog input0.
	1.3	1/0	TTL	RA1 can also be analog input1.
5	4	I/O	TTL	RA2 can also be analog input2.
	5	I/O	TTL	RA3 can also be analog input3 or analog reference voltage.
6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
7	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
	NV V	WW.10	NON.COM	PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
21	21	I/O	TTL/ST(1)	RB0 can also be the external interrupt pin.
22	22	I/O	TTL	MIN WT MILON.
23	23	1/0	TTLCO	WI WWWWWWWWW
24	24	I/O	TTL C	DM. L. WW. W. COM.
25	25	I/O	TTL	Interrupt-on-change pin.
26	26	I/O	TTL	Interrupt-on-change pin.
27	27	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin or Serial programming clock.
28	28	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin or Serial programming data.
Mo	TW	11	W100	PORTC is a bi-directional I/O port.
C11	1.11	I/O <	ST	RC0 can also be the Timer1 oscillator output or Timer1 cloc input.
12	12	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input Compare2 output/PWM2 output.
13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM output.
14	14	1/0	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
15	15	1/0	ST	RC4 can also be the SPI Data In (SPI mode) or Data I/O (I ² C mode).
16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
17	17 0	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
18	1800	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
8, 19	8, 19	Р	- P	Ground reference for logic and I/O pins.
20	20	P	-	Positive supply for logic and I/O pins.
ċ	21 22 23 24 25 26 27 28 11 12 13 14 15 16 17 18 8,19 20 O = outpo - = Not	21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18	21 21 1/0 22 22 1/0 23 23 1/0 24 24 1/0 25 25 1/0 26 26 1/0 27 27 1/0 28 28 1/0 11 11 1/0 12 12 1/0 13 13 1/0 14 14 1/0 15 15 1/0 16 16 1/0 17 17 1/0 18 18 1/0 8,19 8,19 P 20 20 P O = output 1/0 = TTL =	21 21 VO TTL/ST ⁽¹⁾ 22 22 VO TTL 23 23 VO TTL 24 24 VO TTL 25 25 VO TTL 26 26 VO TTL 27 27 VO TTL/ST ⁽²⁾ 28 28 VO TTL/ST ⁽²⁾ 11 11 I/O ST 12 12 I/O ST 13 13 I/O ST 14 14 I/O ST 15 15 I/O ST 16 16 I/O ST 18 18 I/O ST 8, 19 8, 19 P — Q 20 P —

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

© 2000 Microchip Technology Inc.

Advance Information WWW.100Y. WWW.100Y.COM.T

TABLE 1-2: PIC16F74 AND PIC16F77 PINOUT DESCRIPTION

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30		ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	010	TW TW	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	2	18	CI/P	ST	Master clear (RESET) input or programming voltage input or High Voltage Test mode control. This pin is an active low RESET to the device.
			N.100		M	PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	RA0 can also be analog input0.
RA1/AN1	3	4	20	1/0	TTL	RA1 can also be analog input1.
RA2/AN2	4	5	21	I/O	OTTL	RA2 can also be analog input2.
RA3/AN3/VREF	5	6	22	I/O	CONLI	RA3 can also be analog input3 or analog reference voltage.
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/SS/AN4	7	8	24	I/O	MOT.YO	RA5 can also be analog input4 or the slave select for the synchronous serial port.
N.100Y.CON	1TV		WV	W.	LOOX.COF	PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	34	37	9	1/0	TTL C	MULTIN WWW.IT OV.COM
RB2	35	38	10	I/O	TTL	OW'LL CON'T
RB3	36	39	11	1/0	TTL	NUTR WITTION.
RB4	37	41	14	I/O	TTL	Interrupt-on-change pin.
RB5	38	42	15	I/O	TTL	Interrupt-on-change pin.
RB6	39	43	16	I/O	TTL/ST(2)	Interrupt-on-change pin or Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin or Serial programming data.
WW.10	TC.	OM.			WW.10	PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or Data I/O (I ² C mode).
RC5/SDO	24	26	43	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST 🔨	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	26	29		I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.

TTL = TTL input - = Not used

ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

TABLE 1-2: PIC16F74 AND PIC16F77 PINOUT DESCRIPTION (CONTINUED)

DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
					PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.
19	21	38	I/O	ST/TTL ⁽³⁾	
20	22	39	I/O	ST/TTL ⁽³⁾	N.TN
21	23	40	I/O	ST/TTL ⁽³⁾	my the total billing a menored
22	24	41	I/O	ST/TTL ⁽³⁾	勝特力材料 886-3-5753170
27	30	2	I/O	ST/TTL ⁽³⁾	胜特力电子(上海) 86-21-54151736
28	31	3	I/O	ST/TTL(3)	胜特力电子(深圳) 86-755-83298787
29	32	4	I/O		Http://www.100y.com.tw
30	33	5	I/O	ST/TTL ⁽³⁾	MAN TH
1.100	-1 CO	1.	51	W	PORTE is a bi-directional I/O port.
80	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input5.
9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input6.
10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
12,31	13,34	6,29	Р	N - 1	Ground reference for logic and I/O pins.
11,32	12,35	7,28	Р		Positive supply for logic and I/O pins.
	1,17,28, 40	12,13, 33,34	DW.J		These pins are not internally connected. These pins should be left unconnected.
	Pin# 19 20 21 22 27 28 29 30 8 9 10 12,31	Pin# Pin# 19 21 20 22 21 23 22 24 27 30 28 31 29 32 30 33 8 9 9 10 10 11 12,31 13,34 11,32 12,35 — 1,17,28,	Pin# Pin# 19 21 38 20 22 39 21 23 40 22 24 41 27 30 2 28 31 3 29 32 4 30 33 5 9 10 26 10 11 27 12,31 13,34 6,29 11,32 12,35 7,28 - 1,17,28 12,13	Pin# Pin# Pin# Type 19 21 38 I/O 20 22 39 I/O 21 23 40 I/O 21 23 40 I/O 21 23 40 I/O 22 24 41 I/O 27 30 2 I/O 28 31 3 I/O 29 32 4 I/O 30 33 5 I/O 30 33 5 I/O 9 10 26 I/O 10 11 27 I/O 12,31 13,34 6,29 P 11,32 12,35 7,28 P - 1,17,28 12,13 -	Pin# Pin# Type Type 19 21 38 I/O ST/TTL(3) 20 22 39 I/O ST/TTL(3) 21 23 40 I/O ST/TTL(3) 21 23 40 I/O ST/TTL(3) 21 23 40 I/O ST/TTL(3) 22 24 41 I/O ST/TTL(3) 27 30 2 I/O ST/TTL(3) 28 31 3 I/O ST/TTL(3) 29 32 4 I/O ST/TTL(3) 30 33 5 I/O ST/TTL(3) 30 33 5 I/O ST/TTL(3) 9 10 26 I/O ST/TTL(3) 9 10 26 I/O ST/TTL(3) 10 11 27 I/O ST/TTL(3) 12,31 13,34 6,29 P 11,32

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

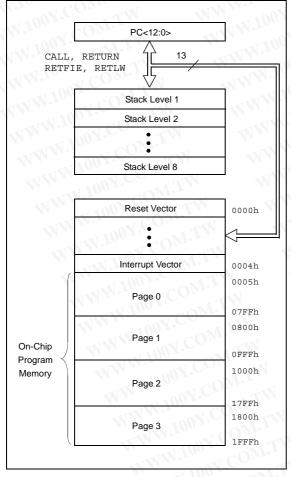
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

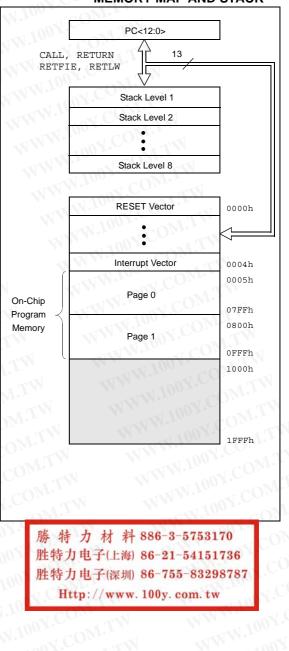
4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PICmicro[®] MCUs. The Program Memory and Data Memory have separate buses so that concurrent access can occur and is detailed in this section. The Program Memory can be read internally by user code (see Section 4.0).


Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization


The PIC16F7X devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16F77/76 devices have 8K x 14 words of FLASH program memory and the PIC16F73/74 devices have 4K x 14. Accessing a location above the physically implemented address will cause a wraparound.

The RESET Vector is at 0000h and the Interrupt Vector is at 0004h.

FIGURE 2-1: PIC16F77/76 PROGRAM MEMORY MAP AND STACK

FIGURE 2-2: PIC16F74/73 PROGRAM MEMORY MAP AND STACK

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

2.2 Data Memory Organization

The Data Memory is partitioned into multiple banks, which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

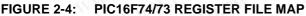
Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

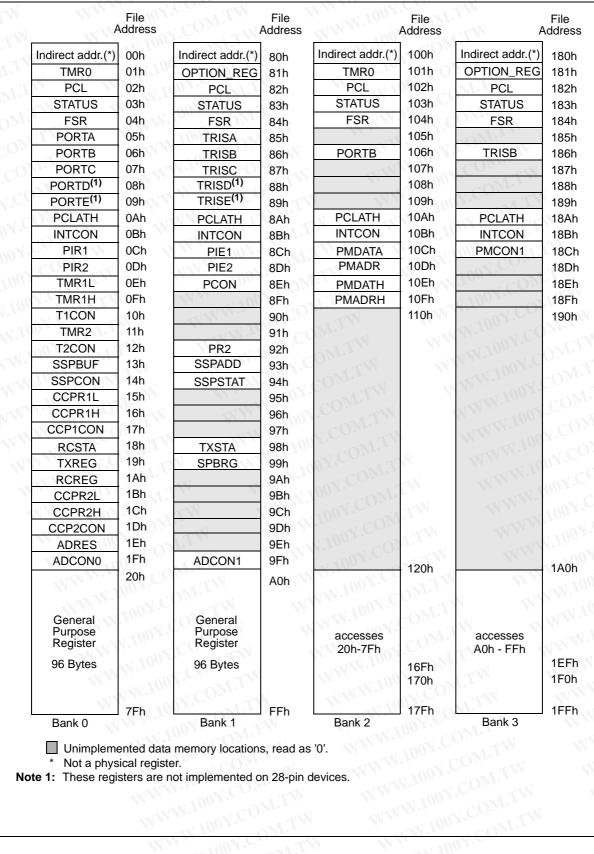
2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register FSR.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X


ndirect addr.(*)	00h	Indirect addr.(*)	80h 🚿	Indirect addr.(*)	100h	Indirect addr.(*)	18
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	18
PCL	02h	PCL	82h	PCL	102h	PCL	18
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	18
FSR	04h	FSR	84h	FSR	104h 🔾	FSR	18
PORTA	05h	TRISA	85h	1. Ker	105h	M.L	18
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	18
PORTC	07h	TRISC	87h	WW.	107h	On all	18
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h	-ON-	18
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h	MM.	109h	WIN	18
PCLATH	0Ah 🔨	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	18
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh	N.COm	18
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh	CON	18
TMR1H	0Fh	1002.	8Fh	PMADRH	10Fh	DOT.	18
T1CON	10h	NWW.	90h	W.	110h	LOOY.COM	19
TMR2	11h	.IV.	91h	1.1.	111h	Jue COM	19
T2CON	12h	PR2	92h	WT.I.	112h	J 100Y.	19
SSPBUF	13h	SSPADD	93h	W	113h		19
SSPCON	14h	SSPSTAT	94h	M.	114h	N.100 CO	19
CCPR1L	15h		95h	WT.Mc	115h	W.1001.	19
CCPR1H	16h	NWW.	96h	Wn	116h	N. YOOY.C	19
CCP1CON	17h	War	97h	General	117h	General	19
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	19
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	19
RCREG	1Ah	A The second sec	9Ah	COMPT	11Ah	WWW.L	19
CCPR2L	1Bh		9Bh	M.I.V	11Bh	W.100	19
CCPR2H	1Ch		9Ch	NY.CONT	11Ch	WW 10	19
CCP2CON	1Dh	5	9Dh	V.CONL.	11Dh	WWW.L	19
ADRES	1Eh	7 M. M.	9Eh	TON T. CONT	11Eh	.WW.1	19
ADCON0	1Fh	ADCON1	9Fh	1001.001	11Fh	W W	19
WW.	20h	No.	A0h	N.COM	120h	NW Y	1A
.100				1.10° - CON	1.1	VAL	1.10
10		M.T.M.		N 100X.	MT.IN		N.1
General Purpose		General Purpose		General Purpose	WT .	General Purpose	
Register		Register		Register	DW	Register	N
96 Bytes		80 Bytes	EEh	80 Bytes	16Eh	80 Bytes	1E
20 _,00		UNIT W	EFh F0h	1002.	16Fh 170h	accesses	1F
WWY	7Eh	accesses 70h-7Fh		accesses 70h-7Fh	17Fh	70h - 7Fh	1F
Bank 0	7Fh	Bank 1	FFh	Bank 2		Bank 3	
		data memory locati	ons, read	d as '0'.			
	nysical re	gister. are not implemente		.W.1			


© 2000 Microchip Technology Inc.

NW.100Y.COM.TW

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

DS30325A-page 14

Advance Information

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS ⁽²⁾
Bank 0	-1		W.100	ICON			WW.	~ C	JAT.	N	
00h ⁽⁴⁾	INDF	Addressin	g this locati	on uses conte	ents of FSR to	o address dat	ta memory (not a physic	al register)	0000 0000	0000 0000
01h	TMR0	Timer0 Mo	dule's Reg	ister	WT.	1	NN	100Y.	- 1	xxxx xxxx	uuuu uuuu
02h ⁽⁴⁾	PCL	Program C	Counter's (F	C) Least Sig	nificant Byte	1	WW		СОм.	0000 0000	0000 0000
03h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	C	0001 1xxx	000q quuu
04h ⁽⁴⁾	FSR	Indirect da	ata memorv	address poir	nter	N .	WW.	100	1.0	xxxx xxxx	uuuu uuuu
05h	PORTA	_			ata Latch when	n written: PO	RTA pins wh	nen read	V.COS	0x 0000	0u 0000
06h	PORTB	PORTB D	ata Latch w	xxxx xxxx	uuuu uuuu						
07h	PORTC	1	ata Latch w	xxxx xxxx	uuuu uuuu						
08h ⁽⁵⁾	PORTD		ata Latch w	XXXX XXXX	uuuu uuuu						
09h(5)	PORTE	_		- THI		<u>1.1 _</u> _	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,4)	PCLATH	<u>N</u>	_7		Write Buffer	for the upper	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽⁴⁾	INTCON	GIE	PEIE <	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	<u> </u>			1002	4.1	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding re	gister for th	10	XXXX XXXX	uuuu uuuu					
0Fh	TMR1H	Holding re	Holding register for the Least Significant Byte of the 16-bit TMR1 Register Holding register for the Most Significant Byte of the 16-bit TMR1 Register								
10h	T1CON	T_{π}	N _	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 Mo	odule's Reg	ister	N.	V.COM	Wn	1		0000 0000	0000 0000
12h	T2CON	- A	TOUTPS3	TOUTPS2	TOUTPS	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchrono	ous Serial P	ort Receive	Buffer/Transm	it Register	VI.I.V		W.	xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/C	ompare/PV	/M Register1	(LSB)	00 -	M			xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/PV	/M Register1	(MSB)	1001.0	T		A.	xxxx xxxx	uuuu uuuu
17h	CCP1CON		Nr-	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	100 2.	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	ansmit Data	a Register	WW	Yan		WT	V	0000 0000	0000 0000
1Ah	RCREG	USART R	eceive Data	Register		W.Ive	1 COM			0000 0000	0000 0000
1Bh	CCPR2L	Capture/C	ompare/PV	/M Register2	(LSB)	100	1.0	NT.N		xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/C	ompare/PV	/M Register2	(MSB)	NN.	V.CUF	Wm		xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	N 1-00 1	Mar	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh	ADRES	A/D Resul	t Register E	syte	N	N .	N.V.	VT1		xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	<u>1 1</u>	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter._____

2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

		100%.	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	all other RESETS ⁽²⁾	
	AN WAY	Non Y.	CONT	W	AN.	100	N.C.	NT.			
INDF	Addressin	g this locatio	on uses con	tents of FSR to	address da	ta memory (not a physic	al register)	0000 0000	0000 0000	
OPTION_ REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
PCL	Program (Counter's (P	C) Least Sig	gnificant Byte	4	W.W.		ON.	0000 0000	0000 0000	
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu	
FSR	Indirect da	ata memory	address poi	nter		WWW	. Martin		xxxx xxxx	uuuu uuuu	
TRISA	_				egister	- N	N.J.	COM	11 1111	11 1111	
	PORTB D	ata Directior		1111 1111							
				1111 1111							
TRISD			1110	. coM.,			NN.10	-100	1111 1111	1111 1111	
				PSPMODE	<u> </u>	PORTE D	ata Direction	Bits		0000 -111	
				a COPE	for the uppe					0 0000	
	CIE	DEIE	TOIE						0.22	0000 0000	
	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCPTIE	TMR2IE			0000 0000	
	<u> </u>						-			0	
PCON				- 00 7 .			POR	BOR	dd	uu	
				COMP. COMP.							
<u></u>										<u> </u>	
		N		I. I	COr	AV.					
		U	24.1	W.100	- CON			. N. N.	1111 1111	1111 1111	
SSPADD	Synchrono	ous Serial P	ort (I ² C mod	le) Address Re	egister	TN	V		0000 0000	0000 0000	
SSPSTAT	SMP	CKE	D/A	P	S	R/W	UA	BF	0000 0000	0000 0000	
T100 1.	Unimplem	ented		N10		M.		AL AN	.105	014	
<u> </u>	Unimplem	ented	1		NY.Co	WT .		NV.	- 10 0 7.	- - - - - - - - - - -	
	Unimplem	ented		-WW.L	-1 C	Divr.	<1 ·	- TW		COR	
TXSTA	CSRC	TX9	TXEN	SYNC	007.	BRGH	TRMT	TX9D	0000 -010	0000 -010	
SPBRG	Baud Rate	e Generator	Register	WWW.	N.		N	WW	0000 0000	0000 0000	
	Unimplem	ented		N. I.	1.100-	coM.	-				
	Unimplem	ented	N	Mu.	-1100Y		TN	N	10). —	
JAN N.	Unimplem	ented	-	W	N	1 COM	M	1	NT.	N.C.	
	Unimplem	ented			W1100	100	1.1		L.V.		
TIN VI	Unimplem	ented	WT	NV		N.C.	WT .			100×.	
ADCON1	1.70	- CAN		_	NVL IV	PCFG2	PCFG1	PCFG0	000	000	
	OPTION_ REG PCL STATUS FSR TRISA TRISA TRISB TRISC TRISD TRISC PCLATH PCLATH PIE2 PCON PIE1 PCON PIE2 PCON PIE2 SSPADD SSPSTAT - C TXSTA SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S SPBRG - C S S S S S S S S S S S S S S S S S S	OPTION REGRBPUREGRBPUPCLProgram (CSTATUSIRPSTATUSIRPFSRIndirect daTRISA—TRISBPORTB DTRISCPORTD DTRISCIBFPCLATH—INTCONGIEPIE1PSPIE ⁽³⁾ PIE2—PCON——Unimplem—	$\begin{tabular}{ c c c c } \hline RBPU & INTEDG \\ \hline REG & RBPU & INTEDG \\ \hline REG & RBPU & INTEDG \\ \hline RPCL & Program Counter's (PI \\ \hline STATUS & IRP & RP1 \\ \hline TRISA & & \\ \hline TRISB & PORTB Data Direction \\ \hline TRISC & PORTC Data Direction \\ \hline TRISC & PORTD Data Direction \\ \hline TRISC & PORTD Data Direction \\ \hline TRISD & PORTD Data Direction \\ \hline TRISD & PORTD Data Direction \\ \hline TRISD & PORTD Data Direction \\ \hline TRISC & IBF & OBF \\ \hline PCLATH & & \\ \hline NTCON & GIE & PEIE \\ \hline PIE1 & PSPIE(3) & ADIE \\ \hline PIE2 & & \\ \hline PCON & & \\ \hline Unimplemented \\ \hline PCON & & \\ \hline Unimplemented \\ \hline PR2 & Timer2 Period Registe \\ \hline SSPADD & Synchron US Serial PO \\ \hline SSPSTAT & SMP & CKE \\ \hline & Unimplemented \\ \hline RSPBRG & Baud Rate Generator \\ \hline & Unimplemented \\ \hline TXSTA & CSRC & TX9 \\ \hline SPBRG & Baud Rate Generator \\ \hline & Unimplemented \\ \hline & Unimp$	OPTION REG $\overline{\text{RBPU}}$ INTEDGTOCSPCLProgram Counter's (PC) Least Sig STATUSIRPRP1RP0FSRIndirect data memory address point TRISA——PORTA DTRISA——PORTA DTOCSTRISAPORTB Data Direction RegisterTRISCPORTC Data Direction RegisterTRISDPORTD Data Direction RegisterTRISDPORTD Data Direction RegisterTRISEIBFOBFIBOVPCLATH———INTCONGIEPEIETOIEPIE1PSPIE ⁽³⁾ ADIERCIEPIE2————Unimplemented—PCON————Unimplemented—PR2Timer2 Period RegisterSSPADDSynchronous Serial Port (I ² C modeSSPSTATSMPCKED/A—Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented——Unimplemented— <td>OPTION REG$\overline{\text{RBPU}}$INTEDGTOCSTOSEPCLProgram Counter's (PC) Least Significant ByteSTATUSIRPRP1RP0$\overline{\text{TO}}$FSRIndirect data memory address pointerTRISA——PORTA Data Direction RegisterTRISBPORTB Data Direction RegisterTRISCPORTD Data Direction RegisterTRISDPORTD Data Direction RegisterTRISEIBFOBFIBOVPSPMODEPCLATH———VINTEONGIEPEIETOIETRISEIBFOBFIROEPCON————Unimplemented—UnimplementedPR2Timer2 Period RegisterSSPADDSynchronous Serial Port (I²C mode) Address RegisterSSPADDSynchronous Serial Port (I²C mode) Address Register—Unimplemented—U</td> <td>OPTION_ REG\overrightarrow{RBPU}INTEDGTOCSTOSEPSAPCLProgram Counter's (PC) Least Significant ByteSTATUSIRPRP1RP0$\overrightarrow{TO}$$\overrightarrow{PD}$FSRIndirect data memory address pointerTRISA——PORTA Data Direction RegisterTRISBPORTB Data Direction RegisterTRISDPORTD Data Direction RegisterTRISDPORTD Data Direction RegisterTRISDPORTD Data Direction RegisterTRISEIBFOBFIBOVPSPMODEPCLATH———Write Buffer for the uppeINTCONGIEPEIETOIEINTERBIEPIE1PSPIE(3)ADIERCIETXIESSPIEPIE2—————PCON—————Unimplemented————PR2Timer2 Period RegisterSSPADDSynchrorous Serial Port (I²C mode) Address RegisterSSPADDSynchrorous Serial Port (I²C mode) Address RegisterSSPSTATSMPCKED/ĀPS—Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented<</td> <td>OPTION REG RBPU INTEDG TOCS TOSE PSA PS2 PCL Program Counter's (PC) Least Significant Byte STATUS IRP RP1 RP0 TO PD Z FSR Indirect data memory address pointer TRISA — — PORTA Data Direction Register TRISB PORTD Data Direction Register TRISC PORTD Data Direction Register TRISC PORTD Data Direction Register TRISE IBF OBF IBOV PSPMODE — PORTE D. PCLATH — — — Write Buffer for the upper 5 bits of the INTCON GIE PEIE TOIE INTE RBIE TOIF PIE1 PSPIE⁽³⁾ ADIE RCIE TXIE SSPIE CCP1IE PIE2 — — — — — PCON — — — — — PCON — — — — — PCON — — — — — P Unimplemented </td> <td>OPTION REG RBPU INTEDG TOCS TOSE PSA PS2 PS1 PCL Program Counter's (PC) Least Significant Byte STATUS IRP RP1 RP0 TO PD Z DC FSR Indirect data memory address pointer TRISA — — PORTA Data Direction Register TRISB PORTB Data Direction Register TRISD PORTD Data Direction Register TRISD PORTD Data Direction Register TRISD PORTD Data Direction Register TRISD PORTD Data Direction Register PORTE Data Direction Register TRISD PORTD Data Direction Register TRISD PORTE Data Direction Register PORTE Data Direction Register TRISD PORTD Data Direction Register TRISD PORTE Data Direction Register PORTE Data Direction Register TRISD PORTD Data Direction Register TRISD PORTE Data Direction Register TOSE PORTE Data Direction Control PCLATH — — — Write Buffer for the upper 5 bits of the Program Control INTE RBIE TOIF INTF PIE1 PSPI6(3) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE PCON — — — — — — —</td> <td>OPTION REG RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0 PCL Program Counter's (PC) Least Significant Byte </td> <td>OPTION REG RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0 1111 1111 PCL Program Counter's (PC) Least Significant Byte 0000 0000 0000 0000 0000 0000 0000 11111 1111 1111 1</td>	OPTION REG $\overline{\text{RBPU}}$ INTEDGTOCSTOSEPCLProgram Counter's (PC) Least Significant ByteSTATUSIRPRP1RP0 $\overline{\text{TO}}$ FSRIndirect data memory address pointerTRISA——PORTA Data Direction RegisterTRISBPORTB Data Direction RegisterTRISCPORTD Data Direction RegisterTRISDPORTD Data Direction RegisterTRISEIBFOBFIBOVPSPMODEPCLATH———VINTEONGIEPEIETOIETRISEIBFOBFIROEPCON————Unimplemented—UnimplementedPR2Timer2 Period RegisterSSPADDSynchronous Serial Port (I ² C mode) Address RegisterSSPADDSynchronous Serial Port (I ² C mode) Address Register—Unimplemented—U	OPTION_ REG \overrightarrow{RBPU} INTEDGTOCSTOSEPSAPCLProgram Counter's (PC) Least Significant ByteSTATUSIRPRP1RP0 \overrightarrow{TO} \overrightarrow{PD} FSRIndirect data memory address pointerTRISA——PORTA Data Direction RegisterTRISBPORTB Data Direction RegisterTRISDPORTD Data Direction RegisterTRISDPORTD Data Direction RegisterTRISDPORTD Data Direction RegisterTRISEIBFOBFIBOVPSPMODEPCLATH———Write Buffer for the uppeINTCONGIEPEIETOIEINTERBIEPIE1PSPIE(3)ADIERCIETXIESSPIEPIE2—————PCON—————Unimplemented————PR2Timer2 Period RegisterSSPADDSynchrorous Serial Port (I ² C mode) Address RegisterSSPADDSynchrorous Serial Port (I ² C mode) Address RegisterSSPSTATSMPCKED/ĀPS—Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented———Unimplemented<	OPTION REG RBPU INTEDG TOCS TOSE PSA PS2 PCL Program Counter's (PC) Least Significant Byte STATUS IRP RP1 RP0 TO PD Z FSR Indirect data memory address pointer TRISA — — PORTA Data Direction Register TRISB PORTD Data Direction Register TRISC PORTD Data Direction Register TRISC PORTD Data Direction Register TRISE IBF OBF IBOV PSPMODE — PORTE D. PCLATH — — — Write Buffer for the upper 5 bits of the INTCON GIE PEIE TOIE INTE RBIE TOIF PIE1 PSPIE ⁽³⁾ ADIE RCIE TXIE SSPIE CCP1IE PIE2 — — — — — PCON — — — — — PCON — — — — — PCON — — — — — P Unimplemented	OPTION REG RBPU INTEDG TOCS TOSE PSA PS2 PS1 PCL Program Counter's (PC) Least Significant Byte STATUS IRP RP1 RP0 TO PD Z DC FSR Indirect data memory address pointer TRISA — — PORTA Data Direction Register TRISB PORTB Data Direction Register TRISD PORTD Data Direction Register TRISD PORTD Data Direction Register TRISD PORTD Data Direction Register TRISD PORTD Data Direction Register PORTE Data Direction Register TRISD PORTD Data Direction Register TRISD PORTE Data Direction Register PORTE Data Direction Register TRISD PORTD Data Direction Register TRISD PORTE Data Direction Register PORTE Data Direction Register TRISD PORTD Data Direction Register TRISD PORTE Data Direction Register TOSE PORTE Data Direction Control PCLATH — — — Write Buffer for the upper 5 bits of the Program Control INTE RBIE TOIF INTF PIE1 PSPI6(3) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE PCON — — — — — — —	OPTION REG RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0 PCL Program Counter's (PC) Least Significant Byte	OPTION REG RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0 1111 1111 PCL Program Counter's (PC) Least Significant Byte 0000 0000 0000 0000 0000 0000 0000 11111 1111 1111 1	

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

WWW.100Y.COM.TW WWW.100Y.COM.TW Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter.

2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS ⁽²⁾		
Bank 2			N.CO	NT.			100X.						
100h ⁽⁴⁾	INDF	Addressing	g this locatio	n uses cont	tents of FSR to	o address da	ta memory (not a physic	al register)	0000 0000	0000 0000		
101h	TMR0	Timer0 Mc	imer0 Module's Register xxxx xxxx uuuu uu										
102h ⁽⁴⁾	PCL 🚽	Program C	Counter's (PC	C) Least Sig	nificant Byte					0000 0000	0000 0000		
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	000q quuu		
104h ⁽⁴⁾	FSR	Indirect Da	ata Memory	Address Po	xxxx xxxx	uuuu uuuu							
105h	4	Unimplem	Unimplemented – –										
106h	PORTB	PORTB D	PORTB Data Latch when written: PORTB pins when read										
107h	<u></u>	Unimplem	ented		M.	4	. Wie	In	· M·		—		
108h		Unimplem	ented	NY.CO	WTA		N N N	. 100%.		N _			
109h	<u></u>	Unimplem	ented		0.11.	I	WW		COM	-	_		
10Ah ^(1,4)	PCLATH	_	1	007.	Write Buffer	for the uppe	ounter	0 0000	0 0000				
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTE	RBIF	0000 000x	0000 000u		
10Ch	PMDATA	Data Regi	ster Low Byt	e	COM	N/	VIA	111.	V.COr	xxxx xxxx	uuuu uuuu		
10Dh	PMADR	Address R	egister Low	xxxx xxxx	uuuu uuuu								
10Eh	PMDATH	-	N H	Data Regis	ster High Byte	xxxx xxxx	uuuu uuuu						
10Fh	PMADRH			N C	xxxx xxxx	uuuu uuuu							
Bank 3	-M.I	No.		N.10	202	1.1		W.	In	-0N1.	A		
180h ⁽⁴⁾	INDF	Addressing	0000 0000	0000 0000									
181h	OPTION_ REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111		
182h ⁽⁴⁾	PCL	Program C	Counter's (PC	C) Least Si	gnificant Byte		N	A.M.	001	0000 0000	0000 0000		
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	то	PD	X Z	DC	С	0001 1xxx	000q quuu		
184h ⁽⁴⁾	FSR	Indirect Da	ata Memory	Address Po	inter	an!			J. W.10	XXXX XXXX	uuuu uuuu		
185h		Unimplem	1	NV.	1001		TW	W.	-11		L'L		
186h	TRISB		ata Direction	Register	14.	COM	- N	<	WW.	1111 1111	1111 1111		
187h	4001	Unimplem			100	100	1.1		W	100 _ C	DNE		
188h		Unimplem		N	W.	M.C.	WT .		W	1002.0	T.		
189h	4.100	Unimplem	ented		WW.L		Nr.	J	WWW				
18Ah ^(1,4)	PCLATH	_	1.7.7	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000		
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 0000		
18Ch	PMCON1	(6)	Nr.	—	MAN	TTN.		- N-	RD	10	1 0		
18Dh		Unimplem	ented			1.100	COM-			NVL.I.			
18Eh 🔨		Reserved	maintain cle	ar	MM.	-1100X	. All	IN	N	0000 0000	0000 0000		
IOLII		Reserved	maintain cle	ar	AL N	W.	A COM	M		0000 0000	0000 0000		

TABLE 2-1. SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose WWW.100X.COM.TV contents are transferred to the upper byte of the program counter.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

© 2000 Microchip Technology Inc.

Advance Information WWW.100Y. WWW.100Y.COM.T

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note 1: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7							bit 0				
bit 7	1 = Bank 2	ster Bank Sele 2, 3 (100h - 1F 9, 1 (00h - FFr	Fh)	or indirect a	ddressing)	and the second second		料 886-3- L海) 86-21-				
bit 6-5	11 = Bank 10 = Bank 01 = Bank 00 = Bank	Register Banl 3 (180h - 1FF 2 (100h - 17F 1 (80h - FFh) 0 (00h - 7Fh)	Fh) Fh)	used for dire	ect addressin	g) 胜4		≅圳) 86−755 ww. 100y. c				
bit 4	TO : Time-or $1 = After period$	is 128 bytes out bit ower-up, CLR time-out occ		on, or SLEEI	o instruction							
bit 3	PD: Power	-down bit										
		ower-up or by cution of the										
bit 2		sult of an arith sult of an arith										
bit 1	(for borrow 1 = A carry	arry/borrow b the polarity is -out from the ry-out from th	s reversed) 4th low order	bit of the re	esult occurred	WT	W W					
bit 0	 0 = No carry-out from the 4th low order bit of the result C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred 											
	Note:	Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.										
	Legend:	1007.0	WIN		WW	POX.CO	WT.M	N				
	R = Reada	ble bit	W = Wri	table bit	U = Unimp	lemented b	oit, read as '	0'				
	- n – Value	at POR rese	t '1' = Bit	ic cot	'0' = Bit is	cleared	x = Bit is u	Inknown				

2.2.2.2 **OPTION_REG Register**

The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB. Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

110

1:128

		R/W-1	R/W-1	R/W-1	I R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
		RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0			
		bit 7	100 X.CC	M.I	W W	M.M.100	NY.COM	NTN.	bit 0			
	bit 7	RBPU : POR 1 = PORTB	pull-ups are	disabled		NWW.L	00Y.CO					
		0 = PORTB pull-ups are enabled by individual port latch values										
	bit 6	INTEDG: Int 1 = Interrupt 0 = Interrupt	on rising e	dge of RB	60/INT pin							
	C bit 5	TOCS : TMR 1 = Transitio 0 = Internal	n on RA4/T	OCKI pin								
	bit 4		nt on high-te	o-low tran	t bit sition on RA4/T(sition on RA4/T(
	bit 3	PSA : Prescale 1 = Prescale 0 = Prescale	er is assigne	ed to the V	VDT Fimer0 module							
	bit 2-0	PS2:PS0: P										
		Bit	Value TM	R0 Rate	WDT Rate							
		CON.TY	000	1:2	1:1.00							
				1:4	1:2							
			010	1:8	1:4							
			011	1:16	1:8							
			100	1 : 32	1:16							
				1:64	1:32							
			110		1.01							

		1.120	: 64 : 128		
Legend:	OW.IN	W.S.	W.100 M	LCONCI N	WWW.100 CON
R = Read	dable bit	W = Wr	itable bit	U = Unimplemented	bit, read as '0'
- n = Valu	ue at POR rese	et '1' = Bit	is set	'0' = Bit is cleared	x = Bit is unknown

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw 100X.COM

1:64

© 2000 Microchip Technology Inc.

WWW.100Y.C

WWW.100Y.COM WWW.100Y.CON

2.2.2.3 **INTCON Register**

The INTCON register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Interrupt flag bits are set when an interrupt Note: condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
	bit 7	WW.1001	COMI		WW	.100 r.C	OM.L	bit 0
bit 7	1 = Enable	al Interrupt En es all un-mask les all interrupt	ed interrupts					
bit 6	PEIE: Peri 1 = Enable	ipheral Interrup es all un-mask les all peripher	pt Enable bit ed peripheral	interrupts				
bit 5	1 = Enable	TolE : TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt						
bit 4	1 = Enable	D/INT External es the RB0/INT les the RB0/INT	T external inte	errupt				
bit 3	RBIE: RB 1 = Enable	Port Change I es the RB port les the RB port	Interrupt Enab	ole bit rupt				
bit 2	TOIF : TMF 1 = TMR0	R0 Overflow Int register has o register did no	terrupt Flag b overflowed (m	it C	ed in softwar	e)		
bit 1	INTF: RBC 1 = The R	D/INT External B0/INT externa B0/INT externa	Interrupt Flag al interrupt oc	curred (mu		in software) WWW.	
bit 0	A mismate condition a 1 = At leas	Port Change I ch condition wil and allow flag I st one of the R of the RB7:RB	II continue to bit RBIF to be B7:RB4 pins	set flag bit I e cleared. changed sta	ate (must be			mismatch
	Legend:	TOM.F	<u> </u>	WW -	.100×.0-	MITH		
	R = Reada	able bit	W = Writ	table bit	U = Unimp	emented b	oit, read as '	0,
		e at POR reset			'0' = Bit is		x = Bit is u	

力材料 886-3-5753170 勝 特 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

2.2.2.4 **PIE1** Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Bit PEIE (INTCON<6>) must be set to Note: enable any peripheral interrupt.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
	bit 7							bit 0
bit 7		the PSP re	e Port Read/ ead/write inte ead/write inte	rrupt 💦 🔨	pt Enable bi	N.CON		
bit 6	ADIE: A/D C 1 = Enables	Converter In the A/D co		le bit upt				
bit 5		the USAR	Interrupt Ena T receive inte T receive inte	errupt				
bit 4	1 = Enables	the USAR	Interrupt En T transmit int T transmit in	errupt				
bit 3	SSPIE : Synd 1 = Enables 0 = Disables	the SSP in		errupt Enable	e bit			
bit 2	CCP1IE : CC 1 = Enables 0 = Disables	the CCP1	interrupt					
bit 1	1 = Enables	the TMR2	Match Interr to PR2 matc to PR2 matc	h interrupt	pit V			
bit 0			ow Interrupt E overflow inte	rrupt				

Legend:			hit word on (0)
R = Readable bit	W = Writable bit	U = Unimplemented	
n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
CON	WW.I'	COM	WWW.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 W.100Y.COM.TW Http://www.100y.com.tw WWW.100Y.COM.TW

© 2000 Microchip Technology Inc.

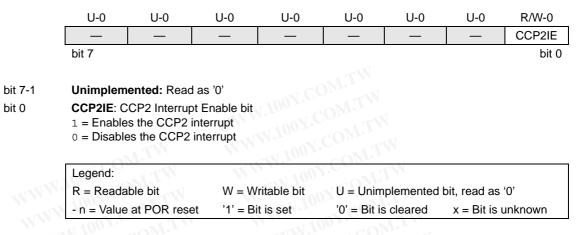
Advance Information WWW.100Y. WWW.100Y.COM.T

2.2.2.5 **PIR1** Register

the peripheral interrupts. The PIR1 register contains the individual flag bits for WWW.100

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>). User soft-
	ware should ensure the appropriate interrupt
	bits are clear prior to enabling an interrupt.

N.100Y.COM.T W.100Y.CO<u>N.</u>TW REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch) NW.100Y.CO


100 CO	-GISTER 2-5.	TINTREG								
		R/W-0	R/W-0	R-0	F	R-0	R/W-0	R/W-0	R/W-0	R/W-0
		PSPIF ⁽¹⁾	ADIF	RCIF	Т	XIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
		bit 7								bit 0
	bit 7	1 = A read	erallel Slave	eration has	Write Int taken pla	errupt Fl ace (mu:	ag bit st be cleare	d in software	T.MO.	
	bit 6	 0 = No read or write has occurred ADIF: A/D Converter Interrupt Flag bit 				N	nt at	L 11 40 (0100
		1 = An A/D conversion completed 0 = The A/D conversion is not complete					勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736			
bit 5		1 = The US	RT Receive I ART receive ART receive	buffer is fu	II. A	胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw				
	bit 4	TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty 0 = The USART transmit buffer is full								
	bit 3	1 = The SS returning SPI A trans I2C SIa A trans I2C Ma A trans I2C Ma A trans The ini The ini The ini The ini A STAI A STO 0 = No SSI CCP1IF: CO	smission/rece aster smission/rece tiated START tiated STOP tiated Restar tiated Acknow RT condition P condition C P interrupt co CP1 Interrupt	condition has nterrupt Ser eption has ta eption has ta toondition has toondition w rt condition w wledge con occurred w boccurred wh podition has	is occurr rvice Rou aken pla aken pla was com vas com vas com dition wa chile the s	ed, and i utine. Th ce. ce. ce. pleted b bleted by pleted b as compl SSP mod SSP mod	must be clea e conditions the SSP m the SSP m by the SSP r leted by the dule was idl	nodule. odule. nodule. SSP module e (Multi-mas	e. ster system).	
		<u>Capture Mode</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM Mode</u> Unused in this mode								
	bit 1	TMR2IF : TM 1 = TMR2 t	MR2 to PR2 I o PR2 match R2 to PR2 mat	n occurred (must be) bit cleared	in software)			
	bit 0	TMR1IF : TM 1 = TMR1 r 0 = TMR1 r	MR1 Overflow register overflow register did no	w Interrupt I lowed (mus ot overflow	Flag bit t be clea			NY.COM		
		Note 1:	PSPIF is res	served on 2	8-pin dev	vices; al	ways mainta	in this bit cle	ear.	
		Legend:	A. 100	COMP.	WT		WWW.	100¥.C	WT In	N
		R = Readat	ole bit	W =	Writable	e bit	U = Unim	plemented t	oit, read as '0	
			at POR rese		Bit is se			s cleared	x = Bit is u	

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 peripheral interrupt.

REGISTER 2-6: PIE2 REGISTER (ADDRESS 8Dh)

2.2.2.7 **PIR2** Register

The PIR2 register contains the flag bits for the CCP2 interrupt.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PIR2 REGISTER (ADDRESS 0Dh)

U-0 l	J-0	U-0 I	U-0	U-0	U-0	U-0	R/V
-T007-	T.M.	- 1		007.	M.T.W	_	CCF
bit 7	TIN	V V	M. C.	100%.	MIN		
Unimplemente	d: Read as	s '0'					
CCP2IF: CCP2	Interrupt F	lag bit					
Capture Mode	Y.UU	WT.A	AN NI	N 10	N.C.		
1 = A TMR1 reg 0 = No TMR1 re			iust be cle	eared in s	oftware)		
Compare Mode							
1 = A TMR1 reg 0 = No TMR1 re				st be clea	ared in softwa	are)	
PWM Mode	Yoox	WTI					
<u>PWM Mode</u> Unused	V.100Y.	COM.TW					
Unused	N.100Y.9	COM.TW		WW.	N.100Y.C	COM.TV	1 11 11 11 11
Unused Legend:	N.100X.0 N.100X	.COM.TW	 	M.M.M.	N.100Y.C N.100Y.C N.100Y.C	COM.TV	N N
Unused Legend: R = Readable b		W = Writabl	e bit		nplemented		
Unused Legend:		W = Writabl '1' = Bit is so	e bit		nplemented l	bit, read as x = Bit is u	
Unused Legend: R = Readable b	OR reset	'1' = Bit is se	e bit et	'0' = Bit	is cleared		
Unused Legend: R = Readable b	OR reset 勝	'1' = Bit is so 特力材*	e bit et <mark>¥ 886-3</mark>	'0' = Bit 575317	is cleared		
Unused Legend: R = Readable b	OR reset 勝 胜	'1' = Bit is so 特力材 # 特力电子(上海	e bit et <mark>∔ 886-3</mark> ₽) 86-21	'0' = Bit -575317 -541517	is cleared 0 736		
Unused Legend: R = Readable b	OR reset 勝 胜	'1' = Bit is so 特力材 # 特力电子(上海 特力电子(深圳	e bit et 4 886-3 f) 86-21 l) 86-75	'0' = Bit -575317 -541517 5-83298	is cleared 0 736		
Unused Legend: R = Readable b	OR reset 勝 胜	'1' = Bit is so 特力材 # 特力电子(上海	e bit et 4 886-3 f) 86-21 l) 86-75	'0' = Bit -575317 -541517 5-83298	is cleared 0 736		

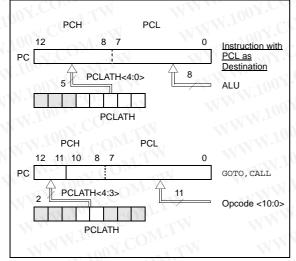
勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

PIC16F7X

2.2.2.8 **PCON Register**

The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

BOR is unknown on POR. It must be set by Note: the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).


REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

TER 2-8:	PCON REGISTER (AI	DDRESS 8Eh)				
	U-0 U-0	U-0 U-0	U-0	U-0	R/W-0	R/W-1
	1.100 - ONT		Tor TON		POR	BOR
	bit 7	WIT	1001.00	V.1		bit
it 7-2	Unimplemented: Read	as '0'				
pit 1	POR: Power-on Reset S	tatus bit				
	1 = No Power-on Reset 0 = A Power-on Reset o		in software after	a Power-	on Reset occ	urs)
oit O	BOR : Brown-out Reset 1 = No Brown-out Reset 0 = A Brown-out Reset of	Status bit occurred				
	WW.1001.CC	M.I.	WWW.100	COV	1.1	
	Legend:					
	R = Readable bit	W = Writable bit	U = Unim	olemented	bit, read as	'0'
	- n = Value at POR rese	'1' = Bit is set	'0' = Bit is	cleared	x = Bit is u	unknown
	1 Jun 100	CON-	N/m	100	-01.	1

2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC16F7X family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1:	There are no status bits to indicate stack
	overflow or stack underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

2.4 Program Memory Paging

PIC16F7X devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH<4:3> bits are not required for the return instructions (which POPs the address from the stack).

Note:	The contents of the PCLATH are
	unchanged after a RETURN or RETFIE
	instruction is executed. The user must
	setup the PCLATH for any subsequent
Mo	CALLS OF GOTOS.

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

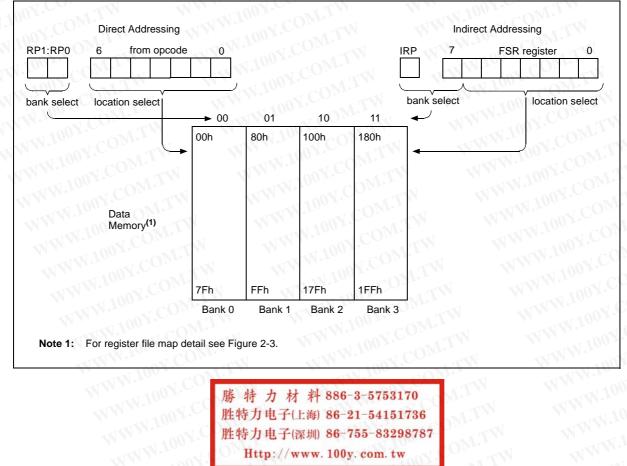
ORG 0x500 BCF PCLATH,4	
BSF PCLATH, 3 CALL SUB1_P1 :	;Select page 1 (800h-FFFh) ;Call subroutine in ;page 1 (800h-FFFh)
ORG 0x900 SUB1_P1	;page 1 (800h-FFFh)
WWW.100Y.CC	;called subroutine ;page 1 (800h-FFFh)
: RETURN	;return to Call subroutine ;in page 0 (000h-7FFh)
	力材料 886-3-5753170 J电子(上海) 86-21-54151736 J电子(湾畑) 86-755-83298787

胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-6.


A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

movlw 0x20 movwf FSR NEXT clrf INDF incf FSR,F btfss FSR,4 goto NEXT CONTINUE

;initialize pointer
;to RAM
;clear INDF register
;inc pointer
;all done?
;no clear next

;yes continue

EXAMPLE 2-2: INDIRECT ADDRESSING

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING

© 2000 Microchip Technology Inc.

Advance Information

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

PIC16F7X

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

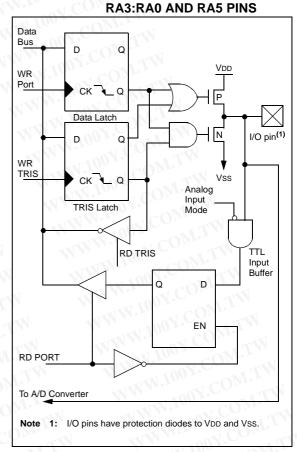
3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

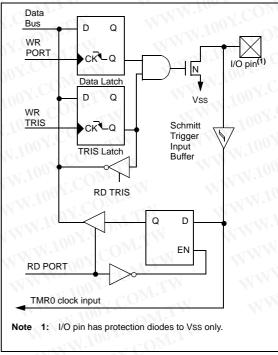
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note:	On a Power-on Reset, these pins are con-
IN	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set, when using them as analog inputs.


EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS,	RP0	i coM.
BCF	STATUS,	RP1	; Bank0
CLRF	PORTA		; Initialize PORTA by
			; clearing output
			; data latches
BSF	STATUS,	RP0	; Select Bank 1
MOVLW	0x06		; Configure all pins
MOVWF	ADCON1		; as digital inputs
MOVLW	0xCF		; Value used to
			; initialize data
			; direction
MOVWF	TRISA		; Set RA<3:0> as inputs
			; RA<5:4> as outputs
			; TRISA<7:6> are always
			; read as '0'.

FIGURE 3-1: BLOCK DIAGRAM OF

FIGURE 3-2: BLOCK DIAGRAM OF RA4/ T0CKI PIN

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

TABLE 3-1: P	ORTA	FUNCTIONS
--------------	------	-----------

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2	bit2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input.

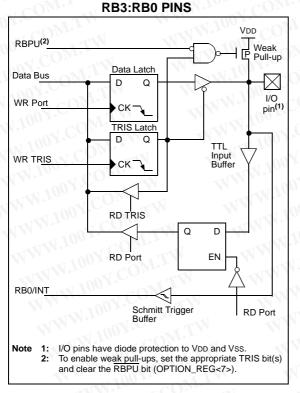
Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
05h	PORTA	. N .1	<u> </u>	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA		067.	PORTA	Data Di	rection R	egister	7001.	COM.	11 1111	11 1111
9Fh	ADCON1		1001		A CONTRACT OF		PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D converter must be set to one of the following modes where PCFG2:PCFG0 = 100, 101, 11x.


3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

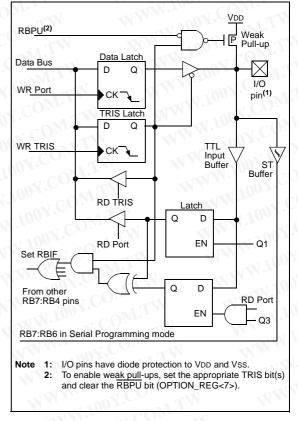
BLOCK DIAGRAM OF

FIGURE 3-3:

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.


The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

This interrupt on mismatch feature, together with software configureable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

RB0/INT is discussed in detail in Section 12.10.1.

FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS

1

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TABLE 3-3: PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

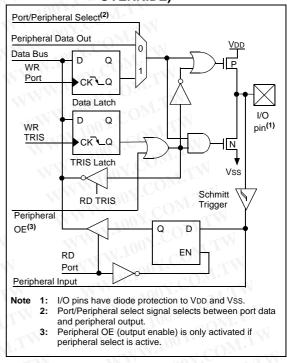
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	Data Directio	on Regist	er		WW	A	NY.C	1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).


PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

FIGURE 3-5:

PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT **OVERRIDE**)

PIC16F7X

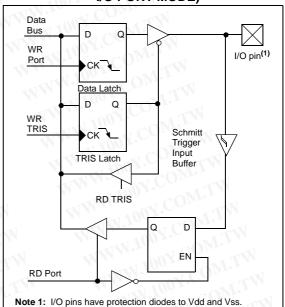
Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/ Compare2 output/PWM2 output.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or Data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output.
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive or Synchronous Data.

TABLE 3-5: PORTC FUNCTIONS

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
87h	TRISC	PORTC	Data Dir	ection Re	egister			N.100	- CC	1111 1111	1111 1111

PORTD and TRISD Registers 3.4


This section is not applicable to the PIC16F73 or PIC16F76.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configureable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

> 特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

FIGURE 3-6: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

PORTD FUNCTIONS TABLE 3-7:

Legend: ST = Schmitt Trigger input, TTL = TTL input

W.100Y.COM Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port mode.

SUMMARY OF REGISTERS ASSOCIATED WITH PORTD **TABLE 3-8:**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
8h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	uuuu uuuu
3h	TRISD	PORTI	D Data D	Direction	Register		WW	W.S	N.CO.	1111 1111	1111 1111
9h	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE D	ata Directio	on bits	0000 -111	0000 -111

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

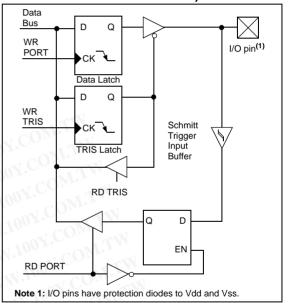
PIC16F7X

3.5 PORTE and TRISE Register

This section is not applicable to the PIC16F73 or PIC16F76.

PORTE has three pins, RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configureable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). Ensure ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.


Register 3-1 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

FIGURE 3-7: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1		
	IBF	OBF	IBOV	PSPMODE	—	bit2	bit1	bit0		
	bit 7			< C	OM.TW	KI.		bit 0		
bit 7	IBF: Input E 1 = A word	Buffer Full S	eceived and is	<u>Bits</u> s waiting to be re	ead by the	CPU				
bit 6	1 = The out			eviously written	word					
bit 5	1 = A write (must b		nen a previou software)	oit (in Microproc Isly input word h						
bit 4	1 = Parallel	: Parallel SI Slave Port I Purpose I/		e Select bit	N.100Y	COM.	W.			
bit 3	Unimplem	ented: Read	d as '0'		勝特力材料 886-3-5753170					
bit 2		ta Directior ion Control	<u>n Bits</u> bit for pin RE	2/CS/AN7	胜特力电子(上海) 86-21-5415173 胜特力电子(深圳) 86-755-832987 Http://www.100y.com.tw					
bit 1	Bit1 : Direct 1 = Input 0 = Output		bit for pin RE	1/WR/AN6	WWW.	1.100Y.C	COM.TY	4		
	Bit0: Direct	ion Control	bit for pin RE	0/RD/AN5						
bit 0	1 = Input 0 = Output									

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

- n = Value at POR reset

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

TABLE 3-9: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in Parallel Slave Port mode or analog input: RD 1 = Idle 0 = Read operation. Contents of PORTD register output to PORTD I/O pins (if chip selected).
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in Parallel Slave Port mode or analog input: WR 1 = Idle 0 = Write operation. Value of PORTD I/O pins latched into PORTD register (if chip selected).
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in Parallel Slave Port mode or analog input: CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 3-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
09h	PORTE	-	AL.				RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE D	ata Directi	ion Bits	0000 -111	0000 -111
9Fh	ADCON1	—	_	N ¹⁰	MO5		PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.

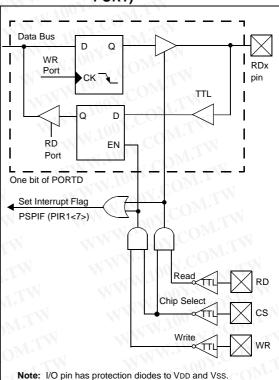
3.6 Parallel Slave Port

The Parallel Slave Port is not implemented on the PIC16F73 or PIC16F76.

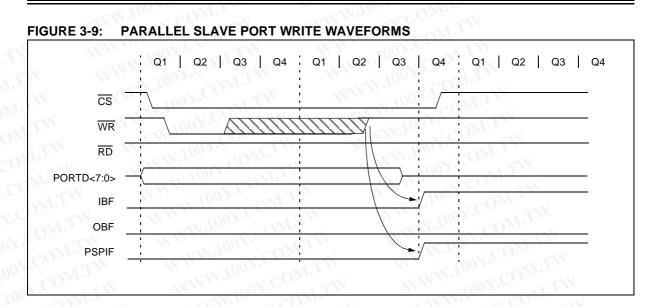
PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In Slave mode, it is asynchronously readable and writable by the external world through RD control input pin RE0/RD and WR control input pin RE1/WR.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, <u>RE1/WR</u> to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG3:PCFG0 (ADCON1<3:0>) must be set to configure pins RE2:RE0 as digital I/O.

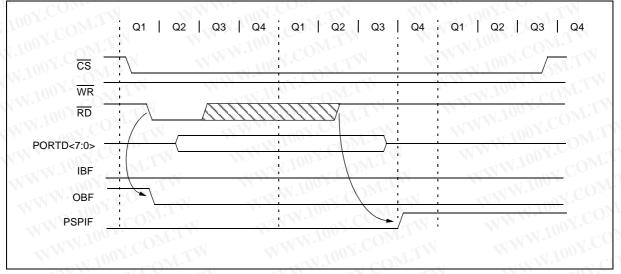
There are actually two 8-bit latches. One for data output and one for data input. The user writes 8-bit data to the PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the external device is controlling the direction of data flow.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), the Input Buffer Full (IBF) status flag bit (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 3-9). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The Input Buffer Overflow (IBOV) status flag bit (TRISE<5>) is set if a second write to the PSP is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full (OBF) status flag bit (TRISE<6>) is cleared immediately (Figure 3-10) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.


When not in PSP mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).


FIGURE 3-8: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100v.com.tw 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

FIGURE 3-10: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 3-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
08h	PORTD	Port data latch when written: Port pins when read								xxxx xxxx	uuuu uuuu
09h	PORTE	M-2	KHC'	<u>Dre</u>			RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE Data Direction Bits			0000 -111	0000 -111
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	AL VI		$_{1}CO$		_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

© 2000 Microchip Technology Inc.

DS30325A-page 39

PIC16F7X

4.0 READING PROGRAM MEMORY

The FLASH Program Memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory. These registers are:

- PMCON1
- PMDATA
- PMDATH
- PMADR
- PMADRH

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATA registers form a two byte word, which holds the 14-bit data for reads. The PMADRH:PMADR registers form a two byte word, which holds the 13-bit address of the FLASH location being accessed. These devices can have up to 8K words of program FLASH, with an address range from 0h to 3FFFh. The unused upper bits in both the PMDATH and PMADRH registers are not implemented and read as "0's".

4.1 PMADR

The address registers can address up to a maximum of 8K words of program FLASH.

When selecting a program address value, the MSByte of the address is written to the PMADRH register and the LSByte is written to the PMADR register. The upper MSbits of PMADRH must always be clear.

4.2 PMCON1 Register

PMCON1 is the control register for memory accesses.

The control bit RD initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 4-1: PMCON1 REGISTER (ADDRESS 18Ch)

Jur	R-1	U-0	U-0	U-0	U-x	U-0	U-0	R/S-0
C Nr.			NN.	V.COm	- 177	AN N	.Ym	RD
bit	7		W.IV	- cON		-151	1.10	bit 0

bit 7 bit 6-1

Unimplemented: Read as '0'

Reserved: Read as '1'

bit 0

- RD: Read Control bit
 1 = Initiates a FLASH read, RD is cleared in hardware. The RD bit can only be set (not cleared) in software.
- 0 = Does not initiate a FLASH read

Legend:	WW TOO	Y.CO. TW	WW 100Y
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

4.3 Reading the FLASH Program Memory

A program memory location may be read by writing two bytes of the address to the PMADR and PMADRH registers and then setting control bit RD (PMCON1<0>). Once the read control bit is set, the microcontroller will use the next two instruction cycles to read the data. The

EXAMPLE 4-1: FLASH PROGRAM READ

STATUS, RP1

;

BSF

data is available in the PMDATA and PMDATH registers after the second NOP instruction. Therefore, it can be read as two bytes in the following instructions. The PMDATA and PMDATH registers will hold this value until another read operation.

勝特力材料	886-3-5753170
胜特力电子(上海)	86-21-54151736
胜特力电子(深圳)	86-755-83298787
Http://www.	100y. com. tw

	BCF	STATUS,	RP0	;	Bank 2	C Http://www.100y.com.tw
	MOVF	ADDRH, V	W	;	WW.100	I COM and
	MOVWF	PMADRH		;	MSByte of Program	Address to read
	MOVF	ADDRL, V	W	;		
	MOVWF	PMADR		;	LSByte of Program	Address to read
	BSF	STATUS,	RP0	;	Bank 3	
Required	BSF	PMCON1,	RD	;	EEPROM Read	
Sequence						
	NOP		COM.	me	emory is read in th	ne next two cycles after BSF PMCON1,RD
	NOP			;		
	BCF	STATUS,	RP0	;	Bank 2	
	MOVF	PMDATA,	W	;	W = LSByte of Prog	gram PMDATA
	MOVF	PMDATH,	W	Ó	W = MSByte of Prog	gram PMDATA

4.4 Operation During Code Protect

FLASH program memory has its own code protect mechanism. External Read and Write operations are disabled if this mechanism is enabled.

The microcontroller can read and execute instructions out of the internal FLASH program memory, regardless of the state of the code protect configuration bits. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TABLE 4-1: REGISTERS ASSOCIATED WITH PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
10Dh	PMADR	Address Re	Address Register Low Byte								uuuu uuuu
10Fh	PMADRH	_	-	Address Register High Byte						xxxx xxxx	uuuu uuuu
10Ch	PMDATA	Data Regis	ter Low Byt	e		N.W.W	~1 C	ONL		xxxx xxxx	uuuu uuuu
10Eh	PMDATH	1002.	- Mo	Data Regi	Data Register High Byte					xxxx xxxx	uuuu uuuu
18Ch	PMCON1	_(1)		<u>N</u> T.	<		10 <u>0</u> x.	No	RD	10	10

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented read as '0'. Shaded cells are not used during FLASH access. Note 1: This bit always reads as a '1'.

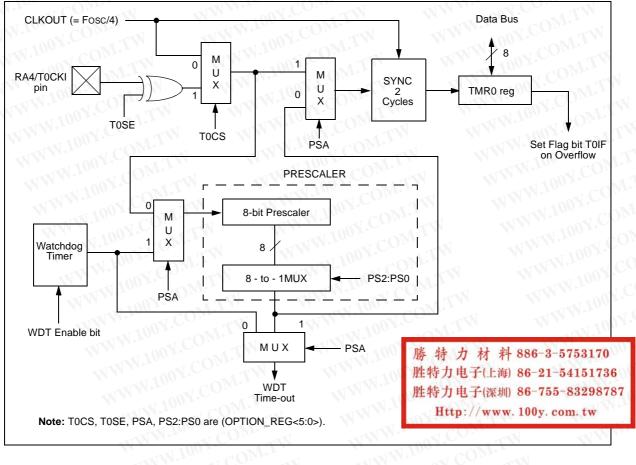
5.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Additional information on the Timer0 module is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).


Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register. Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 5.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. Section 5.3 details the operation of the prescaler.

5.1 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine, before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut off during SLEEP.

FIGURE 5-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

5.3 **Prescaler**

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the

REGISTER 5-1: OPTION REG REGISTER DAA/ 4

DAM 1

DAM 1

DAM

Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. This prescaler is not readable or writable (see Figure 5-1).

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF1, MOVWF1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0, will clear the prescaler count but will not change the prescaler assignment.

DAN

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1 R/W-1
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1 PS0
	bit 7	MM	100Y.	I.I.M	V	1.1	bit 0
	WT						
it 7	RBPU				N I	nde alt la	LL M OOD D FEFT
it 6	INTEDG					Contraction of the second second	材料 886-3-575317
it 5	1 = Transi	tion on T0CK	urce Select b I pin cycle clock ((2 S	胜特力电	子(上海) 86-21-541517 子(深圳) 86-755-83298 /www. 100y. com. tw	
it 4	1 = Increm	nent on high-		it ion on T0CKI p ion on T0CKI p		W	WW.100X.COM
bit 3	1 = Presca		ment bit ed to the WD ed to the Tim				
it 2-0	PS2:PS0:	Prescaler Ra	ate Select bits				
	Bit Value	TMR0 Rate	WDT Rate				
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128	WWW.100 WWW.100 WWW.10 WWW.10 WWW.10	X.COM 0Y.COM 00Y.COM 100Y.CO N.100Y.CO	TW ATW M.TW M.TW OM.TW OM.TV	MMM.100X.0 MMM.100X MMM.100X
	Legend:	1004.00	M.TW	W	W.1001.	COM.T	N
	R = Reada	able bit	W = W	ritable bit	U = Unimple	emented bit	, read as '0'
		at POR res	et '1' = Bi	'0' = Bit is cl		x = Bit is unknown	

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
01h,101h	TMR0	Timer0	Module's R	Register		xxxx xxxx	uuuu uuuu				
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

6.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L), which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- · As a timer
- As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "RESET input". This RESET can be generated by either of the two CCP modules (Section 8.0). Register 6-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N						
	bit 7							bit 0						
bit 7-6	Unimplem	ented: Rea	d as '0'											
bit 5-4		T1CKPS0:	Timer1 Input	Clock Prescal	e Select bits									
		10 = 1:4 Prescale value												
	01 = 1:2 Prescale value 00 = 1:1 Prescale value													
L:1 0 Y.				Control bit										
bit 3		tor is enable	cillator Enable	e Control bit										
			ff (The oscilla	tor inverter is	turned off to	eliminate po	ower drain)							
bit 2	T1SYNC:	Timer1 Exte	rnal Clock Inp	ut Synchroniz	ation Control	bit								
	TMR1CS =	= 1												
	1 = Do not synchronize external clock input													
	0 = Synchronize external clock input													
	TMR1CS =		ort uses the	internal clock		- 0								
bit 1	This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0. TMR1CS: Timer1 Clock Source Select bit													
	1 = External clock from pin RC0/T10S0/T1CKI (on the rising edge)													
		al clock (Fos		WW.	N.COM									
bit 0	TMR10N: Timer1 On bit													
	1 = Enables Timer1 0 = Stops Timer1													
	U = Stops TimerT													
	Legend:													
		- n = Value at POR reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown												
		勝特	力材料8	86-3-57531	70 00									
		胜特力	电子(上海) 8	6-21-54151	736									
		胜特力	电子(深圳) 8	6-755-8329	8787									
		Htt	p://www.1	00y. com. tw	1.10									

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

Timer1 Operation in Timer Mode 6.1

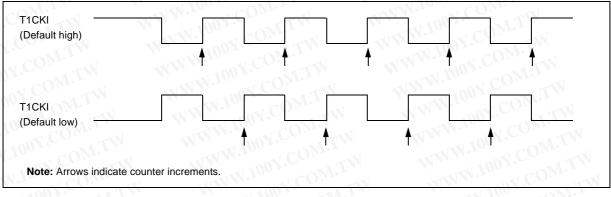

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect, since the internal clock is always in sync.

FIGURE 6-1: TIMER1 INCREMENTING EDGE

6.2 **Timer1 Counter Operation**

Timer1 may operate in Asynchronous or Synchronous mode, depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

6.3 Timer1 Operation in Synchronized **Counter Mode**

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2, when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when bit T1OSCEN is cleared.

If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however, will continue to increment.

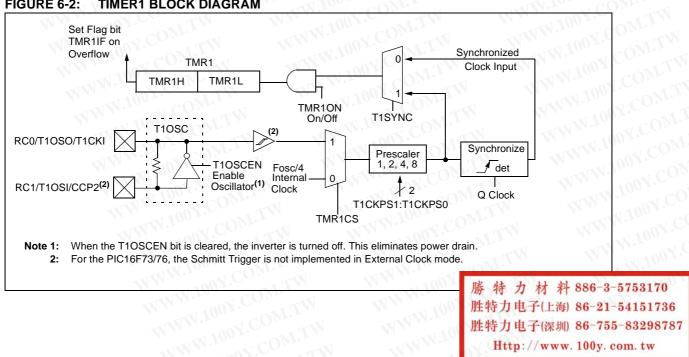


FIGURE 6-2: TIMER1 BLOCK DIAGRAM

Advance Information

6.4 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u>

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 6.4.1).

In Asynchronous Counter mode, Timer1 can not be used as a time base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will guarantee a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

6.5 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TABLE 6-1: C

CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2						
LP	32 kHz	33 pF	33 pF						
	100 kHz	15 pF	15₁pF						
W.10	200 kHz	15 pF	15 pF						
These va	alues are for o	design guida	nce only.						
Crystals Tes	sted:		>0						
32.768 kHz	Epson C-00	1832, 768K-A	± 20 PPM						
100 kHz	Epson G-21	00.00 KC-P	± 20 PPM						
200 kHz	STR XTL 20	0.000 kHz	± 20 PPM						
 Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 									

6.6 <u>Resetting Timer1 using a CCP Trigger</u> Output

If the CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
M.T.	and CCP2 modules will not set interrupt
Dr.	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode, to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

6.7 <u>Resetting of Timer1 Register Pair</u> (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other RESET, except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

6.8 <u>Timer1 Prescaler</u>

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding re	gister for	the Least S	Significant I	Byte of the	16-bit TMR	1 register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding re	olding register for the Most Significant Byte of the 16-bit TMR1 register								uuuu uuuu
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

7.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time base for the PWM mode of the CCP module(s). The TMR2 register is readable and writable, and is cleared on any device RESET.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

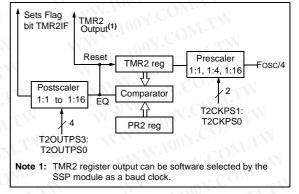
Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Register 7-1 shows the Timer2 control register.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

7.1 <u>Timer2 Prescaler and Postscaler</u>

The prescaler and postscaler counters are cleared when any of the following occurs:


- a write to the TMR2 register
- a write to the T2CON register
- any device RESET (POR, MCLR Reset, WDT Reset or BOR)

TMR2 is not cleared when T2CON is written.

7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate shift clock.

FIGURE 7-1: TIMER2 BLOCK DIAGRAM

REGISTER 7-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CO <u>M</u> .	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7							bit 0
bit 7	Unimple	mented: Rea	d as '0'					
bit 6-3	0000 = 1 0001 = 1	3:TOUTPS0 : :1 Postscale :2 Postscale :3 Postscale	Timer2 Outp	out Postscale	Select bits	N N	WWW.	.100Y.CC
	100Y.C	:16 Postscale	N N		胜特大	力材料 」电子(上海 」电子(深圳	86-21-5	4151736
bit 2	TMR2ON 1 = Timer 0 = Timer		bit		10 CHt	tp://www	7. 100y. com	n. tw
bit 1-0	00 = Pres 01 = Pres	1:T2CKPS0: scaler is 1 scaler is 4 scaler is 16	Timer2 Clocl	k Prescale Se	elect bits			
	Legend:	100Y.C	WTI	N	100	N.Com	NT.	A.A.
	R = Read	lable bit	W = V	Vritable bit	U = Unim	plemented l	bit, read as	'0'
		e at POR res		Bit is set	101	scleared	x = Bit is u	

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

PIC16F7X

Http://www. 100y. com. tw

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 Mod	lule's Registe	er						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

8.0 **CAPTURE/COMPARE/PWM** MODULES

Each Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Both the CCP1 and CCP2 modules are identical in operation, with the exception being the operation of the special event trigger. Table 8-1 and Table 8-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

8.1 CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match and will reset Timer1.

WWW.100Y.COM.TW

8.2 **CCP2** Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP2CON register controls the operation of CCP2. The special event trigger is generated by a compare match and will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Additional information on CCP modules is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023) and in Application Note 594, "Using the CCP Modules" (DS00594).

TABLE 8-1: CCP MODE - TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 8-2:	INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

WW.100Y.COM.TW

WWW.100Y.COM.TW

Advance Information WWW.100Y

REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)

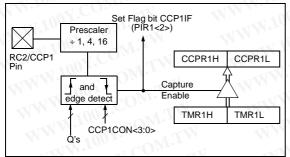
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
	bit 7				TIM	N		bit 0
bit 7-6	Unimplem	ented: Rea	ad as '0'			Ŵ		
bit 5-4	CCPxX:CO	CPxY: PWN	I Least Signif	icant bits			料 886-3-6	
	<u>Capture M</u> Unused	ode:					毎)86-21-5 川)86-755-	54151736 -83298787
	<u>Compare N</u> Unused	<u>/lode:</u>			00	ttp://ww	w. 100y. co	om. tw
	<u>PWM Mod</u> These bits		LSbs of the	PWM duty cy	cle. The eigh	t MSbs are	found in CC	PRxL.
bit 3-0	0000 = Ca 0100 = Ca 0101 = Ca 0110 = Ca 0111 = Ca 1000 = Cc 1001 = Cc 1010 = Cc 1011 = Cc CC	pture/Comp pture mode pture mode pture mode mpare mod mpare mod CPx pin is un mpare mod CP1 resets	e, every falling e, every rising e, every 4th ri e, every 16th le, set output le, clear outp le, generate s naffected) le, trigger spe	sabled (resets g edge l edge sing edge	CPxIF bit is s CCPxIF bit is upt on match CPxIF bit is s	et) set) n (CCPxIF b set, CCPx p	in is unaffec	ted);
	Legend:	WWW	1001.00	MTM	AN N	100	N. CON	TH
		WW.	· · · ·	Jun .	· · · · · · · · · · · · · · · · · · ·		V.COM	WT

R = Readable	e bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at	t POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following and is configured by CCPxCON<3:0>:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

8.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.3.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

8.3.4 CCP PRESCALER

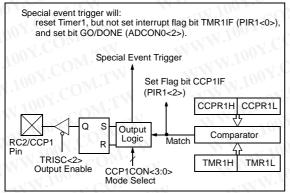
There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF CCP1CON MOVLW NEW_CAPT_PS MOVWF CCP1CON ;Turn CCP module off ;Load the W reg with ; the new prescaler ; move value and CCP ON ;Load CCP1CON with this ; value

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


8.4 <u>Compare Mode</u>

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 8-2: COMPARE MODE OPERATION BLOCK DIAGRAM

8.4.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the PORTC
	I/O data latch.

8.4.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.4.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCPIF bit is set causing a CCP interrupt (if enabled).

8.4.4 SPECIAL EVENT TRIGGER

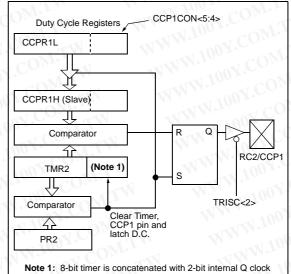
In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special event trigger output of CCP2 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

Note:	The special event trigger from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

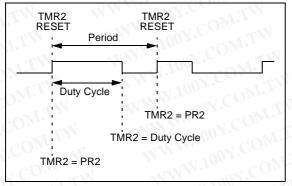
8.5 PWM Mode (PWM)


In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
N	latch.

Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 8.5.3.


or 2 bits of the prescaler to create 10-bit time base.

A PWM output (Figure 8-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 8-4: PWM OUTPUT

8.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 8.3) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

8.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

```
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •
Tosc • (TMR2 prescale value)
```

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

Resolution =
$$\frac{\log(\frac{Fosc}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

8.5.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 8-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4		N.COM	1	WIN Y
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on: DR, DR	all c	ie on other SETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	N <u>N</u>	v t. 10		W7			1.10°	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2			1002.0	T.IT	N _		10	CCP2IE	7911	0		0
87h	TRISC	PORTC D	ata Direo	ction Registe	ər	TW	N.		001.0	1111	1111	1111	1111
0Eh	TMR1L	Holding re	gister for	r the Least S	Significant B	yte of the 16	-bit TMR1 r	register	1004.0	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	gister fo	r the Most S	ignificant By	te of the 16-	bit TMR1 re	egister	Yool	xxxx	xxxx	uuuu	uuuu
10h	T1CON			T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture/C	ompare/	PWM regist	er1 (LSB)	DW.	T.	W	W.100	xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	ompare/	PWM regist	er1 (MSB)	OM.TY	N		W.10	xxxx	xxxx	uuuu	uuuu
17h	CCP1CON		1	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh	CCPR2L	Capture/C	ompare/	PWM regist	er2 (LSB)	CO.	LW	N		xxxx	xxxx	uuuu	uuuu
1Ch	CCPR2H	Capture/C	ompare/	PWM regist	er2 (MSB)	1.00	WT	1	N N N	xxxx	xxxx	uuuu	uuuu
1Dh	CCP2CON		—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

TABLE 8-4: NREGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1. WWW.100Y.COM WW.100

Note 1: The PSP is not implemented on the PIC16F73/76; always maintain these bits clear.

TABLE 8-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	. Pool	<u>COF</u>	TVT-		M.T.	OGIC		CCP2IF	0	0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	N.100	105	<u>[]]</u>	_	100	100	COM.	CCP2IE	0	0
37h	TRISC	PORTC D	ata Direct	ion Registe	r	W.	N 1003		1.1.1	1111 1111	1111 1111
11h	TMR2	Timer2 mo	odule's reg	ister		MW	001	N.C.	WIN	0000 0000	0000 0000
92h	PR2	Timer2 mo	odule's per	iod register	N	W	11.2	N.CO	Wn .	1111 1111	1111 1111
l2h	T2CON	NTN.	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/C	ompare/P	WM register	1 (LSB)	N	L.M.	001.	M.L	xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/P	WM register	1 (MSB)	V	M	100%.	-M.T	xxxx xxxx	uuuu uuuu
17h	CCP1CON	WTx-	1.70	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Capture/C	ompare/P	WM register	2 (LSB)	•	W	1.100	1 COM	xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/C	ompare/P	WM register	2 (MSB)		NA .	W.100	102	xxxx xxxx	uuuu uuuu
1Dh	CCP2CON			CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

9.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

9.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

An overview of I^2C operations and additional information on the SSP module can be found in the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023).

Refer to Application Note AN578, "Use of the SSP Module in the I^2 C Multi-Master Environment."

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

9.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module. Additional information on the SPI module can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023A).

SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7	JOY.COM	I.TW	WW	100	COM.T	N	bi
oit 7	SMP. SPI F) ata Input Sa	mole Phase					
N N	SPI Master	1	inple i nase	N N				
	1 = Input da	ata sampled a ata sampled a	at end of dat at middle of	ta output tim data output	e time (Microv	wire [®])		
		<u>node:</u> be cleared wł	nen SPI is u	ised in Slave	mode			
	<u>I²C mode:</u> This bit mus	st be maintair	ned clear					
oit 6	CKE: SPI C	lock Edge Se	elect (Figure	e 9-2, Figure	9-3, and Fi	gure 9-4)		
		insmitted on			rowire [®] alte	rnate)		
		insmitted on	falling edge	of SCK				
	<u>CKP = 1</u> 1 = Data tra 0 = Data tra	insmitted on insmitted on	falling edge rising edge	of SCK (Mic of SCK	rowire [®] def	ault)		
	I ² C mode: This bit mus	st be maintair	ned clear					
oit 5	1 = Indicate	ddress bit (l ² s that the las s that the las	t byte recei	ved or transm				
oit 4				odule is disat	oled, or whe	en the START	bit is detecte	ed last.
		s that a STO it was not de		een detected	last (this bi	t is '0' on RES	SET)	
oit 3	This bit is cl SSPEN is c	leared.	the SSP mo			n the STOP I		d last.
	1 = Indicate 0 = START	bit was not d	etected last	teen delecte	u last (this t	oit is '0' on RE	:SET)	
bit 2	R/W : Read/ This bit hold	Write bit Info Is the R/W bi	rmation (I ² C t information	C mode only) n following th	e last addre	ess match. Th	is bit is only	valid fr
	the address 1 = Read 0 = Write	match to the	e next STAR	RT bit, STOP	bit, or ACK	bit.		
oit 1	UA: Update	Address (10	-bit I ² C moderneeds to	de only) update the a	ddress in th	ne SSPADD r	eaister	
	0 = Address	s does not ne	ed to be up	dated			J	
oit 0 🛛 🔨	BF: Buffer F	Full Status bit						
	1 = Receive	PI and I ² C me complete, S not complet	SPBUF is f					
	Transmit (12	C mode only	<u>):</u> 					
		it in progress it complete, S						
	Legend:	N.100Y.C	OPP. TY	N	WWW.	100×.CO	MITH	
	R = Reada	ole bit	W = W	/ritable bit	U = Unir	nplemented b	oit, read as 'C)'
	- n – Value	at POR rese	t '1' = B	it is set	'0' - Bit	is cleared	x = Bit is ur	wnown

Advance Information

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

REGISTER 9-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7	1 COM	A.	NW Y	and .Co	WT -	•	bit 0

bit 7

WCOL: Write Collision Detect bit

- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- $0 = No \ collision$

bit 6

WWW.100Y.COM

WWW.100Y.CO

SSPOV: Receive Overflow Indicator bit

In SPI mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
- 0 = No overflow

In I²C mode:

1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. SSPOV must be cleared in software in either mode. 0 = No overflow

SSPEN: Synchronous Serial Port Enable bit

In SPI mode:

- 1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

In I²C mode:

- 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins 0 = Disables serial port and configures these pins as I/O port pins
- In both modes, when enabled, these pins must be properly configured as input or output.

bit 4

bit 5

CKP: Clock Polarity Select bit

- In SPI mode:
- 1 = Idle state for clock is a high level (Microwire[®] default)
- 0 = Idle state for clock is a low level (Microwire[®] alternate)

In I²C mode:

SCK release control

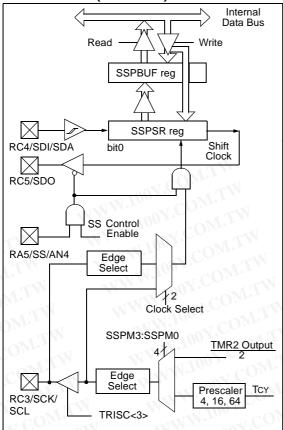
1 = Enable clock

0 = Holds clock low (clock stretch). (Used to ensure data setup time.)

bit 3-0

- SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
- 0000 = SPI Master mode, clock = Fosc/4
- 0001 = SPI Master mode, clock = Fosc/16
- 0010 = SPI Master mode, clock = Fosc/64
- 0011 = SPI Master mode, clock = TMR2 output/2
- 0100 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control enabled.
- 0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.
- $0110 = I^2C$ Slave mode, 7-bit address
- $0111 = I^2C$ Slave mode, 10-bit address

 $1011 = I^2C$ firmware controlled Master mode (slave idle)


- $1110 = I^2C$ Slave mode, 7-bit address with START and STOP bit interrupts enabled
- 1111 = I²C Slave mode, 10-bit address with START and STOP bit interrupts enabled

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

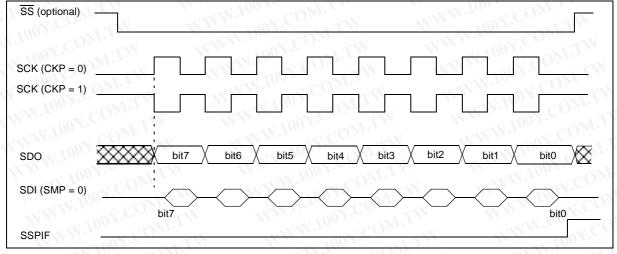
PIC16F7X

FIGURE 9-1: SSP BLOCK DIAGRAM (SPI MODE)

To enable the serial port, SSP enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set and ADCON must be configured such that RA5 is a digital I/O

Note 1: When the SPI is in Slave mode with SS pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the SS pin is set to VDD.


2: If the SPI is used in Slave mode with CKE = '1', then the SS pin control must be enabled.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

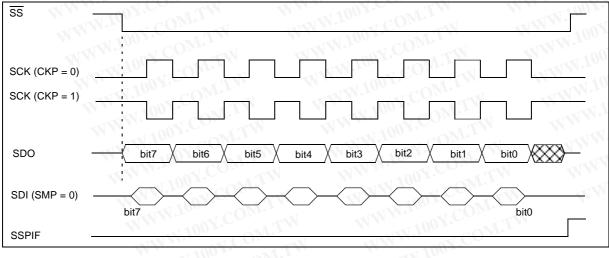

Http://www.100y.com.tw

FIGURE 9-2: SPI MODE TIMING, MASTER MODE SCK (CKP = 0, CKE = 0)SCK (CKP = 0. CKE = 1) SCK (CKP = 1, CKE = 0)SCK (CKP = 1, CKE = 1) SDO bit7 bit6 bit5 bit3 bit2 bit1 bit0 bit4 SDI (SMP = 0) bit7 bit0 SDI (SMP = 1) bit7 bit0 SSPIF

FIGURE 9-3: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)

© 2000 Microchip Technology Inc. Adv

PIC16F7X

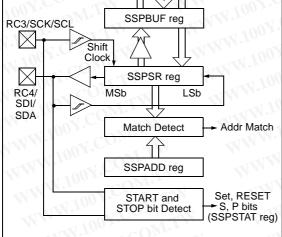
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh. 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
87h	TRISC	PORTC Da	ta Directio	on Registe	er					1111 1111	1111 1111
13h	SSPBUF	Synchronou	us Serial F	Port Recei	ve Buff	er/Transm	it Registe	V7. 1	I	xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	—	_	PORTA I	Data Di	rection Re	gister	·OW.		11 1111	11 1111
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 9-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


9.3 SSP I²C Operation

The SSP module in I^2C mode, fully implements all slave functions, except general call support, and provides interrupts on START and STOP bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The SSP module functions are enabled by setting SSP enable bit SSPEN (SSPCON<5>).

FIGURE 9-5: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled to support firmware Master mode
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled to support firmware Master mode
- I²C START and STOP bit interrupts enabled to support firmware Master mode, Slave is idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

Additional information on SSP I²C operation can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023A).

9.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. They include (either or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 9-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirements of the SSP module, are shown in timing parameter #100 and parameter #101.

9.3.1.1 Addressing

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

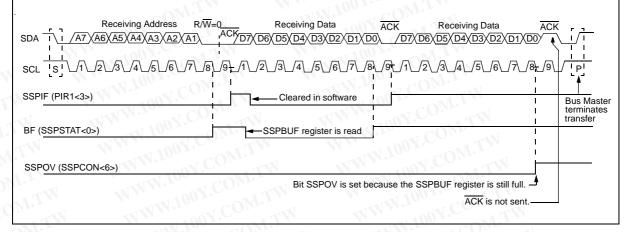
In 10-bit address mode, two address bytes need to be received by the slave (Figure 9-7). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 - 9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

	its as Data is Received	SSPSR \rightarrow SSPBUF	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs
BF	SSPOV	D.Vo.	i uise	if enabled)
0	000	Yes	Yes	Yes
100	0	No	No	Yes
1 100	1.1.1	No	No	Yes
0	N.C.	No	No	Yes
lote: S	Shaded cells sho	w the conditions where the us	er software did not proper	ly clear the overflow condition

TABLE 9-2: DATA TRANSFER RECEIVED BYTE ACTIONS


9.3.1.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address <u>byte</u> overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON<6>) is set. This is an error condition due to the user's firmware. An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

勝特力材料 886-3-5753170
胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
Http://www. 100y. com. tw

FIGURE 9-6: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

9.3.1.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 9-7). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the ACK pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 9-7: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

9.3.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- START condition
- STOP condition
- · Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode idle (SSPM3:SSPM0 = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

9.3.3 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions, allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

	110 -				1.			×			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h 🔹	SSPBUF	Synchrono	ous Serial	Port Rece	eive Buf	fer/Transr	nit Regist	er	NT.	xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	ous Serial	Port (I ² C	mode) A	Address R	legister	V.Co.	WILL	0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC D	ata Direct	ion registe	er		WW.		.OM.,	1111 1111	1111 1111

TABLE 9-3: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode. **Note 1:** PSPIF and PSPIE are reserved on the PIC16F73/76; always maintain these bits clear.

2: Maintain these bits clear in I²C mode.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

© 2000 Microchip Technology Inc.

Advance Information

DS30325A-page 71

10.0 **UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)**

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
	CSRC	TX9	TXEN	SYNC SYNC	ANT.	BRGH	TRMT	TX9D	
	bit 7	WW. P	Y.COM	WT.	MMM	N.100Y.C	OM.TV	bit 0	
bit 7	CSRC: Clo	ock Source Se	elect bit						
	Asynchrone Don't care	ous mode:							
		mode (Clock	c generated ir from external	nternally from source)	BRG)				
bit 6	1 = Selects	Transmit Ena s 9-bit transm s 8-bit transm	ission			勝等		料 886-3-575 海) 86-21-541	
bit 5	TXEN : Tran 1 = Transm 0 = Transm		bit 100					训) 86-755-83 ww. 100y. com.	
	Note:	SREN/CREM	V overrides T	XEN in SYNC	mode.		W.L	A CONT.	ĸĨ
bit 4	1 = Synchr	ART Mode S onous mode pronous mode							
bit 3	Unimplem	ented: Read	as '0'						
bit 2	BRGH: Hig	h Baud Rate	Select bit						
	<u>Asynchron</u> 1 = High sp 0 = Low sp	beed							
	<u>Synchrono</u> Unused in								
bit 1	TRMT : Trai 1 = TSR er 0 = TSR fu	mpty	egister Status	bit					
bit 0	TX9D: 9th	bit of transmi	t data. Can b	e parity bit.					
	Legend:		1.		N.LUI	COM	s N	WWW.10	
	R = Reada	ble bit	W = Wr	itable bit	U = Unimpl	lemented bit	, read as '0	, N	
	- n = Value	at POR rese	et '1' = Bit	is set	'0' = Bit is o		x = Bit is ur		

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x
	SPEN	RX9	SREN	CREN	. 100Y.	FERR	OERR	RX9D
	bit 7	NV.CON	WTT	WW	1009	COn .	IM	bit 0
	WWW.	OJ VO	WILL					
it 7				RC7/RX/DT a	Ind RC6/TX	(/CK pins a	s serial port	pins)
bit 6	RX9 : 9-bit F 1 = Selects 0 = Selects		on					
oit 5	SREN: Sing							
	<u>Asynchronc</u> Don't care	ous mode:						
		s single rece s single rece	ive	complete.				
	<u>Synchronou</u> Don't care	<u>ıs mode - Sl</u>	ave:					
oit 4	CREN: Con	tinuous Rec	eive Enable	bit of the second se				
		ous mode: s continuous s continuous						
				l enable bit Cl	REN is clea	ared (CREN	l overrides S	SREN)
oit 3	Unimpleme	ented: Read	as '0'					
oit 2	FERR: Fran 1 = Framing 0 = No fram	gerror (Can		by reading R0	CREG regis	ster and rec	eive next va	lid byte)
bit 1	OERR : Ove 1 = Overrur	errun Error b n error (Can		y clearing bit	CREN)			
bit 0	0 = No over RX9D: 9th I		ed Data					
				ated by firmwa	are)			
	Legend:	COM.TW		WWW.10	07.CO	WT.M	4	WW.1001.
	R = Readat	ole bit	W = W	ritable bit	U = Unim	nplemented	bit, read as	'0'
	- n = Value	at POR rese	et '1' = Bi	it is set	'0' = Bit is	s cleared	x = Bit is	unknown

set '0' = E	Bit is cleared	x = Bit is un	nknown	
	CON.		W.I	

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787		
胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787	WWW.100Y.COM.T	
	WWW.100X.COM	胜特力电子(上海) 86-21-54151736
Http://www.100y.com.tw	WWW.100X.CO	胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

100Y.COM.TW

OM.TW

WWW.100Y.COM.TW

WWW.100Y.C

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

PIC16F7X

10.1 **USART Baud Rate Generator (BRG)**

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 10-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 10-1. From this, the error in baud rate can be determined.

It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

10.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 10-1: BAUD RATE FORMULA

1	W.1001.COM.TW WW.1001.C	
ABLE 10-1	: BAUD RATE FORMULA	
SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	<u>[</u>	FERR	OERR	RX9D	0000 -00x	0000 -00x
99h	SPBRG	Baud Ra	ate Gene	erator Re	egister	WT	V		100%	0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

BAUD		Fosc = 20	MHz	CONT	Fosc = 16	MHz	Fosc = 10 MHz		
RATE (K)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)
0.3	-	20.2	100		N 1	-	N -	AL 1-00	-nN
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	70
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2
HIGH	1.221	N -	255	0.977	1.0	255	0.610	M_{II} .	255
LOW	312.500		0	250.000	JTCC	0	156.250		0
BAUD	OM.T	Fosc = 4 M	MHz	Fo	osc = 3.686	64 MHz]		
RATE (K)	COM	% ERROR	SPBRG VALUE	WW.	% ERROR	SPBRG VALUE	N		

TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

DAUD	0M.1	Fosc = 4 M	ИНz	- Fo	Fosc = 3.6864 MHz					
BAUD RATE (K)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)				
0.3	0.300	0	207	0.301	0.33	185				
1.2	1.202	0.17	51	1.216	1.33	46				
2.4	2.404	0.17	25	2.432	1.33	22				
9.6	8.929	6.99	6	9.322	2.90	5				
19.2	20.833	8.51	2	18.643	2.90	2				
28.8	31.250	8.51	1	-11	N -	MY.UU				
33.6	00 -	~0 <u>M</u> .	1	-	V.V.V	CC				
57.6	62.500	8.51	0	55.930	2.90	0 0				
HIGH	0.244	$_{1}CO^{N}$	255	0.218	N.	255				
LOW	62.500	1	0	55.930		0				

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100Y.CO

TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

N.N	E 10-4:	BAUD Fosc = 20 M	RATES F		osc = 16 N	-1100-1	- 1	RGH = ⁷ Fosc = 10 M	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)
0.3	N VI VI	Via	.00	- 12	- N	N - 10	N.C.	T	- N
1.2	5.00	1.100	- coM-	- 1 	-	N.V.	C	<u>DVF</u>	-
2.4	M-W.	00	1.00	11	- 1	1	2.441	1.71	255
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	W-W.	255	3.906	- 10	255	2.441	V.CO	255
LOW	1250.000	<u>'' '</u>	0	1000.000		0	625.000	<u></u>	0
N		- Fosc = 4 N			sc = 3.686	<n 1<="" td=""><td>625.000</td><td>NOY.CC</td><td>0</td></n>	625.000	NOY.CC	0
AUD ATE (K)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)	MM.		
13			100		(1				

BAUD		Fosc = 4 M	IHz	Fo	SC = 3.6864	4 MHz
RATE (K)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)	KBAUD	% ERROR	SPBRG VALUE (DECIMAL)
0.3	-		W-IV	-1 C'O	· · ·	-
1.2	1.202	0.17	207	1.203	0.25	185
2.4	2.404	0.17	103	2.406	0.25	92
9.6	9.615	0.16	25	9.727	1.32	22
19.2	19.231	0.16	12	18.643	2.90	11
28.8	27.798	3.55	8	27.965	2.90	7
33.6	35.714	6.29	6	31.960	4.88	6
57.6	62.500	8.51	3	55.930	2.90	3
HIGH	0.977	-	255	0.874	105	255
LOW	250.000	-	0	273.722	1.4	0

DS30325A-page 76

Advance Information WWW.100Y WWW.100Y.COM.T

WWW.100Y.COM.TW

100X.COM.TW

10.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits, and one STOP bit). The most common data format is 8-bits. An on-chip, dedicated, 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

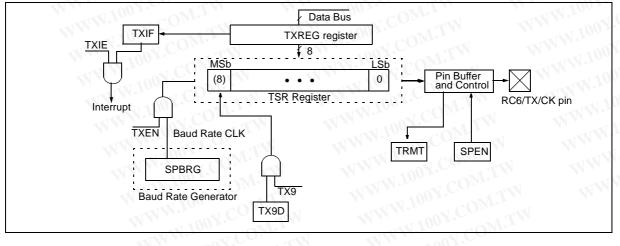
Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

10.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 10-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE


(PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data memory, so it is not available to the user.
2:	Flag bit TXIF is set when enable bit TXEN is set TXIF is cleared by loading TXREG

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 10-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 10-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to hi-impedance.

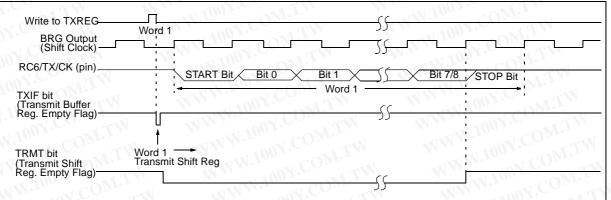
In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM

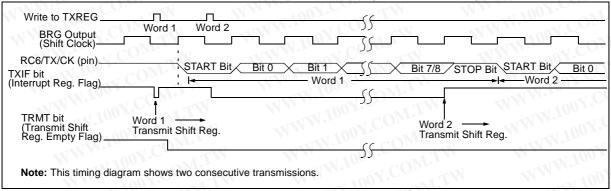
© 2000 Microchip Technology Inc.

PIC16F7X

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


PIC16F7X

Steps to follow when setting up an Asynchronous Transmission:


- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 10.1)
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit TXIE. 3
- If 9-bit transmission is desired, then set transmit 4 bit TX9.

- 5 Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- If 9-bit transmission is selected, the ninth bit 6. should be loaded in bit TX9D.
- Load data to the TXREG register (starts trans-7. mission).
- 8. If using interrupts, ensure that GIE and PIE in the INTCON register are set.

FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

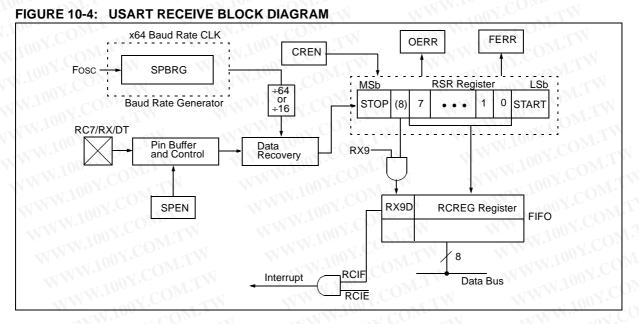
REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION TABLE 10-5:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	ansmit Re	egister	17.	N	N/		01.00	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	<u> </u>	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	0000 0000	0000 0000							

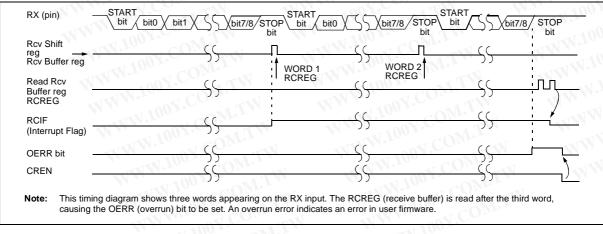
Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X


10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate, or at Fosc.


Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It

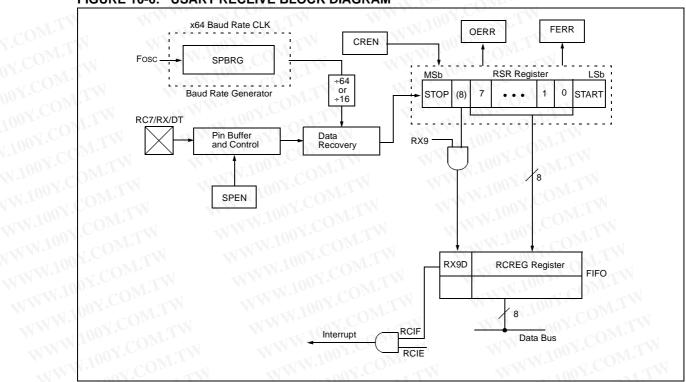
is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received, therefore, it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading RCREG register, in order not to lose the old FERR and RX9D information.

FIGURE 10-5: ASYNCHRONOUS RECEPTION

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

Steps to follow when setting up an Asynchronous Reception:


- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PIE in the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	gister	1	I	VIC	14.10	A CO	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	N	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Registe	r	W	V	14	.NON.C	0000 0000	0000 0000

TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

FIGURE 10-6: USART RECEIVE BLOCK DIAGRAM

TABLE 10-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	N - <u>-</u>	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	egister		N.10	- c0	W.	c1	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	N M.	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	tor Regist	ter	.W.	100	-01/1.	-	0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception. WW.100Y.COM.TW Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

© 2000 Microchip Technology Inc.

Advance Information WWW.100Y WWW.100X.COM

W.100Y.COM.

LOOX.COM

10.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition, enable bit SPEN (RCSTA<7>) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

10.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 10-6. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG is empty and interrupt bit TXIF (PIR1<4>) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 10-7). The transmission can also be started by first loading the TXREG register and then setting bit TXEN (Figure 10-8). This is advantageous when slow baud rates are selected, since the BRG is kept in RESET when bits TXEN, CREN and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally, when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hiimpedance. If either bit CREN or bit SREN is set during a transmission, the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic, however, is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear bit TXEN. If bit SREN is set (to interrupt an on-going transmission and receive a single word), then after the single word is received, bit SREN will be cleared and the serial port will revert back to transmitting, since bit TXEN is still set. The DT line will immediately switch from hiimpedance receive mode to transmit and start driving. To avoid this, bit TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR was empty and the TXREG was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

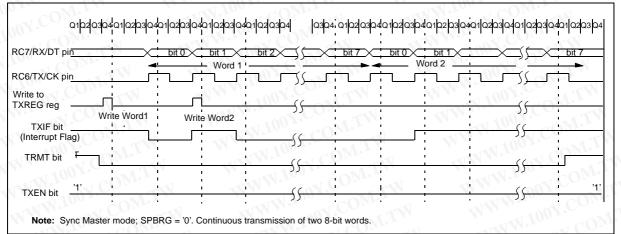

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PIE in the INTCON register are set.

TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	x00- 0000
19h	TXREG	USART Tr	ansmit R	egister	NT.	•	Mr.	100	1.0	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	N —	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	tor Regis	ster			I.W.W		0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

FIGURE 10-7: SYNCHRONOUS TRANSMISSION

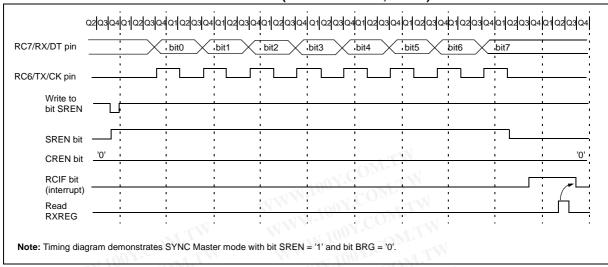
FIGURE 10-8: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

RC7/RX/DT pin	bit0 bit1 bit2 bit6 bit7
RC6/TX/CK pin	
Write to TXREG reg	Γ
TXIF bit	
TRMT bit	
TXEN bit	

10.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the

receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG, in order not to lose the old RX9D information.


Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 7. Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PIE in the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h 🚽	RCSTA	SPEN	RX9	SREN	CREN	SY.	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive R	egister		-TN	1.10	A CON	N.	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	tor Regis	ter	-1	NW.L	a C	Dir.	0000 0000	0000 0000

TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous master reception. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

FIGURE 10-9: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

10.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode, in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

10.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PIE in the INTCON register are set.

10.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PIE in the INTCON register are set.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	x000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART TI	ransmit R	egister	V		NOY.C	TIC	2	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	NR.	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register							0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

Value on: Value on all Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 POR. other Name Bit 1 Bit 0 BOR RESETS TOIE 0Bh. 8Bh. INTCON GIE PEIE INTE RBIF TOIF INTE RBIF 0000 000x 0000 000u 10Bh.18Bh 0Ch PIR1 PSPIF⁽¹⁾ ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000 18h RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x 0000 000x 1Ah RCREG **USART Receive Register** 0000 0000 0000 0000 PIE1 PSPIF⁽¹⁾ ADIE CCP1IE TMR2IE 8Ch RCIE TXIE SSPIE TMR1IE 0000 0000 0000 0000 98h TXSTA CSRC TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010 99h SPBRG **Baud Rate Generator Register** 0000 0000 0000 0000

TABLE 10-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices, always maintain these bits clear.

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The 8-bit analog-to-digital (A/D) converter module has five inputs for the PIC16F73/76 and eight for the PIC16F74/77.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD), or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference), or as digital I/O.

Additional information on using the A/D module can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023) and in Application Note, AN546.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
	bit 7	WWW.	100Y.CO	M.TW	W	W 100Y	COM	bit
bit 7-6	00 = Fosc/ 01 = Fosc/ 10 = Fosc/	/8				scillator)		
bit 5-3	000 = char 001 = char 010 = char 011 = char 100 = char 101 = char 110 = char	50: Analog C nnel 0, (RA0/ nnel 1, (RA1/ nnel 2, (RA2/ nnel 3, (RA3/ nnel 3, (RA3/ nnel 5, (RE0/ nnel 5, (RE1/ nnel 6, (RE1/	AN0) AN1) AN2) AN3) AN3) AN4) AN5) ⁽¹⁾ AN6) ⁽¹⁾	ct bits	胜特大 胜特大	力材料 88 1电子(上海) 80 1电子(深圳) 80 tp://www.10	6-21-541 6-755-83	51736 298787
bit 2	GO/DONE:	: A/D Conve	rsion Status I	oit .				
		nversion in p	in progress	This bit is a) conversion) cleared by har	dware whe	1.100¥.
		D conversion	is complete					1.10
bit 1	the A/E			WW.10				W.100
bit 1 bit 0	the A/E Unimplem ADON: A/E 1 = A/D cor	D conversion ented : Read	l as '0' ule is operati	ng	es no opera	ating current		W.100 WW.100 WW.10
	the A/E Unimplem ADON: A/E 1 = A/D con 0 = A/D con	D conversion ented: Read D On bit nverter modu nverter modu	as '0' ule is operati ule is shutoff	ng and consum		ating current PIC16F74/77 o	only.	WWW.100
	the A/E Unimplem ADON: A/E 1 = A/D con 0 = A/D con	D conversion ented: Read D On bit nverter modu nverter modu	as '0' ule is operati ule is shutoff	ng and consum			only.	1001.W7 10.10W 10.10W 10.10W 10.10W 10.10W 10.10W 10.10W 10.10W 10.10W 10.10W
	the A/E Unimplem ADON: A/E 1 = A/D con 0 = A/D con Note 1:	D conversion ented: Read D On bit nverter modu nverter modu A/D channe	as '0' ule is operati ule is shutoff Is 5, 6 and 7	ng and consum	ented on the		1	N.100 M.M.M.10 M.M.M.M. M.M.M.M. M.M.M.M. M.M.M.M. M.M.M. M.M.M.

REGISTER 11-1: ADCON0 REGISTER (ADDRESS 1Fh)

© 2000 Microchip Technology Inc.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

bit 7-3 Unimplemented: Read as '0'

bit 2-0 PCFG2:PCFG0: A/D Port Configuration Control bits

PCFG2:PCFG0: A/D Port Configuration Control bits									
PCFG2:PCFG0	RA0	RA1	RA2	RA5	RA3	RE0 ⁽¹⁾	RE1 ⁽¹⁾	RE2 ⁽¹⁾	VREF
000	Α	Α	Α	Α	Α	Α	Α	Α	Vdd
001	Α	Α	A	Α	VREF	Α	Α	Α	RA3
010	Α	Α	Α	Α	A	D	D	D	Vdd
011	Α	Α	А	A	VREF	D	D	D	RA3
100	Α	Α	D	D	A	D	D	D	Vdd
101	Α	A	D	D	VREF	D	D	D	RA3
11x	D	D	D	D	D	D	D	D	Vdd

A = Analog input

D = Digital I/O

Note 1: RE0, RE1 and RE2 are implemented on the PIC16F74/77 only.

Legend: R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
WWW.Losov.C	WT. TNO	WWW.LOOY.C	WT

The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
 - Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit

2

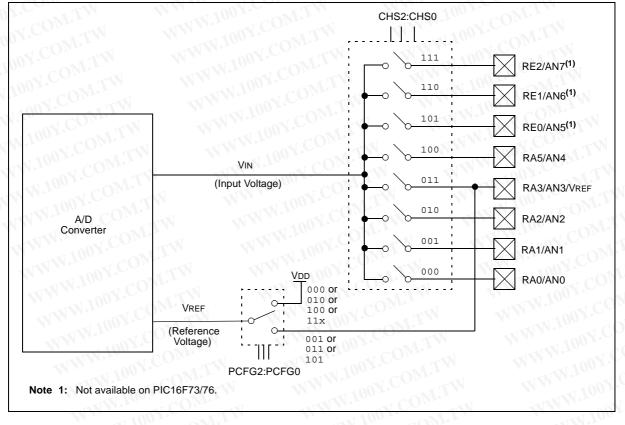

Set GIE bit

FIGURE 11-1: A/D BLOCK DIAGRAM

- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (interrupts disabled)

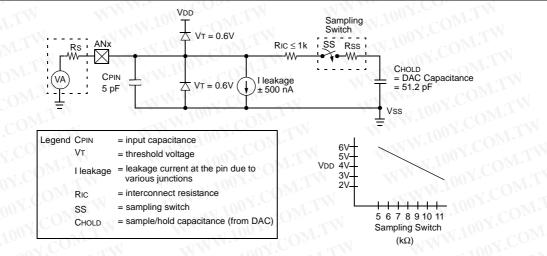
OR

- Waiting for the A/D interrupt
- 6. Read A/D result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

© 2000 Microchip Technology Inc.

Advance Information


11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), Figure 11-2. The source impedance affects the offset voltage at the analog input (due to pin leakage current).

The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), the acquisition must pass before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023A). In general, however, given a max of $10k\Omega$ and at a temperature of 100° C, TACQ will be no more than 16μ sec.

FIGURE 11-2: ANALOG INPUT MODEL

TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

AD Clock Se	AD Clock Source (TAD)					
Operation	ADCS1:ADCS0	Max.				
2Tosc	00	1.25 MHz				
8Tosc	01 1002	5 MHz				
32Tosc	V10 1001.	20 MHz				
RC ^(1, 2, 3)	11	(Note 1)				

Note 1: The RC source has a typical TAD time of 4 µs but can vary between 2-6 µs.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.

3: For extended voltage devices (LC), please refer to the Electrical Specifications section.

11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.0TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

11.3 Configuring Analog Port Pins

The ADCON1, TRISA and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

Note 1:	When reading the port register, all pins
	configured as analog input channels will
	read as cleared (a low level). Pins config-
	ured as digital inputs will convert an ana-
	log input. Analog levels on a digitally
	configured input will not affect the conver-
	sion accuracy.

2: Analog levels on any pin that is defined as a digital input, but not as an analog input, may cause the input buffer to consume current that is out of the devices specification.

11.4 <u>A/D Conversions</u>

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel. The GO/DONE bit can then be set to start the conversion.

11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note:	For the A/D module to operate in SLEEP,
	the A/D clock source must be set to RC
N.	(ADCS1:ADCS0 = 11). To perform an A/D
	conversion in SLEEP, ensure the SLEEP
WT.	instruction immediately follows the instruc-
1.1	tion that sets the GO/DONE bit.

11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The ADRES register will contain unknown data after a Power-on Reset.

11.7 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

© 2000 Microchip Technology Inc.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

TABLE 11-2: SUMMARY OF A/D REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	_	_	_	_	_	—	_	CCP2IF	0	0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	_	_				—	NT-	CCP2IE	0	0
1Eh	ADRES	A/D Resu	ult Registe	ər			- c0 ¹	V.L		xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	N-I	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	—	_			PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	COM	PORT	A Data Directi	on Regis	ster	-0 _M .,		11 1111	11 1111
09h	PORTE ⁽²⁾	1001	_	(F)	—	N <u>—</u>	RE2	RE1	RE0	xxx	uuu
89h	TRISE ⁽²⁾	IBF	OBF	IBOV	PSPMODE	4	PORTE Dat	a Directio	n Bits	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

2: These registers are reserved on the PIC16F73/76.

12.0 SPECIAL FEATURES OF THE CPU

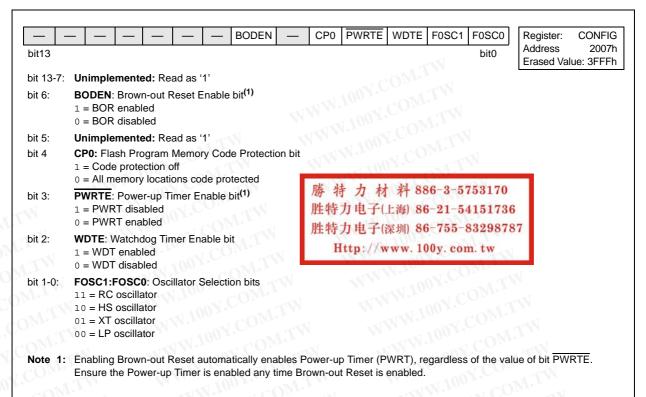
These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming

These devices have a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.


Additional information on special features is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

12.1 Configuration Bits

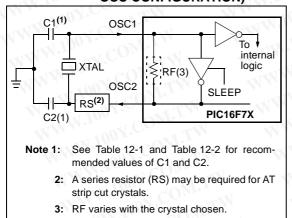
The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

REGISTER 12-1: CONFIGURATION WORD

12.2 Oscillator Configurations

12.2.1 OSCILLATOR TYPES


The PIC16F7X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

12.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

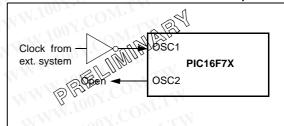

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-1). The PIC16F7X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 12-2). See Table 15-1 for valid external clock frequencies.

FIGURE 12-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

FIGURE 12-2: EXTERNAL CLOCK INPUT

OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 12-1: CERAMIC RESONATORS

Ranges Tested:							
Mode	Freq	OSC1	OSC2				
хт	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF	68 - 100 pF 15 - 68 pF 15 - 68 pF				
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF				
The See	ese values are e notes at bott	e for design gui om of page.	idance only.				
I I	Resona	ators Used:	WT				
455 kHz	Ranasonic E	FO-A455K04B	± 0.3%				
2.0 MHX	Murata Erie	CSA2.00MG	± 0.5%				
4.0 MHz	Murata Erie	CSA4.00MG	± 0.5%				
80 MHz	Murata Erie	CSA8 00MT	+0.5%				

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

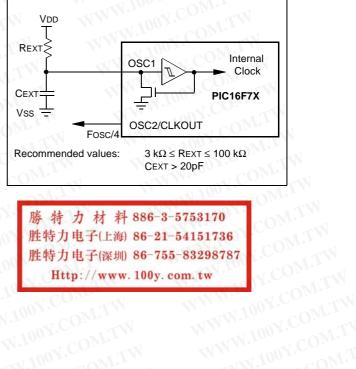
Murata Erie CSA16.00MX

All resonators used did not have built-in capacitors.

16.0 MHz

+0.5%

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR


Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2	
LP	32 kHz	33 pF	33 pF	
	200 kHz	15 pF	15 pF	
XT	200 kHz	47-68 pF	47-68 pF	
	N 1 MHz	15 pF	15 ₁ pF	
	4 MHz	15 pF	15 pF	
HS	4 MHz	15 pF	₩745 pF	
	8 MHz	15-33 pF		
	20 MHz	15-33 pF		
		ve for design gui	dance only.	
00 (1	Cry	stals Used	N.1001.	
32 kHz)	Epson C-00	01R32.768K-A	± 20 PPM	
200 kHz	STD XTL 2	00.000KHz	± 20 PPM	
1 MHz	ECS ECS-	10-13-1	± 50 PPM	
4 MHz	ECS ECS-4	40-20-1	± 50 PPM	
8 MHz	EPSON CA	A-301 8.000M-C	± 30 PPM	
20 MHz	EDSON C	A-301 20.000M-C	± 30 PPM	

- Note 1: Higher capacitance increases the stability of oscillator, but also increases the startup time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - When migrating from other PICmicro devices, oscillator performance should be verified.

12.2.3 RC OSCILLATOR

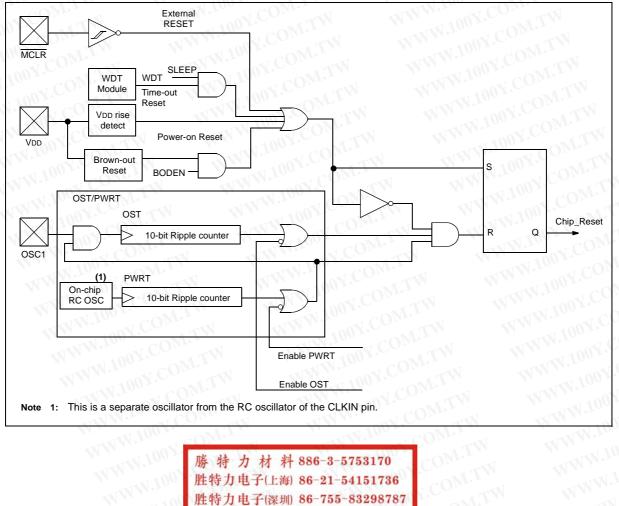
For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 12-3 shows how the R/C combination is connected to the PIC16F7X.

WWW.100Y.COM

WWW.100X.COM.TV

12.3 <u>RESET</u>

The PIC16F7X differentiates between various kinds of RESET:


- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any RESET condition. Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during SLEEP, and Brown-out Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different RESET situations, as indicated in Table 12-4. These bits are used in software to determine the nature of the RESET. See Table 12-6 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 12-4.

These devices have a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

© 2000 Microchip Technology Inc.

Http://www. 100y. com. tw

12.4 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions. For additional information, refer to Application Note, AN007, "Power-up Trouble Shooting", (DS00007).

12.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

12.7 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

12.8 <u>Time-out Sequence</u>

On power-up, the time-out sequence is as follows: The PWRT delay starts (if enabled) when a POR Reset occurs. Then OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X device operating in parallel.

Table 12-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

12.9 <u>Power Control/Status Register</u> (PCON)

The Power Control/Status Register, PCON, has up to two bits depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable and therefore, not valid at any time.

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS

Oscillator Configuration	Power-	up	Brown-out	Wake-up from		
WWW.10	PWRTE = 0	PWRTE = 1	NT NO. YOUNG	SLEEP		
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc		
RC	72 ms	<u> </u>	72 ms			

STATUS BITS AND THEIR SIGNIFICANCE **TABLE 12-4:**

	12-4:	SIAI	02 B	ITS AND THEIR SIGNIFICANCE
POR	BOR	то	PD	100X.COM.TW WW.100X.COM.TV
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1 G	1	0	0	WDT Wake-up
10	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

WWW.1007.C TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 1uuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). WWW.100Y.COM.TW WWW.100Y.CO

WWW.100Y.COM.T 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

WWW.100

WWW.100Y.COM

WWW.100

WWW.100Y.COM.TW

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register Devices		Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt			
W	73	74	76	_77	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	73	74	76	77	N/A	N/A	N/A
TMR0	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	73	74	76	77	0000h	0000h	$PC + 1^{(2)}$
STATUS	73	74	76	77	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	73	74	76	77	0x 0000	Ou 0000	uu uuuu
PORTB	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTD	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTE	73	74	76	77	xxx	uuu	uuu
PCLATH	73	74	76	77	0 0000	0 0000	u uuuu
INTCON	73	74	76	77	0000 000x	0000 000u	uuuu uuuu ⁽¹⁾
PIR1	73	74	76	77	r000 0000	r000 0000	ruuu uuuu ⁽¹⁾
	73	74	76	77	0000 0000	0000 0000	uuuu uuuu ⁽¹⁾
PIR2	73	74	76	77	0	0	u ⁽¹⁾
TMR1L	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	73	74	76	77	00 0000	uu uuuu	uu uuuu
TMR2	73	74	76	77	0000 0000	0000 0000	uuuu uuuu
T2CON	73	74	76	77	-000 0000	-000 0000	-uuu uuuu
SSPBUF	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	73	74	76	77	0000 0000	0000 0000	uuuu uuuu
CCPR1L	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	73	74	76	77	00 0000	00 0000	uu uuuu
RCSTA	73	74	76	77	0000 -00x	0000 -00x	uuuu -uuu
TXREG	73	74	76	77	0000 0000	0000 0000	uuuu uuuu
RCREG	73	74	76	77	0000 0000	0000 0000	uuuu uuuu
CCPR2L	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2H	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP2CON	73	74	76	77	0000 0000	0000 0000	uuuu uuuu
ADRES	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	73	74	76	77	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	73	74	76	77	1111 1111	1111 1111	uuuu uuuu
TRISA	73	74	76	77	11 1111	11 1111	uu uuuu
TRISB	73	74	76	77	1111 1111	1111 1111	uuuu uuuu
TRISC	73	74	76	77	1111 1111	1111 1111	uuuu uuuu
TRISD	73	74	76	77	1111 1111	1111 1111	uuuu uuuu
TRISE	73	74	76	77	0000 -111	0000 -111	uuuu -uuu
PIE1	73	74	76	77	r000 0000	r000 0000	ruuu uuuu
	73	74	76	77	0000 0000	0000 0000	uuuu uuuu
PIE2	73	74	76	77	0	0	ue depends on condition

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for RESET value for specific condition.

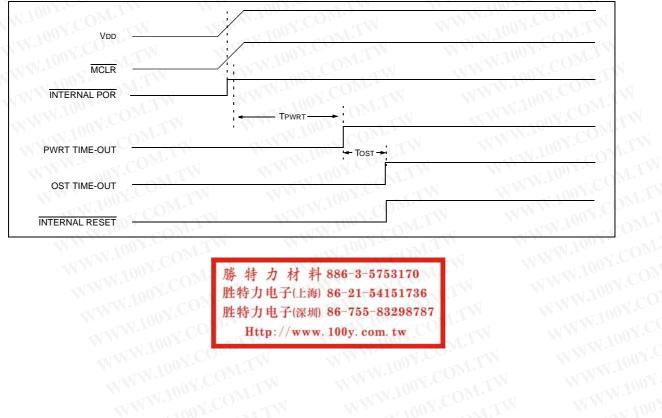
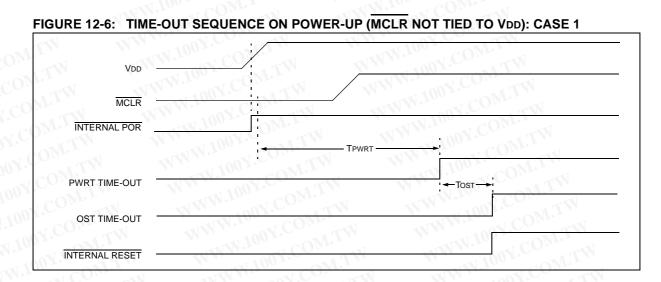
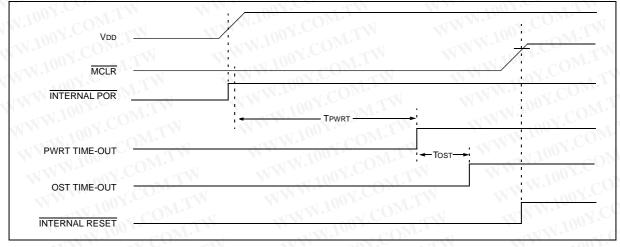

Register	W.1	Dev	rices	1.14	Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt	
PCON	73	74	76	77	dd	uu	uu	
PR2	73	74	76	77	1111 1111	1111 1111	1111 1111	
SSPSTAT	73	74	76	77	00 0000	00 0000	uu uuuu	
SSPADD	73	74	76	77	0000 0000	0000 0000	uuuu uuuu	
TXSTA	73	74	76	77	0000 -010	0000 -010	uuuu -uuu	
SPBRG	73	74	76	77	0000 0000	0000 0000	uuuu uuuu	
ADCON1	73	74	76	77	000	000	uuu	
PMDATA	73	74	76	77	0 0000	0 0000	u uuuu	
PMADR	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PMDATH	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PMADRH	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PMCON1	73	74	76	77	1 0	10	1u	

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for RESET value for specific condition.


FIGURE 12-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

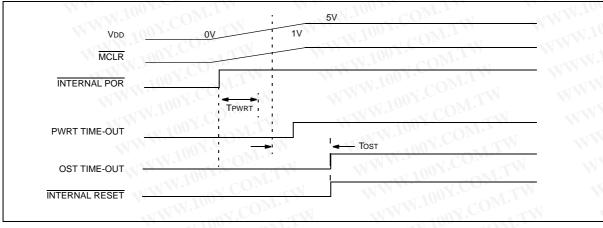

Advance Information WWW.100Y WWW.100X.COM.7

FIGURE 12-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 12-8: SLOW RISE TIME (MCLR TIED TO VDD)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

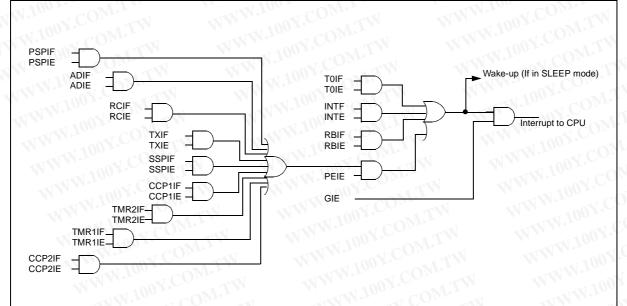
12.10 Interrupts

The PIC16F7X family has up to 12 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
7.11	less of the status of their corresponding
I	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.


PIC16F7X

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the Special Function Registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in Special Function Registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in Special Function Register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or the GIE bit.

FIGURE 12-9: INTERRUPT LOGIC

The following table shows which devices have which interrupts.

Device	TOIF	INTF	RBIF	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	CCP2IF
PIC16F76/73	Yes	Yes	Yes	· ·	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16F77/74	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

© 2000 Microchip Technology Inc.

12.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wakeup. See Section 12.13 for details on SLEEP mode.

12.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 5.0)

12.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 3.2)

12.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W register and STATUS register). This will have to be implemented in software.

For the PIC16F73/74 devices, the register W_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., If W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1.). The registers, PCLATH_TEMP and STATUS_TEMP, are only defined in bank 0.

Since the upper 16 bytes of each bank are common in the PIC16F76/77 devices, temporary holding registers W_TEMP, STATUS_TEMP and PCLATH_TEMP should be placed in here. These 16 locations don't require banking and therefore, make it easier for context save and restore. The same code shown in Example 12-1 can be used.

EXAMPLE 12-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

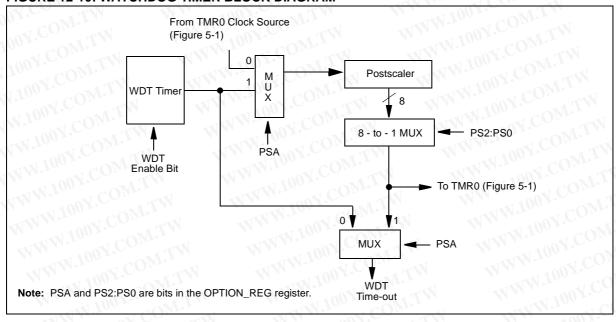
MOVWF	W TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS TEMP	;Save status to bank zero STATUS TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
: N 1		
:(ISR)		;Insert user code here
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W
		勝特力材料 886-3-5753170

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Advance Information

12.12 Watchdog Timer (WDT)

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.


During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 12.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

Note:	The CLRWDT and SLEEP instructions clear
	the WDT and the postscaler, if assigned to
NNN.	the WDT, and prevent it from timing out
	and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 12-10: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	AN	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer. **Note 1:** See Register 12-1 for operation of these bits.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

© 2000 Microchip Technology Inc.

12.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The MCLR pin must be at a logic high level (VIHMC).

12.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or a Peripheral Interrupt.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred and caused wake-up.

The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write (PIC16F74/77 only).
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. CCP Capture mode interrupt.
- 4. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 5. SSP (START/STOP) bit detect interrupt.
- SSP transmit or receive in Slave mode (SPI/I²C).
- 7. USART RX or TX (Synchronous Slave mode).
- 8. A/D conversion (when A/D clock source is RC).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present. When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the sLEEP instruction after the instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

12.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

PIC16F7X

FIGURE 12-11: WAKE-UP FROM SLEEP THROUGH INTERRUPT

; Q1 Q2 Q3 Q4; OSC1 //_//_//_/	Q1 Q2 Q3 Q4; (Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4;	Q1 Q2 Q3 Q4;	Q1 Q2 Q3 Q4
		Tost(2)				
INT pin	1			1	1 1	1 1
INTF flag (INTCON<1>)		<u>_</u>		Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)		Processor in			<u> </u>	1 1 1
INSTRUCTION FLOW	1		1		1 1	1
PC (PC)	PC+1 X	PC+2 X	PC+2	X PC + 2 X	0004h X	0005h
Instruction { Inst(PC) = SLEEF	P Inst(PC + 1)		Inst(PC + 2)	WILL	Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1)	SLEEP	WWW.	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

 GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

12.14 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

12.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

12.16 In-Circuit Serial Programming

PIC16F7X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP[™]) Guide, (DS30277).

13.0 INSTRUCTION SET SUMMARY

Each PIC16F7X instruction is a 14-bit word divided into an OPCODE, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The PIC16F7X instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compat- ibility with all Microchip software tools.
d K	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

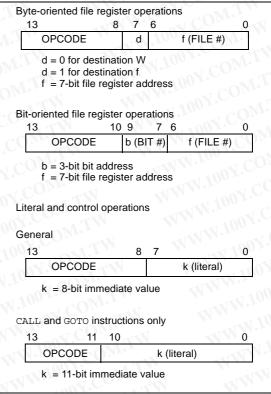
The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 13-2 lists the instructions recognized by the MPASM assembler.

Figure 13-1 shows the general formats that the instructions can have.


Note:	To maintain upward compatibility with
	future PIC16F7X products, do not use the
	OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

© 2000 Microchip Technology Inc.

Mnemo		Description	Cycles	14-Bi	it Opcod	e	N	Status	Notes	
Operar	nds	1001. CONC.1 1	N. W.	MSb	MSb LSb		LSb	Affected		
WT	N	BYTE-ORIENTED FILE	E REGISTER OPE	RATIC	ONS	M	14			
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f		00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff	1	1,2,3	
IORWF	f, d	Inclusive OR W with f		00	0100	dfff	ffff	Z	1,2	
MOVE	f, d	Move f	1	00	1000	dfff	ffff	z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff	WT	,	
NOP		No Operation	1	00	0000	0xx0	0000	1.1		
RLF CON	f, d	Rotate Left f through Carry	1	0.0	1101	dfff	ffff	С	1,2	
RRF	f, d	Rotate Right f through Carry		0.0	1100	dfff	ffff	C	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010		ffff	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	M	00	1110	dfff	ffff	0,00,2	1,2	
XORWE	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
	0	BIT-ORIENTED FILE	REGISTER OPER					COPOL	.,_	
BCF	f, b	Bit Clear f		01	00bb	bfff	ffff	COM.	1,2	
BSF	f, b	Bit Set f		01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff	Y.C.	3	
NN.	-1 CO	LITERAL AND CC			1100			N.CO		
ADDLW	k	Add literal and W	CON1	11	111x	kkkk	kkkk	C,DC,Z	N.	
ANDLW	k	AND literal with W		11	1001	kkkk	kkkk	Z	~N.	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk	S.C	ONE	
CLRWDT	091.	Clear Watchdog Timer	100X.1 1.1	00	0000	0110	0100	TO,PD	- N	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk	. Vo	COM	
IORLW	k	Inclusive OR literal with W	1001 100	11	1000	kkkk	kkkk	Z	CO 1	
MOVLW	k	Move literal to W	CO ^N	11	00xx	kkkk	kkkk	in and		
RETFIE	<1 1 00	Return from interrupt	2	00	0000	0000	1001	W.100		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk	100	1.0	
RETURN		Return from Subroutine	2	00	0000	0000	1000	W.IV		
SLEEP	11.	Go into standby mode	1	00	0000	0110	0011	TO.PD	OY.C	
SUBLW	k	Subtract W from literal	1.0	11	110x		kkkk	C,DC,Z	-1	
XORLW	k	Exclusive OR literal with W		11	1010		kkkk	Z.	007.	

TABLE 13-2: PIC16F7X INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).
勝特力材料 886-9

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Advance Information

W.100Y.COM

Instruction Descriptions 13.1

Mos	ADDLW	Add Literal and W
100Y.CO.	Syntax:	[<i>label</i>] ADDLW k
.100Y.CON	Operands:	$0 \le k \le 255$
V.100 X.CO	Operation:	$(W) + k \rightarrow (W)$
W.100 1. CC	Status Affected:	C, DC, Z
NW.100X.C	Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.
NWW.100		
WWW.IG		

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation:	(W) .AND. (f) \rightarrow (destination
Status Affected:	Z
Description:	AND the W register with reg 'f'. If 'd' is 0, the result is stor the W register. If 'd' is 1, the is stored back in register 'f'.

ADDWF	Add W and f	BCF	Bit Clear f
Syntax:	[label] ADDWF f,d	Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$	Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	(W) + (f) \rightarrow (destination)	Operation:	$0 \rightarrow (f < b >)$
Status Affected:	C, DC, Z	Status Affected:	None
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.	Description:	Bit 'b' in register 'f' is cleare

ANDLW	AND Literal with W	BSF	Bit Set f
Syntax:	[<i>label</i>] ANDLW k	Syntax:	[<i>label</i>] BSF f,b
Operands:	0 ≤ k ≤ 255	Operands:	$0 \le f \le 127$
Operation:	(W) .AND. (k) \rightarrow (W)		$0 \le b \le 7$
Status Affected:	ZOL	Operation:	$1 \rightarrow (f < b >)$
Description:	The contents of W register are	Status Affected:	None
WW	AND'ed with the eight bit literal 'k'. The result is placed in the W register.	Description:	Bit 'b' in register 'f' is set.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw WWW.100Y.COM.TW

0Y.COM.TW

© 2000 Microchip Technology Inc.

WWW.100Y

WWW.100Y.COMT

c. Advance Information WWW.100Y. WWW.100Y.COM.T

100Y.COM.TW

Bit Test f, Skip if Set[/abel] BTFSS f,b $0 \le f \le 127$ $0 \le b < 7$ skip if (f) = 1I: NoneIf bit 'b' in register 'f' is '0', the nextinstruction is executed.	CLRF Syntax: Operands: Operation: Status Affected: Description:	Clear f [<i>label</i>] CLRF f $0 \le f \le 127$ $00h \rightarrow (f)$ $1 \rightarrow Z$ Z The contents of register 'f' are
$0 \le f \le 127$ $0 \le b < 7$ skip if (f) = 1 None If bit 'b' in register 'f' is '0', the next	Operands: Operation: Status Affected:	$0 \le f \le 127$ $00h \rightarrow (f)$ $1 \rightarrow Z$ Z
0 ≤ b < 7 skip if (f) = 1 : None If bit 'b' in register 'f' is '0', the next	Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \\ Z \end{array}$
skip if (f) = 1 : None If bit 'b' in register 'f' is '0', the next	Status Affected:	$1 \rightarrow Z$
: None If bit 'b' in register 'f' is '0', the next		Z CONT
If bit 'b' in register 'f' is '0', the next		
	Description:	The contents of register 'f' are
If bit 'b' is '1', then the next instruc-	WWW.	cleared and the Z bit is set.
tion is discarded and a NOP is exe- cuted instead making this a 2TCY instruction.	LAN MA B	券特力材料 886-3-57531 生特力电子(上海) 86-21-54151
	TW V	生特力电子(深圳) 86-755-8329 Http://www.100y.com.tv
	tion is discarded and a NOP is exe- cuted instead making this a 2TCY	tion is discarded and a NOP is exe- cuted instead making this a 2TCY instruction.

	勝特力材料 886-3-5753170
	胜特力电子(上海) 86-21-54151736
8	胜特力电子(深圳) 86-755-83298787
	Http://www. 100y. com. tw

BTFSC	Bit Test, Skip if Clear	CLRW
Syntax:	[<i>label</i>] BTFSC f,b	Syntax:
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands: Operation:
Operation:	skip if $(f < b >) = 0$	Operation.
Status Affected:	None	Status Affected:
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.	Description:

W W	WWW. 100Y.COMMIN
CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z WWW. DOY.COM
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC) + 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$
Status Affected:	None		$1 \rightarrow \overline{PD}$
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.	Status Affected: Description:	TO, PD CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Statu bits TO and PD are set.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$0 \le f \le 127$ d $\in [0,1]$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.

PIC16F7X

GOTO	Unconditional Branch
Syntax:	[label] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.
INCE	Increment f

DECF	Decrement f	INCF	Increment f
Syntax:	[label] DECF f,d	Syntax:	[label] INCF f,d
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation:	(f) - 1 \rightarrow (destination)	Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z WW.100 COM.
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg ister 'f'.

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0
Syntax:	[label] DECFSZ f,d	Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None	Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, then a NOP is executed instead making it a 2TCY instruction.	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in regis- ter 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead making it a 2TCY instruction.

WWW.100Y.COM.TW

100X.COM.TW

WWW.100Y.COM.TW

100Y.COM.TW

IORLW	Inclusive OR Literal with W	MOVLW	Move Literal to W
Syntax:	[<i>label</i>] IORLW k	Syntax:	[label] MOVLW k
Operands:	0 ≤ k ≤ 255	Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)	Operation:	$k \rightarrow (W)$
Status Affected:	ZWWW.LOON.COM.	Status Affected:	None
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W reg- ister.	Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.

IORWF	Inclusive OR W with f	MOVWF	Move
Syntax:	[label] IORWF f,d	Syntax:	[label
Operands:	0 ≤ f ≤ 127	Operands:	0 ≤ f ≤
	d ∈ [0,1]	Operation:	(W)
Operation:	(W) .OR. (f) \rightarrow (destination)	Status Affected:	None
Status Affected:	Ζ	Description:	Move
Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in regis-	COM TW	ister 'f

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to reg ister 'f'.

MOVF	Move f	NOP	No Operation
Syntax:	[label] MOVF f,d	Syntax:	[label] NOP
Operands:	0 ≤ f ≤ 127	Operands:	None
	d ∈ [0,1]	Operation:	No operation
Operation:	(f) \rightarrow (destination)	Status Affected:	None
Status Affected:	Z MOY.COMMENT	Description:	No operation.
Status Affected: Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, des- tination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register since status flag Z is affected.	胜特力电子(1 胜特力电子(新	料 886-3-5753170 :海) 86-21-54151736 (明) 86-755-83298787 ww. 100y. com. tw

Advance Information WWW.100Y. WWW.100Y.COM.T

AOY.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

WWW.100Y.COM.TW

100X.COM.TW

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

	RETFIE	Return from Interrupt
-M.T	Syntax:	[label] RETFIE
100Y.COM	Operands:	None
V.100Y.COM	Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$
W.100Y.CC	Status Affected:	None
100Y.CO		
VVI. TOOX.C		

RLF	Rotate Left f through Carry						
Syntax:	[<i>label</i>] RLF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	See description below						
Status Affected:	C						
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.						
	C Register f						

← C ← Register f

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[label] RRF f,d
Operands:	0 ≤ k ≤ 255	Operands:	0 ≤ f ≤ 127
Operation:	$k \rightarrow (W);$		d ∈ [0,1]
	$TOS \rightarrow PC$	Operation:	See description below
Status Affected:	None	Status Affected:	C 1001.001.1
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right throug the Carry Flag. If 'd' is 0, the res is placed in the W register. If 'd' 1, the result is placed back in re- ister 'f'.

_►C→	Register f	
WV	1001	COM.TW

RETURN	Return from Subroutine	SLEEP	LM M. 1001.			
yntax:	[label] RETURN	Syntax:	[label] SLEEP			
perands:	None	Operands:	None			
Operation:	$TOS \rightarrow PC$	Operation:	$00h \rightarrow WDT$,			
Status Affected:	None		$0 \rightarrow WDT$ prescaler, 1 $\rightarrow TO$,			
Description:	Return from subroutine. The stack		$0 \rightarrow PD$			
	is POPed and the top of the stack (TOS) is loaded into the program	Status Affected:	TO, PD			
	counter. This is a two cycle instruction.	Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.			

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	0 ≤ k ≤ 255
Operation:	$k - (W) \rightarrow (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight bit literal 'k'. The result is placed in the W register.

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight bit lit eral 'k'. The result is placed in the W register.
	the w register.

SUBWF	Subtract W from f				
Syntax:	[label] SUBWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$				
Operation:	(f) - (W) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method W register from register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.				

XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORWF f,d
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw WWW.100Y.COM.TW

	back in register T.
SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W regis- ter. If 'd' is 1, the result is placed in register 'f'.

WWW.100Y.COM.TW

DS30325A-page 118

Advance Information WWW.100Y. WWW.100Y.COM.T

WWW.100Y.COM.TW

WWW.100Y.C

WWW.100Y.COM.TW

WWW.100Y.COM.TW

<u>10</u>0X.COM.TW

14.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 MPLAB[®] IDE Software
 - Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
- MPLAB-ICE Real-Time In-Circuit Emulator
- ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F87X
- **Device Programmers**
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - KEELOQ[®]

14.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:

- Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- Customizable tool bar and key mapping
- A status bar
- On-line help

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
- object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

14.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PICmicro MCU's. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

14.3 MPLAB-C17 and MPLAB-C18 C Compilers

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

© 2000 Microchip Technology Inc.

14.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

MPLIB is a librarian for pre-compiled code to be used with MPLINK. When a routine from a library is called from another source file, only the modules that contains that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. MPLIB manages the creation and modification of library files.

MPLINK features include:

- MPLINK works with MPASM and MPLAB-C17 and MPLAB-C18.
- MPLINK allows all memory areas to be defined as sections to provide link-time flexibility.

MPLIB features include:

- MPLIB makes linking easier because single libraries can be included instead of many smaller files.
- MPLIB helps keep code maintainable by grouping related modules together.
- MPLIB commands allow libraries to be created and modules to be added, listed, replaced, deleted, or extracted.

14.5 MPLAB-SIM Software Simulator

The MPLAB-SIM Software Simulator allows code development in a PC host environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file or user-defined key press to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPLAB-C18 and MPASM. The Software Simulator offers the flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

14.6 <u>MPLAB-ICE High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of MPLAB-ICE is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support new PICmicro microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows 3.x/95/98 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE 2000 is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems use the same processor modules and will operate across the full operating speed range of the PICmicro MCU.

14.7 ICEPIC

ICEPIC is a low-cost in-circuit emulation solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X, and PIC16CXXX families of 8-bit one-timeprogrammable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules or daughter boards. The emulator is capable of emulating without target application circuitry being present.

14.8 MPLAB-ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB-ICD, is a powerful, low-cost run-time development tool. This tool is based on the flash PIC16F877 and can be used to develop for this and other PICmicro microcontrollers from the PIC16CXXX family. MPLAB-ICD utilizes the In-Circuit Debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming protocol, offers cost-effective in-circuit flash programming and debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time. The MPLAB-ICD is also a programmer for the flash PIC16F87X family.

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

14.9 PRO MATE II Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode the PRO MATE II can read, verify or program PICmicro devices. It can also set code-protect bits in this mode.

14.10 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

PICSTART Plus supports all PICmicro devices with up to 40 pins. Larger pin count devices such as the PIC16C92X, and PIC17C76X may be supported with an adapter socket. PICSTART Plus is CE compliant.

14.11 <u>PICDEM-1 Low-Cost PICmicro</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

14.12 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

14.13 PICDEM-3 Low-Cost PIC16CXXX Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

© 2000 Microchip Technology Inc.

Advance Information

14.14 PICDEM-17

The PICDEM-17 is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers. including PIC17C752, PIC17C756. PIC17C762, and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included, and the user may erase it and program it with the other sample programs using the PRO MATE II or PICSTART Plus device programmers and easily debug and test the sample code. In addition, PICDEM-17 supports down-loading of programs to and executing out of external FLASH memory on board. The PICDEM-17 is also usable with the MPLAB-ICE or PICMASTER emulator, and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

14.15 <u>KEELog Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters. 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

) 歴特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw							36	N.TW M.TW									
WWW.100Y.CO.	PIC12CXXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXXX	PIC16F62X	PIC16C7X	PIC16C7XX	PIC16C8X	PIC16F8XX	PIC16C9XX	PIC17C4X	PIC17C7XX	PIC18CXX2	24CXX/ 25CXX/ 93CXX	HCSXXX	MCRFXXX	MCP2510
MPLAB [®] Integrated Development Environment MPLAB [®] C17 Compiler MPLAB [®] C18 Compiler MPASM/MPLINK	021	~	~	4	11	1	COM	-	~	1		-	C°	1	N			
MPLAB [®] C17 Compiler	CON				W.	100	$\langle 0 \rangle$	1	s I		WW	1	- - - - - - - - - - -		N			
MPLAB [®] C18 Compiler		ATV.				100		N.T				V.100		1				
		1	√ ✓	 	\sim	1	1	1	< <i>1</i>	 ✓ 		1	~	1	1	✓		
	1	1	~	~	1	√ **	10	· · ·	1	~	1	\checkmark	1	\sim	I			
MPLAB [®] -ICE ICEPIC‰ Low-Cost In-Circuit Emulator	•	OM.	-	~	*	W.19	*	M	~		-	NN.	100¥	COV	NT.			
MPLAB [®] -ICD In-Circuit Debugger			1.11	√ *	N	N.M.	*	.CO ² V.CO	M.TY		4	NNN	1.100	4.CU	T.M.	N N		
	~	Y.C.	1		~	V**	1	o √C	~		~		~	00%.	Mon	TN.		
PICSTART Plus Low-Cost Universal Dev. Kit PRO MATE: II Universal Programmer	×.1	07.0	-OM		~	√ **	×.1	002	CON	1	~	~		00	.001	-	N	
PICDEM-1	-11	100×.	1	1.1	. 1		√ †	700.		12.7	-s 1	~	VIA		a CO	7.	-	
PICDEM-2	W XY	100		√ †	N	N	à	1100		1.11	14			< 10		M.		
PICDEM-3	WW		a CO		N		W	1.2	V.C		< V		WW		N.C	() · · · ·	M	
PICDEM-14A		1		M.	1			N.10	-16	OV.	-			1.1		NOV'		
PICDEM-17	AV.	- 10	01.0		C.V.		N.		10x.	M	21		~		100 .			
KEELOQ [®] Evaluation Kit	-	11.2	1	COM.	M		N	111.	No	CON	Wr.				Yoo L	~	17	
KEELOQ Transponder Kit	N.	NI.	<u> 10 ×</u>					NI.	100	CO	7.2	<1		NIN	.10-		11.	
microID™ Programmer's Kit			1001		NT.				100		TIM				100	2.	1	
125 kHz microID Developer's Kit		WW	10	J CO	Nº.	N		VIV		V.CU	111	N		NN		N.C	1	N/
PICDEM-14A PICDEM-17 KEELoq [®] Evaluation Kit KEELoq [®] Evaluation Kit microID [™] Programmer's Kit 125 kHz microID Developer's Kit 125 kHz Anticollision microID Developer's Kit	N	W	1.100	V.C	DW.T			WW	N.10	NY.C	0_{M}	WT		W	11.10	N.	•	WT
13.56 MHz Anticollision microID Developer's Kit		WW	1.10	NY.C	OW.	Wn		W	1.17	NY.	COM	WT		V	WW.	roor		17.1
MCP2510 CAN Developer's Kit			N.V.	00	CON		1		NN.	- V -	COD		J		NW.		1.CU	1

WWW.100Y.CON

WWW.100Y.COM.TW * Contact the Microchip Technology Inc. web site at www.microchip.com for information on how to use the MPLAB[®]-ICD In-Circuit Debugger (DV164001) with PIC16C62, 63, 64, 65, 72, 73, 74, 76, 77 WWW.100Y.COM. WWW.100Y.COM

** Contact Microchip Technology Inc. for availability date. [†] Development tool is available on select devices.

© 2000 Microchip Technology Inc.

Advance Information

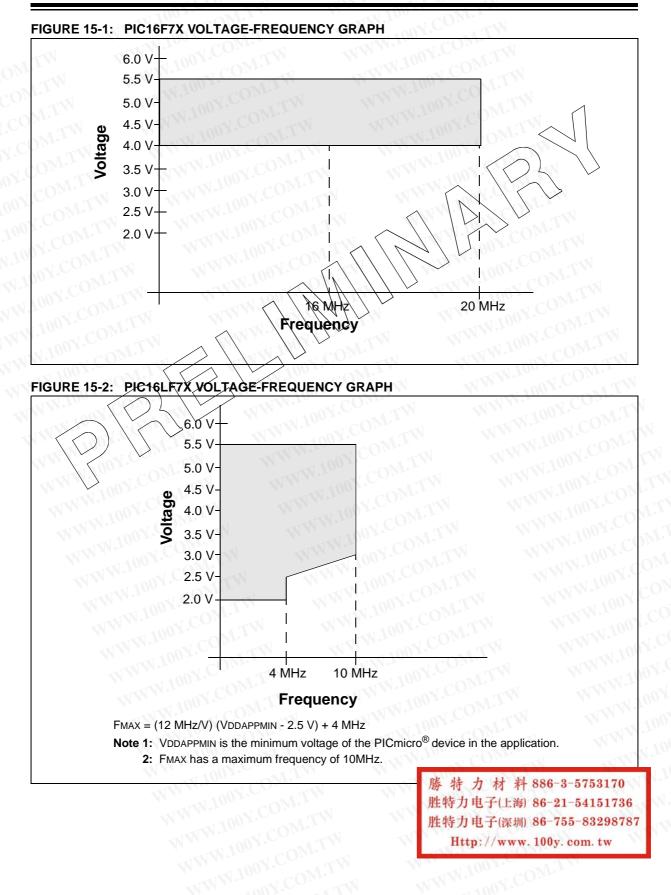
PIC16F7X

WWW.100Y.COM.TW

TABLE 14-1:

DEVELOPMENT TOOLS FROM MICROCHIP

15.0 ELECTRICAL CHARACTERISTICS


Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss (Note 2)	Q to +13.5V
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into Voo nin	250 mA
Input clamp current, Iικ (VI < 0 or VI > VDD)	± 20 mA
Output clamp current $lok (VO < 0 \text{ or } VO > VD)$	+ 20 mΔ
Maximum output current sourced by any I/O pin.	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ	
2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than	

Yoltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to Vss.

3: PORTD and PORTE are not implemented on the PIC16F73/76 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Advance Information

15.1 DC Characteristics

PIC16L (Indus		76/77					litions (unless otherwise stated) $^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial					
PIC16F (Indus		6/77	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions					
D001	Vdd	Supply Voltage	VT.I.									
	N	PIC16LF7X	2.0	- N	5.5	V	All osq configurations (DC-10 MHz)					
D001 D001A	W	PIC16F7X	4.0 Vbor*	N <u></u>	5.5 5.5	V .	All configurations BOR enabled (Note 7)					
D002*	Vdr	RAM Data Retention Voltage (Note 1)	COM	1.5	$\langle \langle \rangle$	IN	ST.					
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	77	Vash	-	/v/	See section on Power-on Reset for details					
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	7		V/ms	See section on Power-on Reset for details					
D005	VBOR	Brown-out Reset Voltage	3.65	4.0	4.35	V N	BODEN bit in configuration word enabled					
D010		Supply Current (Note 2, 5)	100 ×	- 00	W.		CONF.					
D010A	\mathcal{D}	PIC16LF7X	N.100	0.6 20	2.0 35	mΑ μΑ	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4) LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled					
D010 D013		PIC16F7X	UMM.	1.6 7	4 15	mA mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4) HS osc configuration Fosc = 20 MHz, VDD = 5.5V					
D015*	DIBOR	Brown-out Reset Current (Note 6)	WW	85	200	μA	BOR enabled VDD = 5.0V					

Legend: * These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
 - MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

^{© 2000} Microchip Technology Inc.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

PIC16L (Indus	F73/74/ 7 strial)	76/77	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial										
PIC16F (Indus	73/74/76 strial)	6/77	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial										
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions						
D020	IPD	Power-down Current (Not	e 3, 5)	NN		100Y.							
D021		PIC16LF7X	-	7.5 0.9	30 5	μΑ μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C VDD = 3.0V, WDT disabled, -40°C to +85°C						
D020 D021	1	PIC16F7X		10.5 1.5	42 19	μΑ μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -40°C to +85°C						
D023*	DIBOR	Brown-out Reset Current (Note 6)	<u>LM</u>	85	200	μA	BOR enabled VDD = 5.0V						

Legend: * These parameters are characterized but not tested.

- + Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all VDD measurements in active operation mode are:

OSC1 = external square waxe, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD; WDT enabled/disabled as specified.$

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.2 DC Characteristics: I.WWW

PIC16F73/74/76/77 (Industrial) PIC16LF73/74/76/77 (Industrial)

DC CHA	RACTE	ERISTICS	Operatin	g tem g volta	perature age VDD I	-40	ons (unless otherwise stated) $P^{\circ}C$ ≤ TA ≤ +85°C for industrial a s described in DC spec Section 18
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
1.1	Vil	Input Low Voltage	~1		Www.	In.	
WT .		I/O ports				1007	
D030		with TTL buffer	Vss	-	0.15VDD	V	For entire VDD range
D030A		W . 100 L. COM	Vss	-	0.8V	V	4,5V < VDB < 5.5V
D031	N	with Schmitt Trigger buffer	Vss	-	0.2VDR	ΛV.	$ \rangle \setminus \rangle$
D032		MCLR, OSC1 (in RC mode)	Vss	-	Q.2VQD	$\sqrt{}$	
D033	T.A.	OSC1 (in XT and LP mode)	Vss	~	Q.3V	NN	(Note 1)
COR	WT.	OSC1 (in HS mode)	Vss	\ -\	Q.3VDA	V	(Note 1)
	1 · · ·	Ports RC3 and RC4	1	$\langle \rangle$	$\langle \cdot \rangle \langle \cdot \rangle$	2	N.COM TW
D034	N.T.Y	with Schmitt Trigger buffer	VSS \	/ -/	0.3VDD	V	For entire VDD range
N.CO	VIH	Input High Voltage	141	$\left \right $		~~~	1001. N.T.
ST C	D_{M}	I/O ports	////	2-		NN	N. COM TW
D040	M	with TTL buffer	2.0		VDD	V	$4.5V \le VDD \le 5.5V$
D040A			0.25VDD	E.	Vdd	V	For entire VDD range
Date	COM		+ 0.8V	1	N		ALL SOL CONTRA
D041	- 00	with Schmitt Trigger buffer	0.8VDD	N - 1	Vdd	V	For entire VDD range
D042		Męlr L	0.8VDD		VDD	V	100 r. COW. 1
D042A	\square	QSC1 (in XT and LP mode)	1.6V	<u></u>	VDD	V	(Note 1)
7.122	$\langle \rangle$	OSC1 (in HS mode)	0.7VDD	O.M	VDD	V	(Note 1)
D043 \		OSC1 (in RC mode)	0.9VDD	-01	VDD	V	W.100 COM.1
DOAA	\sum	Ports RC3 and RC4	0.71/		- N.C. Y		1001.
D044 D070		with Schmitt Trigger buffer	0.7Vdd 50	- 250	VDD 400	V	For entire VDD range
D070	IPURB	PORTB Weak Pull-up Current Input Leakage Current (Notes 2	-1	250	400	μA	VDD = 5V, VPIN = VSS
D060		I/O ports	-, -, -,		±1	μA	Vss \leq VPIN \leq VDD, Pin at
D000	N.10.	ino ports	WW.		COID	μΑ	hi-impedance
D061	W.10	MCLR, RA4/T0CKI	WW.1	JV *	±5	μA	$Vss \le VPIN \le VDD$
D063		OSC1		001	±5 ±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LF
DUUU	MN.	CONTRACTION N	NWW.		V.CO.	μΛ	osc configuration
	VOL	Output Low Voltage	N/A		<1 CO		Very Wite In
D080 🚿		I/O ports		11	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
	WW	N. TUN	WW			С.». К.	-40°C to +85°C
D083		OSC2/CLKOUT (RC osc config)	-	1.	0.6	V	IOL = 1.6 mA, VDD = 4.5V,
	NN	T100Y.			1001.		-40°C to +85°C
	Vон	Output High Voltage	W	N.	Van	.00	MW WI
D090		I/O ports (Note 3)	VDD - 0.7	N	1.12°	VO	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7		W.100	V	IOH = -1.3 mA, VDD = 4.5 V,
2002		(ito use comig)	100 - 0.1		10		-40°C to +85°C
D150*	Von	Open-Drain High Voltage			12	V	RA4 pin

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

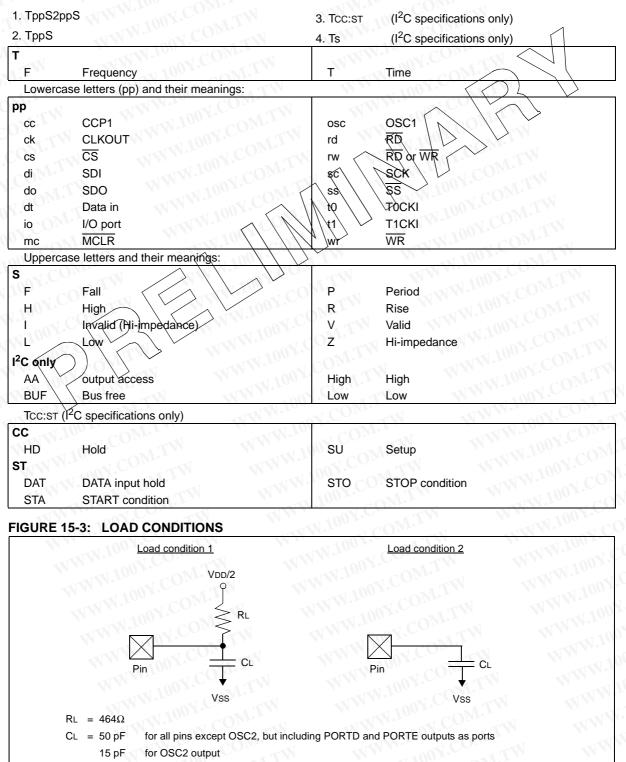
PIC16F7X

DC CHA	RACTE	ERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C \leq TA \leq +85°C for industrial Operating voltage VDD range as described in DC spec Section and Section 15.2.									
Param No.	Sym	Characteristic	Min	Typ†	Мах	Units	Conditions					
		Capacitive Loading Specs on (Output Pir	าร								
D100	Cosc ₂	OSC2 pin	-	-	15	pF	In XT, HS and LP modes when					
						. /	external clock is used to drive OSC1					
D101	Сю	All I/O pins and OSC2 (in RC mode)	-	-	50	pF						
D102	Св	SCL, SDA in I ² C mode	-	N.1	400	γF						
		Program FLASH Memory	N VY	$\langle \rangle$	IV	4/						
D130	Eр	Endurance	- /	$X \neq 1$	100	EAN	25°C at 5V					
D131	Vpr	VDD for read	2.0	/-/	5.5	V	1.1.1					
egend.	* Tho	se parameters are characterized	Aut not the	hat	17	C.	N.W.					

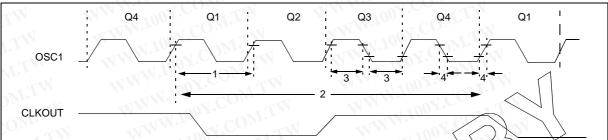
Legend: * These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC VCLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent percent operating conditions. Higher leakage current may be measured at different input voltages.

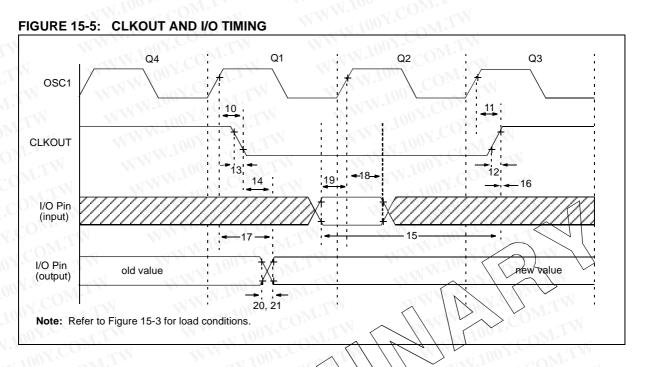
3: Negative current is defined as current sourced by the pin.


15.3 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

Note: PORTD and PORTE are not implemented on the PIC16F73/76 devices.

FIGURE 15-4: EXTERNAL CLOCK TIMING


TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions
01.00	Fosc	External CLKIN Frequency	DC		$\langle \rangle$	MHz	XT osc mode
N.CON	W	(Note 1)	RC/	17,	20	MHz	HS osc mode
	M		Da/	$\left \right\rangle$	32	kHz	LP osc mode
1001.0	T.M	Oscillator Frequency	DG	>_	4	MHz	RC osc mode
LOOY.C	5	(Note 1)	0.1	CT-Y	4	MHz	XT osc mode
1.100	OM.		4	$N\overline{T}$	20	MHz	HS osc mode
N.1001.	Mon		5	M-	200	kHz	LP osc mode
1.0	Tosc	External CLKIN Reriod	1000	T.T	_	ns	XT osc mode
W.L		(Note 1)	50	<u> </u>	- N	ns	HS osc mode
	$\backslash \lor$		5	.O <u>N</u> r.,	T	ms	LP osc mode
$\langle \rangle$	$) \setminus \langle$	Oscillator Period	250	Mos	<u> </u>	ns	RC osc mode
		(Note 1)	250	<u>.00</u> *	10,000	ns	XT osc mode
1 C	-1 (OM.I.	50	$_{3} CO^{N}$	250	ns	HS osc mode
	100x.	T.I.	5		V.T.	ms	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	500		04.1	ns	XT oscillator
WW	TosH	or Low Time	2.5	10051.4		ms	LP oscillator
VIE	N.10	V CONTENN	15	Tool Sector	COL	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise		1.100	25	ns	XT oscillator
W	TosF	or Fall Time	<u> </u>	00 1 10 0	50	ns	LP oscillator
-	WW.	N.COM.	N et ro-	NN	15	ns	HS oscillator

Legend: † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

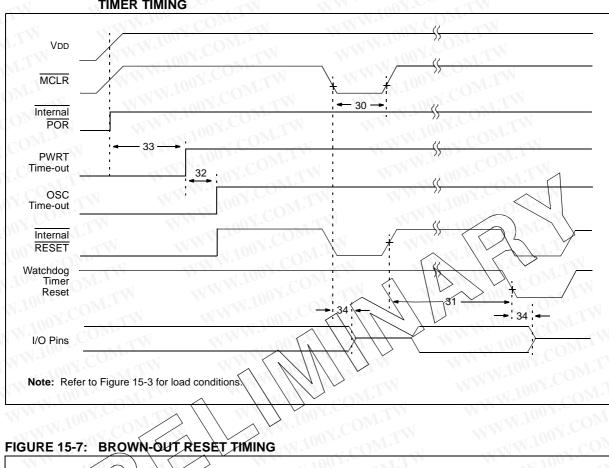
Param No.	Sym	Charact	reristic	Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUŢ⊄			75	200	ns	(Note 1)
11*	TosH2ckH	OSC11 to CLKOUT		IN-	75	200	ns	(Note 1)
12*	TckR	CLKOUT rise time		TT	35	100	ns	(Note 1)
13*	TckF	CLKOUT tall time	00	<u></u>	35	100	ns	(Note 1)
14*	TckL2io√	CLKOUT I to Port out valid	1001.	M.T.	_	0.5Tcy + 20	ns	(Note 1)
15*	Tio∀2ckH	Port in valid before CLKOL	IT ↑	Tosc + 200	_	N.M.	ns	(Note 1)
16*	JckH2io	Port in hold after CLKOUT		0 0	_	N.	ns	(Note 1)
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid	WWW.1003.	CONCIM	100	255	ns	N.COM
18*	TosH2iol	OSC1↑ (Q2 cycle) to	Standard (F)	100	<1	W.	ns	
	N.W.I	Port input invalid (I/O in hold time)	Extended (LF)	200		<u></u>	ns	00.V.CC
19*	TioV2osH	Port input valid to OSC11 (I/O in setup time)	0		_	ns	
20*	TioR	Port output rise time	Standard (F)	07.0-	10	40	ns	1001.
	WW	The CONTENN	Extended (LF)	AN COM		145 📢	ns	. Yoo
21*	TioF	Port output fall time	Standard (F)		10	40	ns	N.100
	NW.	100Y.COM.TY	Extended (LF)	1001.	N-T	145	ns	N.1003
22††*	Tinp	INT pin high or low time	WWW WWW	Тсу	-	- V	ns	100
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсу	$\mathbf{O}\mathbf{M}$.		ns	NN.

TABLE 15-2: CLKOUT AND I/O TIMING REQUIREMENTS

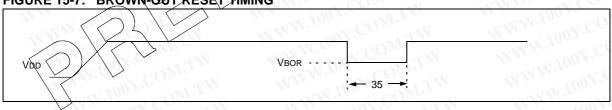
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are asynchronous events, not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

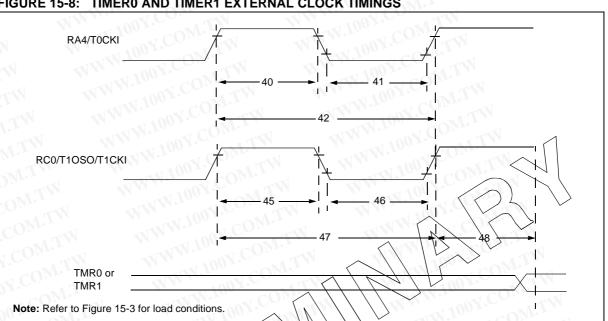

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

© 2000 Microchip Technology Inc.


Advance Information

DS30325A-page 133

FIGURE 15-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING


TABLE 15-3:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

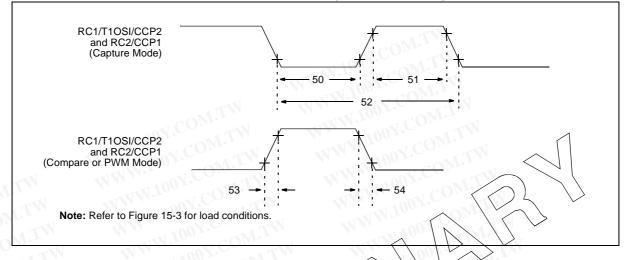
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2		07.0	μs	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	Tan.		Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	1 —	ΔM_{N}	2.1	μs	OM.TW V
35	TBOR	Brown-out Reset Pulse Width	100			μs	$VDD \leq VBOR (D005)$

Legend: * These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 15-4:	TIMER0 AND	TIMER1 EX	RERNAL	CLOCK REQUIREMENTS


aram No.	Sym		Characteristic	J. COM.	Min	Тур†	Max	Units	Conditions			
40*	Tt0H	TOCKI High Putse	Width	No Prescaler	0.5TCY + 20	\Box	. ()	ns	Must also meet			
		\sum			10	1		ns	parameter 42			
41*	Tt0L	TOCKI Low Pulse			0.5TCY + 20		A PAN	ns	Must also meet			
		\mathcal{N}			10	24		ns	parameter 42			
42*	TUP	TOCKI Period			Tcy + 40		TH T	ns	N.COM			
N.M.	K		WW.	With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	WW	ns	N = prescale value (2, 4,, 256)			
45*	Tt1H	T1CKI High Time	Synchronous, Pre	escaler = 1	0.5TCY + 20	—	A.	ns	Must also meet			
	ALW.100	COM	Synchronous,	Standard(F)	15	—		ns	parameter 47			
	110	T.I.T	Prescaler = 2,4,8	Extended(LF)	25	_ '	_	ns	N100 - CON			
	WW.	N COM	Asynchronous	Standard(F)	30		- <	ns	ANNY.UU			
	LIN.	N. M.		Extended(LF)	50		—	ns	W.100 CO		W.100 . CO	
46*	Tt1L	T1CKI Low Time	Synchronous, Pre	escaler = 1	0.5TCY + 20	<u> </u>	—	ns	Must also meet			
	W	. COM		Standard(F)	15		—	ns	parameter 47			
	M.	1007.0	Prescaler = 2,4,8	Extended(LF)	25	<u> </u>	—	ns	-W.100 *			
	WWW	V. L. COn	Asynchronous	Standard(F)	30		—	ns	1002.			
		N.100 . CO		Extended(LF)	50		—	ns	WW.IV.			
47*	Tt1P	T1CKI input period	Synchronous	Standard(F)	Greater of: 30 OR <u>TCY + 40</u> N	T.M.	8		N = prescale value (1, 2, 4, 8)			
	W	WW.100Y.C	COM.TW	Extended(LF)	Greater of: 50 OR <u>TCY + 40</u> N	OM.	WT WT		N = prescale value (1, 2, 4, 8)			
		100 -	Asynchronous	Standard(F)	60	- OA		ns	-11/1-1			
		NW Y OOT	VTV.	Extended(LF)	100	-	AT V	ns	W			
	Ft1	Timer1 oscillator in (oscillator enabled		•	DC	CO.	200	kHz	MMM			
48	TCKE7tmr1	1 Delay from externa	al clock edge to tir	ner increment	2Tosc	J CC	7Tosc					

Legend: * These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

FIGURE 15-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

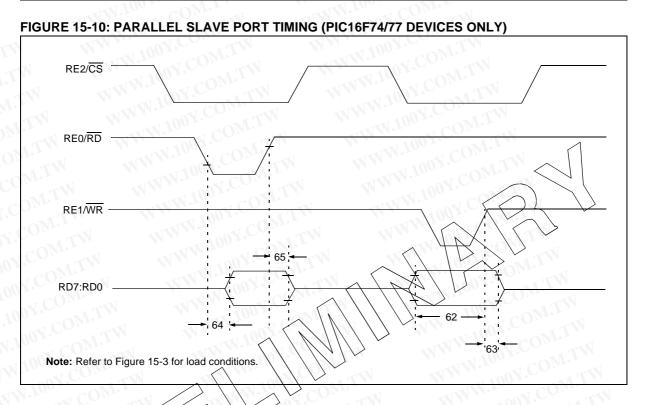


TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym	Cha	racteristic	Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2 No Pres		0.5Tcy + 20	<u></u>	t C C	ns	
	TIM	input low time	Standard(F)	10	J 0 0	1	ns	T.A.
	T. T.	With Pre	scaler Extended(LF)	20			ns	NT.
51*	ТссН	CCP1 and CCP2 No Pres	caler	0.5Tcy + 20	1	T.	ns	WTT
	Mon	input high time	Standard(F)	10	St.		ns	1.4
		With Pre	escaler Extended(LF)	20	∇	Γœ,	ns	M.L
52*	TccP	CCP1 and CCP2 input perio	d 100Y.COM.TV	<u>3Tcy + 40</u> N	<u> </u>	1.100	ns	N = prescale value (1,4 or 16)
53*	TCCR	CCP1 and CCP2 output rise	time Standard(F)	_	10	25	ns	CON. 1
- 10		V WILL	Extended(LF)	c_{i} – i	25	50	ns	MIT
54*	TCCF	CCP1 and CCP2 output fall	time Standard(F)	- 197	10	25	ns	TI
		COM.1	Extended(LF)		25	45	ns	A COMP

Legend: * These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 15-6: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F74/77 DEVICES ONLY)

Parameter No.	Sym	Characteristic	WI.MO	Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup ti	in valid before \overline{WR} or \overline{CS} (setup time)		M.		ns	I.M.
	Kov	ATM WWW.100Y.		25	4	<u>1</u>	ns	Extended Range Only
63*	TwrH2dtl	\overline{WR} or \overline{CS} to data in invalid (hold time)	Standard(F)	20			ns	N.
	V.C	WWW.	Extended(LF)	35	-	N ₂ N	ns	NY.CO
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data out valid	CONF.	- 1	—	80	ns	N.CO
	V.100X.	CONTRA WWW.I		N	_	90	ns	Extended Range Only
65	TrdH2dtl	RD↑ or CS↓ to data out invalid	COM	10	—	30	ns	. No

Legend: * These parameters are characterized but not tested. † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Advance Information

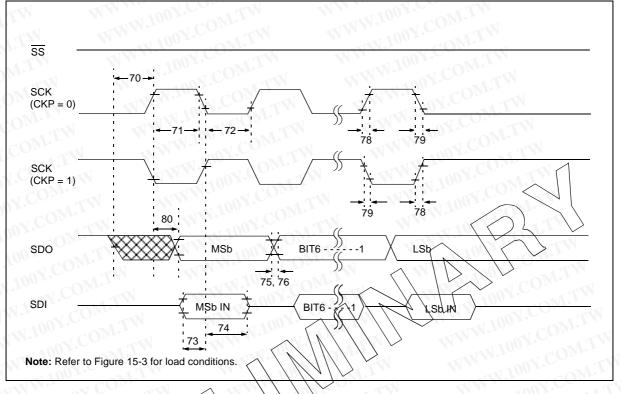
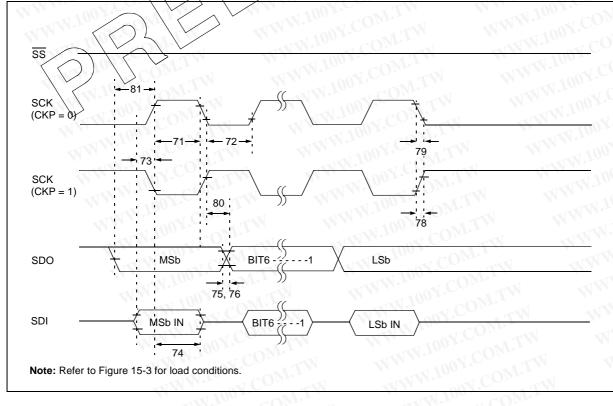
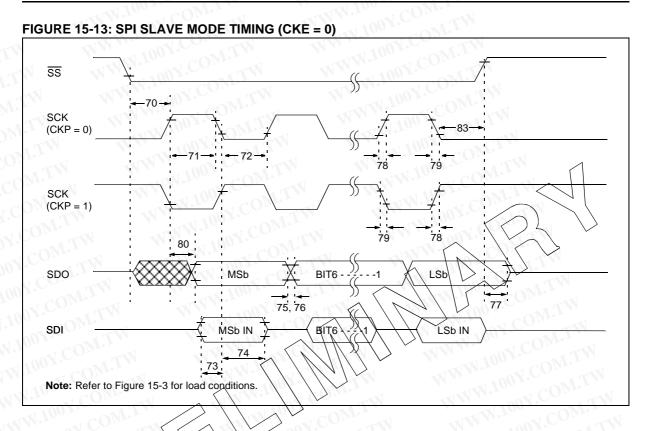




FIGURE 15-12: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

© 2000 Microchip Technology Inc.

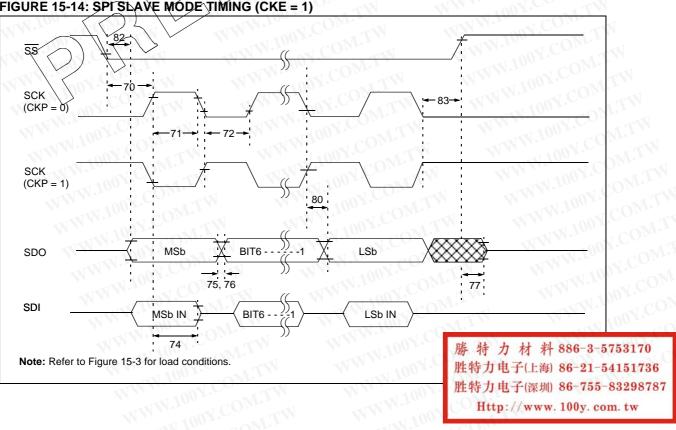
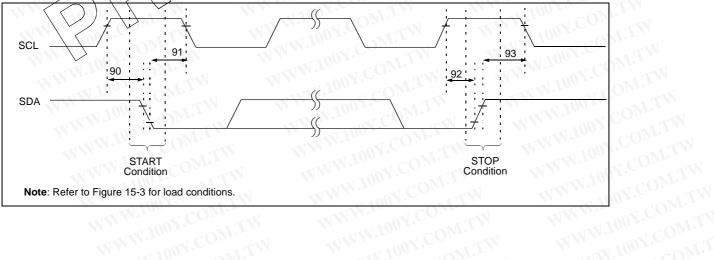


FIGURE 15-14: SPI SLAVE MODE TIMING (CKE = 1)

© 2000 Microchip Technology Inc.

Param No.	Sym	Characteristic	WW.10	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	WWVI.	Тсү	04.,	W	ns	
71*	TscH	SCK input high time (Slave mode)	A NAME	TCY + 20	COMP		ns	
72*	TscL	SCK input low time (Slave mode)	$\overline{\mathbf{N}}$	TCY + 20		(- -	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	WW	100	1.00	E.	ns	4
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	NN	100	N-C	T.M	ns	
75*	TdoR	SDO data output rise time Standard Extended	``		10 25 <	25 50	ns	\sum
76*	TdoF	SDO data output fall time	N	<u> </u>	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	-	10	\sim	\$0	ns	
78*	TscR	SCK output rise time (Master mode) Standard Extended	• •	A	10	25 50	ns ns	N
79*	TscF	SCK output fall time (Master mode)			10	25	ns	N/
80*	TscH2doV, TscL2doV	SDO data output valid after SCK Standard		M		50 145	ns ns	WT
81*	TdoV2scH,	SDO data output setup to SCK edge	\mathcal{A}	J èy	N CH. Y	1	ns	
	TdoV2scL		$\langle \rangle \rangle$			100x.		1.1
82*	TssL2doV	SDO data output valid after SS dedge	∇	- 1		50	ns	WT
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.	5Tcy + 40	N AN	100 v	ns	WT.M

TABLE 15-7: SPI MODE REQUIREMENTS


Legend: * These parameters are characterized but not tested.

+ Data in "Typ" column is at 51/, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-15; I2C BUS START/STOP BITS TIMING

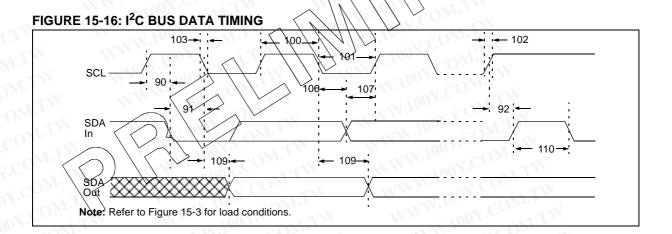
WWW.100Y.COM.TW

WWW.100Y.C

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Advance Information WWW.100Y. WWW.100X.COM.

WWW.100X.COM.TV


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

PIC16F7X

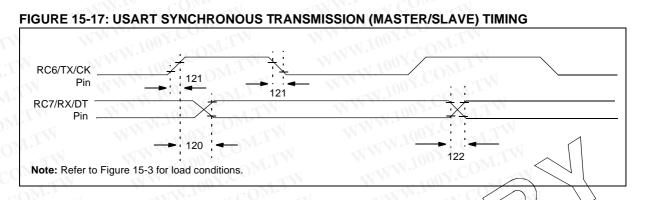
TABLE 15-8: I²C BUS START/STOP BITS REQUIREMENTS

Param No.	Sym	Charact	eristic	Min	Тур	Max	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700		—	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	_	_		START condition
91*	THD:STA	START condition	100 kHz mode	4000	_	_	ns	After this period the first clock
		Hold time	400 kHz mode	600	-			pulse is generated
92*	TSU:STO	STOP condition	100 kHz mode	4700	Θ_{N_1}	_	ns	
		Setup time	400 kHz mode	600		1-1	\land	
93	THD:STO	STOP condition	100 kHz mode	4000		-	ns	
		Hold time	400 kHz mode	600	21	$\left(- \right)$	TL	

* These parameters are characterized but not tested.

Param. No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	100%	μs	Device must operate at a minimum of 1.5 MHz
	1	VWW.100Y.C	400 kHz mode	0.6	OOT.N	μs	Device must operate at a minimum of 10 MHz
		1001.	SSP Module	1.5TCY		0.7.	
101*		Clock low time	100 kHz mode	4.7		μs	Device must operate at a minimum of 1.5 MHz
	W	WW.100	400 kHz mode	1.3	WW	μs	Device must operate at a minimum of 10 MHz
	TW	W 1 10	SSP Module	1.5TCY		\wedge	\square
102*	TR	SDA and SCL rise	100 kHz mode	N _	1000	ns	
	WLM	time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TE	SDA and SCL fall	100 kHz mode	$\left(+ \right) \right)$	300	hs	WT
	OM.L	time	400 kHz mode	20+0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	- <	μs	Only relevant for Repeated
	-Mo	setup time	400 kHz mode	1/0.6	—	μs	START condition
91*	THD:STA	START condition	100 kHz mode	4.0	—	μs	After this period the first
	CONT	hold time	400 kHz mode	0.6	—	μs	clock pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	, <u> </u>	ns	W.IO. COM.
	N.CO.		400 kHz mode	0	0.9	μs	100X.Cont.T
107*	TSU:DAT	Data input setup	100 kHz mode	250	<u> </u>	ns	(Note 2)
	1	time	400 kHz mode	100		ns	WW.Ing COM
92*	TSU:STO	STOP condition	100 kHz mode	4.7		μs	N 1001.
	$\left(\right) $	setup time	400 kHz mode	0.6	A.	μs	WWW. ONY.COM
109*	TAA	Output valid from	100 kHz mode	MOD -	3500	ns	(Note 1)
N/W	1 Coort	clock	400 kHz mode	001	A F	ns	W
110*	D BUF	Bus free time	100 kHz mode	4.7		μs	Time the bus must be free
	VW.100	V.COM.TW	400 kHz mode	1.3	N-r	μs	before a new transmission can start
A.A.	Cb	Bus capacitive loading	ng	1.10	400	pF	

TABLE 15-9: I²C BUS DATA REQUIREMENTS


* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region

 2: A fast mode (400 kHz) I²C-bus device can be used in a standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the standard in the standard in the standard be the standard by the standard be the standard by the stand Stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period of the SCL signal, it standard mode l^2 C bus specification but the stretch the LOW period of the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period of the SCL signal, it standard mode l^2 C bus specification but the stretch the LOW period of the SCL signal to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period of the SCL signal to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the stretch the LOW period to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 pc (conserting the stretch the s 100X.COM.T WW.100Y.COM.TW standard mode I²C bus specification), before the SCL line is released.

> 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

WWW.100X.COM.

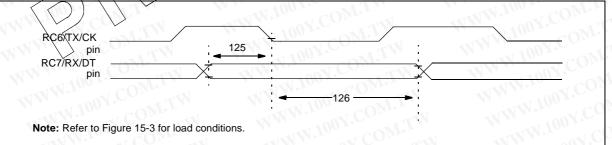


TABLE 15-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

WW.100 1	Param No.	Sym	Characte	ristic	Min	Typt	Max	Units	Conditions
NWW.100	120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	Standard(F)		7_	80	ns	Z
WW 10		MT.IM	Clock high to data out valid	Extended(LF)	$\overline{)}$	700	100	ns	- 1
WWW.	121	Tckrf	Clock out rise time and fall time	Standard(F)	$\sum \sqrt{1}$		45	ns	
.Www.		OM.	(Master mode)	Extended(LF)		<u> </u>	50	ns	Y
	122	Tdtrf	Data out rise time and fall time	Standard(F)		14.14	45	ns	
WWW				Extended(LF)	10		50	ns	0.1.1

†: Data in "Typ" column is at 54, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-18: USART, SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 15-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK ↓ (DT setup time)	15	NTO I	LM_	ns	WW.
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	TN	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

胜特力电子(上海) 86-21-54151736
胜特力电子(深圳) 86-755-83298787
Http://www.100y.com.tw

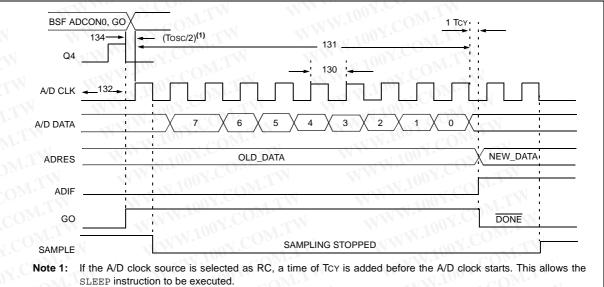
© 2000 Microchip Technology Inc.

TABLE 15-12: A/D CONVERTER CHARACTERISTICS: PIC16F7X (INDUSTRIAL) PIC16LF7X (INDUSTRIAL)

Param No.	Sym	Charac	teristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution	PIC16F7X	UTW.	MM	8 bits	bit	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
DNI		WWW	PIC16LF7X	V.		8 bits	bit	VREF = VDD = 2.0V
A02	EABS	Total Absolute e	error	WT.M	- 11	<±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A03	EL	Integral linearity	error	OM.TY		<±1	LSb	VREF = VDD = 5.12V, $VSS \subseteq VAIN \le VREF$
A04	Edl	Differential linea	arity error	COMUT	- 1	< ± 1	LSb	VREF = VDQ = 5.12V, $VSS \leq VAIN \leq VREF$
A05	EFS	Full scale error	NWW.100	I.COM	1 ¹¹⁻	<+1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A06	EOFF	Offset error		N.CO	171	1 23	LSb	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A10		Monotonicity (Note 3)		~	guaranteed	\searrow –	TH.I	$VSS \leq VAIN \leq VREF$
A20	VREF	Reference voltage		2.01	THA D	VDD + 0.3	V	TOOT. ONLY
A25	VAIN	Analog input voltage		V36 - Q.3	LATT -	VREF + 0.3	V	1007. COM.TW
A30	ZAIN	Recommended analog voltage		171		10.0	kΩ	N.100Y.CO.M.TV
A40	IAD	A/D conversion	PIG16F7X	\sum	180	- N	μA	Average current con-
WW.		current (VDD)	PIC16LF7X	100 <u></u>	90	- 12	μA	sumption when A/D is on (Note 1) .
A50	IREF	VRER input Curre	eht (Note 2)	10	01. <u>~</u> 007.COM 1007.COM 1007.COM	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 12.1. During A/D Conversion
1		CON.COM		WW	U.Yao	10	μΑ	cycle.

* These parameters are characterized but not tested.

†Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

- 2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.
- W.100Y.COM.T WWW.100Y.COM.TW 3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www.100y.com.tw

WWW.100Y.COM.TW

TABLE 15-13: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic	NWW.100	Min	Тур†	Мах	Units	Conditions
130	TAD	A/D clock period	PIC16F7X	1.6	N T		μs	Tosc based, VREF ≥ 3.0V
	.Y00	OM.TW	PIC16LF7X	2.0	M.TV	—	μs	Tosc based, $2.0V \le VREF \le 5.5V$
	. on Y	WT	PIC16F7X	2.0	4.0	6.0	μs	A/D RC mode
	700	CONT.	PIC16LF7X	3.0	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not time) (Note 1)	including S/H	9	CO21.	9	TAD	WWW.100X.COM
132	TACQ	Acquisition time	2 2 2 2 2 2 2 2 2 2 2 2 2 2	5*	:C <u>0</u> 5:CO ³ 05:CC 005:C 1005:	M.T ^N M.T ^V OM. ^T COM	μs V	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start	LTW M.TW	A A A	Tosc/2	<u>, co</u> <u>x</u> .co	M.T.	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	-	Switching from conve	a constitute const	1.5 §	N N N		TAD	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle. 2: See Section 12.1 for min. conditions.

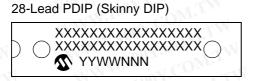
勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

© 2000 Microchip Technology Inc.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

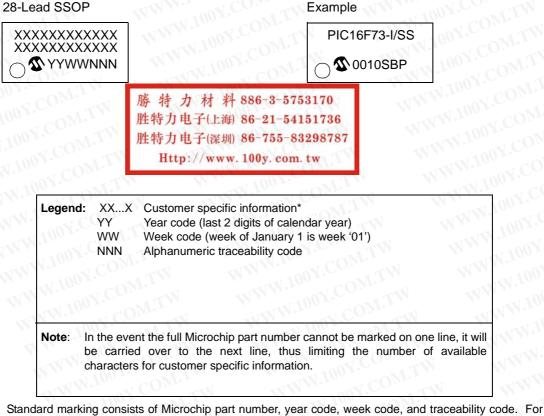

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'Min' represents (mean + 3σ) or (mean - 3σ), respectively, where σ is standard deviation over the whole temperature range.

Graphs and Tables not available at this time.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

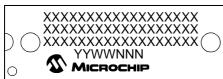
17.0 PACKAGING INFORMATION

17.1 Package Marking Information



28-Lead SOIC

Example



Standard marking consists of Microchip part number, year code, week code, and traceability code. For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

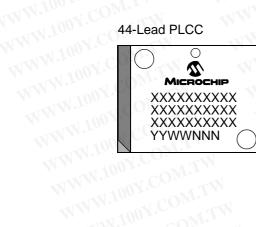
勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

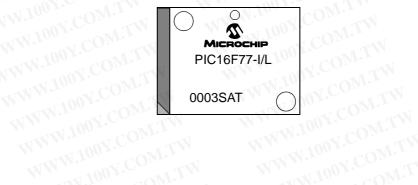
Package Marking Information (Cont'd)

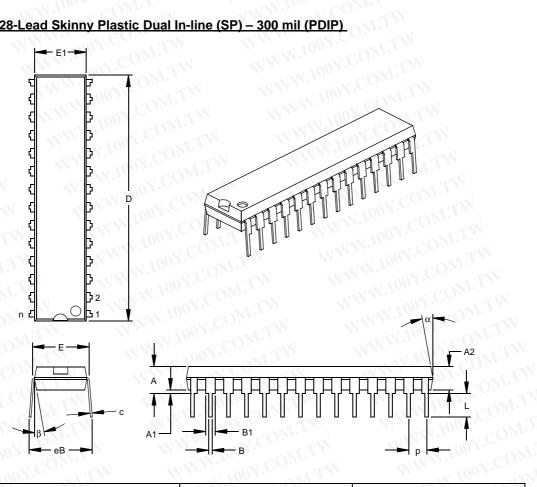
DOX.COM.TW

Example

WWW.100Y.COM

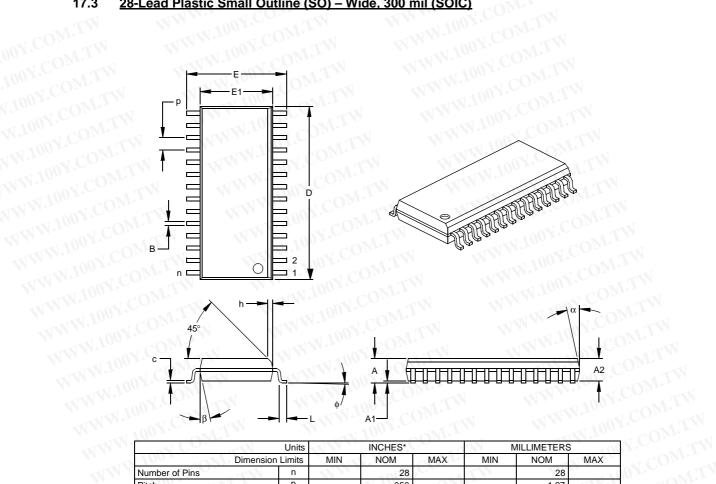

44-Lead TQFP


Example \$ MICROCHIP PIC16F77-I/PT 0011HAT 0 WW.100Y.COM.TW


WWW.100Y.COM.TW WWW.100Y.COM.TW

WWW.1005

Example


17.2 28-L	ead Skinny	Plastic Dual	In-line (SP)) – 300 mil (PDIP)
-----------	------------	---------------------	--------------	--------------------

	Units		INCHES*		MI	LLIMETERS	01.
Dimension I	imits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	1001. M
Pitch	р	V VAL	.100	ONT.	1	2.54	A COM
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015	W.100	coN.	0.38		N.IV .CC
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	41	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15
* Controlling Parameter § Significant Characteristic Notes: Dimension D and E1 do not include m .010" (0.254mm) per side. JEDEC Equivalent: MO-095	old flash (or protrusions.	Mold flash or p	rotrusions sha	Il not exceed	LM LM	WWW.

Drawing No. C04-070

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

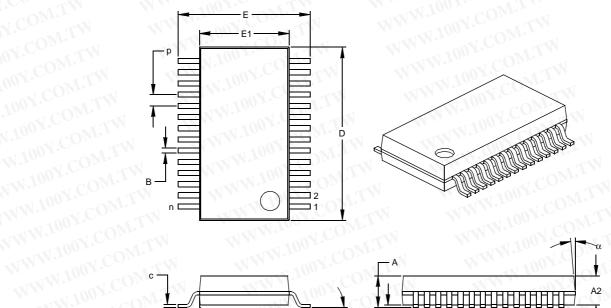
28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC) 17.3

WWW.100Y.COM.TW

	Units		INCHES*		MI	LLIMETERS	
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n	NN.	28		N N	28	
Pitch	р		.050	CON.		1.27	V.N.,
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed WWW.1001


WWW.100Y.COM.TW

WWW.100Y.COM. .010" (0.254mm) per side.

JEDEC Equivalent: MS-013 WWW.100Y.COM.TW

Drawing No. C04-052

WWW.100Y.COM.TW

17.4 28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

	A2
A1	

CONT	Units	N.IV.	INCHES	1	MI	LLIMETERS'		
Dimens	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n	L. WW	28	NY	(28	· · ·	
Pitch	р		.026	- Mar		0.65	<1 100 ³	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.396	.402	.407	10.06	10.20	10.34	
Foot Length	N L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	φ	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	
* Controlling Parameter § Significant Characteristic	V.T.M		W IN	1001.0	'MO		WW	

JEDEC Equivalent: MS-150 Drawing No. C04-073

> 勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 100Y.COM.TW Http://www. 100y. com. tw

Advance Information WWW.100Y. WWW.100X.COM

LOOY.COM.

17.5

WWW.100Y.CO

م ۳۵۵.۲۰۵۲ (۱۹۷۷)

WWW.100Y

WWW.100Y.CO 40-Lead Plastic Dual In-line (P) - 600 mil (PDIP) 特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw JOY.COM.TW C b 2 2 2 V.100Y.COM C WWW.100Y.COM.TW WW.100Y.C D WWW.100Y.COM.TW C WWW.100Y.COM

E 1 1 A2 A 4 < Т н R1 A1 eB ·B p

	Units	N Y	INCHES*	. 1.	MI	LLIMETERS	
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n	NA .	40	100	7.	40	-11
Pitch	р	NT.	.100	1 COM	A	2.54	N Y
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015	10		0.38		
Shoulder to Shoulder Width	< E	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	• L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	C	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

Notes:

C C

C

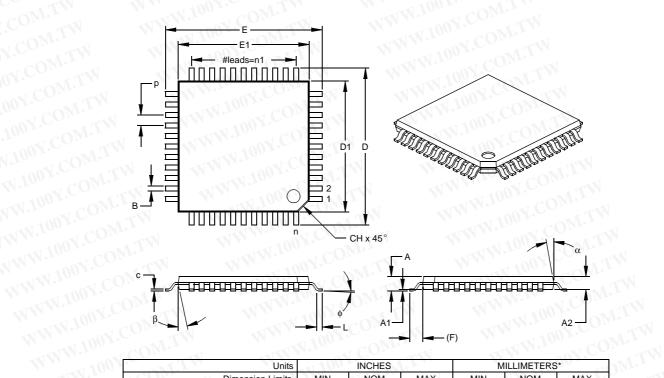
OD1

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed www.100Y.COM WWW.100

WWW.100Y.COM.TW

WWW.100X.COM .010" (0.254mm) per side.

JEDEC Equivalent: MO-011 WWW.100Y.COM.TW


Drawing No. C04-016

DS30325A-page 154

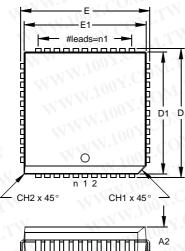
Advance Information WWW.100Y.C WWW.100X.COM.

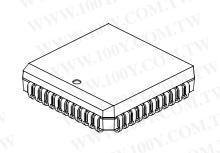
WWW.100Y.COM.TW

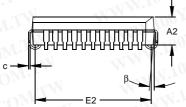
17.6 44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

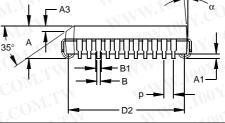
	Units		INCHES		MI	LLIMETERS*	
Dimension	Limits	MIN	NOM	MAX	MIN <	NOM	MAX
Number of Pins	n	100	44	1.1		44	00
Pitch	р		.031	WT.		0.80	1001.
Pins per Side	n1		_11	Mr.		11	.10
Overall Height	A	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1 1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039	- 11	1.00		-110
Foot Angle	¢	0	3.5	<u> </u>	0	3.5	7
Overall Width	E	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.012	.015	.017	0.30	0.38	0.44
Pin 1 Corner Chamfer	CH	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15
* Controlling Parameter § Significant Characteristic	WT.		MN.	1100%.	M	L.M.	

Drawing No. C04-076


特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw .100Y.COM.


© 2000 Microchip Technology Inc.


Advance Information WWW.100Y. WWW.100X.COM


loox.com

- Square (PLCC) 17.7 44-Lead Plastic Leaded Chip Carrier (L)

N.I.	Units	11.10	INCHES*	Mr.	M	LLIMETERS	100
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44	JAT.	:1	44	1.1
Pitch	p		.050	T		1.27	1100
Pins per Side	n1	NIN.	11	O'N'	-	11	M.F
Overall Height	A	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	E	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-047 Drawing No. C04-048

特力材料 886-3-5753170 勝 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

Advance Information WWW.100Y WWW.100Y.COM.

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A A	2000	This is a new data sheet. However, these devices are similar to the PIC16C7> devices found in the PIC16C7X Data Sheet (DS30390) or the PIC16F87X devices (DS30292).
APPENDIX B	DEVICE	DIFFERENCES
The differences be are listed in Table I		ces in this data sheet

APPENDIX B: DEVICE DIFFERENCES

DEVICE DIFFERENCES TABLE B-1:

Difference	PIC16F76/73	PIC16F77/74
A/D	5 channels, 8-bits	8 channels, 8-bits
Parallel Slave Port	no	yes
Packages	28-pin PDIP, 28-pin SOIC, 28-pin SSOP	40-pin PDIP, 44-pin TQFP, 44-pin PLC

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1: **CONVERSION CONSIDERATIONS**

Characteristic	PIC16C7X	PIC16F87X	PIC16F7X
Pins	28/40	28/40	28/40
Timers	3	3	3 WW. LOOM TW
Interrupts	11 or 12	13 or 14	11 or 12
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)	PSP, USART, SSP (SPI, I ² C Slave)
Frequency	20 MHz	20 MHz	20 MHz
A/D	8-bit	10-bit	8-bit
CCP	2	2 V.100 COM.1	2
Program Memory	4K, 8K EPROM	4K, 8K FLASH (1,000 E/W cycles)	4K, 8K FLASH (100 E/W cycles)
RAM	192, 368 bytes	192, 368 bytes	192, 368 bytes
EEPROM Data	None	128, 256 bytes	None
Other	W.100Y.COM.TW	In-Circuit Debugger, Low Voltage Programming	DI-TW WWW.100X

勝特力材料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

ODY.COM.

PIC16F7X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Device	PIC16F7X ⁽¹⁾ , PIC16F7XT ⁽¹⁾ ; VDD range 4.0V to 5.5V PIC16LF7X ⁽¹⁾ , PIC16LF7XT ⁽¹⁾ ; VDD range 2.0V to 5.5V	 b) PIC16LF76-I/SO = Industrial temp., SOI package, 200 kHz, Extended VDD limits. c) PIC16F74-I/P = Industrial temp., PDIP pac age, normal VDD limits.
Temperature Range Package	PT = -40°C to +85°C (Industrial) PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny plastic dip P = PDIP L = PLCC SS = SSOP	Note 1: F = CMOS FLASH LF = Low Power CMOS FLASH T = in tape and reel - SOIC, PLCC, SSOP, TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	WWW.100 WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TW WWW.100Y.COM.TY WWW.100Y.COM.TY

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277

WWW.100Y.CON

3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

Advance Information

WWW.100Y.COM.TW WWW.100Y.COM.TW