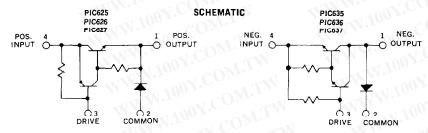
POWER INTEGRATED CIRCUIT

Switching Regulator 15 Amp Positive and Negative Power Output Stages

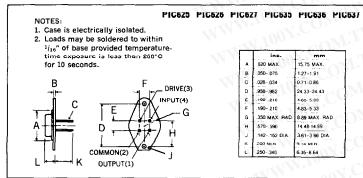
PIC625 PIC626 PIC627 PIC635 PIC636 PIC637

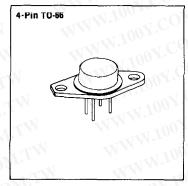
FEATURES

- . Designed and characterized for switching regulator applications
- . Cost saving design reduces size, improves efficiency, reduces noise and RFI (See note 4.)
- High operating frequency (to >100kHz) results in smaller inductor-capacitor filter and improved power supply response time
- High operating efficiency: Typical 7A circuit performance —
 Rise and Fall time <300 ns
 Efficiency >85%
- . No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)
- Electrically isolated, 4-Pin, TO66 hermetic case (500V, 1μA, all leads common)


DESCRIPTION

The Microsemi ESP Switching Regulator is a unique hybrid transistor circuit, specifically designed, constructed and specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator design: choosing the appropriate switching transistors and commutating diode and empirically determining the optimum drive and bias conditions.


Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight and internal power losses and a major decrease in overall cost. Using the Microsemi PIC600 series, the designer can achieve further improvements in size, weight, efficiency and costs. At the same time, because of the PIC600 series design and packaging, the designer is aided in overcoming two of the most signifi-


cant drawbacks to switching regulators: noise generation and slow response time; there is, in fact, no diode reverse recovery spike (see note 4.).

The PIC600 series switching regulators are designed and characterized to be driven with standard integrated circuit voltage regulators. They are completely characterized over their entire operating range of -55°C to +125°C. The devices are enclosed in a special 4-pin TO-66 package, hermetically sealed for high reliability. The hybrid circuit construction utilizes thick film resistors on a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the active elements in the hybrid are fully passivated.

MECHANICAL SPECIFICATIONS

Micro semi Corp.
Watertown
The diode experts

0.70

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www.100y.com.tw

WWW.100Y.COM.TW

W.100Y.COM.TW

WWW.100Y.COM.TW

	-T		27 (U)	-31	- 1	4.
			P1C625	PIC626 PIC627	PIC635 PIC6	36 PIC637
ABSOLUTE MAXIMUM RATINGS	PIC625	PIC626	PIC627	PIC635	PIG636	PIG837
Input Voltage, V ₄₋₂ Output Voltage, V ₁₋₂ Drive-Input Reverse Voltage, V ₃₋₄ Output Current, I ₁ Drive Current, I ₃	60V	80V	100V	—60V	—80V	100V
Output Voltage, V	60V	ROV	100V	60V	V08	100V
Drive Input Boyers Voltage V	5V	5V.	5V	—5V	5V	
Output Current 1	15A	15A	15A	—15A	—15A	—15/
Drive Current, I		—0.4A		0.4A	0.4A	0.4/
Thermal Resistance						
Junction to Case, O. a						
Power Switch				4.0°C/W		
Commutating Diode	O P			4.0°C/W		
Case to Ambient. 6a				60.0°C/W		
Case to Ambient, Θ_{C-A}			.,	_55°C to +125	5°C	
Maximum Junction Tomporature T				+150°C		
Storage Temperature Range		N	W	-65°C to +150)°C	

ELECTRICAL SPECIFICATIONS (at 25°C unless noted)

Test N	Symbol	PIC625/626/627		PIC635/636/637			NN	CO TO	
		міп.	тур.	Max.	Min.	Тур.		Units	Conditions
Current Delay Time	t _{di}	-7	35	60	-	35	60	ns	$V_{in} = 25V(-25V)$
Current Rise Time	t _{ri} 4	07.	65	150	1	65	175	ns	$V_{out} = 5V(-5V)$
Voltage Rise Time	trv		40	60	-	ΔN	60	ns	$I_{out} \equiv 7A(-7A)$
Voltage Storage Time	t _{sv}	00,	900	- 1		900		ns	$I_3 = -30$ mA(30mA) NOTE 5
Voltage Fall Time	t _{fv}		70	175	-	100	300	ns	See Figure 2
Current Fall Time	t _{er}	4 0 0	175	300	-	175	300	ns	See notes 1, 2, 4
Efficiency (Notes 2 and 4)	13	_	85	$\sum_{i} \bigcap_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j$	-	85	l —	%	
On-State Voltage (Note 3)	V _{4-!(on)}	140	1.0	1.5	1	-1.0	1.5	V	$I_4 = 7A(-7A), I_3 =03A(.03A)$ NOTE 5
On-State Voltage (Note 3)	V _{4-I(on)}	_	2.5	3.5	_	-2.5	-3.5	۷	$I_4 = 15A(-15A), I_3 =03A(.03A)$ NOTE!
Diode Fwd. Voltage (Note 3)	V _{2-1(on)}	(4)	.85	1.25		85	-1.25	V	$I_2 = 7A(-7A)$
Diode Fwd. Voltage (Note 3)	V _{2-1(on)}	_	.95	1.75	-	95	-1.75	٧	$I_2 = 15A(-15A)$
Off-State Current	I ₄₋₁		0.1	10		-0.1	10	μA	V₄ = Rated input voltage
Off-State Current	I ₄₋₁	<u> </u>	10	7	_	-10	MT-	μA	$V_4 = Rated input voltage, T_A = 100 ^{\circ}C$
Diode Reverse Current	1,-2	4	1.0	10		-1.0	-10	μA	$V_1 = Rated$ output voltage
Diode Reverse Current	l ₁₋₂	_	500	$U(\mathcal{D}_{\mathcal{X}})$	1 —	500	7	μA	$V_1 = Rated$ output voltage, $T_A = 100$ °C

NOTES:

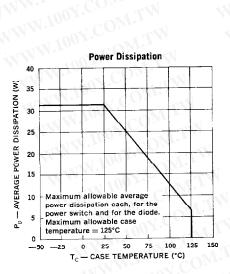
- NOLES:

 1. In switching an inductive load, the current will lead the voltage on turn-on and lag the voltage on turn-off (see Figure 2). Therefore, Voltage Delay Time (tpv) \cong tall + tall and Current Storage Time (tall) \cong tay + tall.

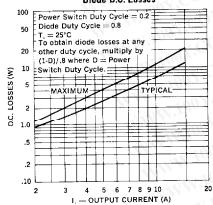
 2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of Figure 1, in which the efficiency is measured, is representative of typical operating conditions for the PICDUU series switching regulators.
- 3. Pulse test: Duration = 300μ s, Duty Cycle $\leq 2\%$.
- 4. As can be seen from the switching waveforms shown in Figure 2, no reverse of forward recovery spike is generated by the commutating diode during switching! This reduces self-generated noise, since no current spike is fed through the switching regulator. It also improves efficiency and reliability, since the power switch only carries current during turn on.
- 5. To insure safe operation I₃ should be ≥ |30mA| during ToN. Operation at I₃ < |30mA| can permanently damage device.

POWER DISSIPATION CONSIDERATIONS

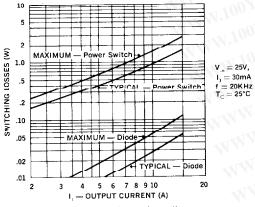
The total power losses in the switching regulator is the sum of the switching losses, and the power switch and diode D.C. losses. Once total power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any operating condition.

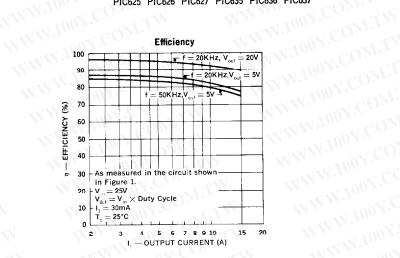

The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by f/20KHz.

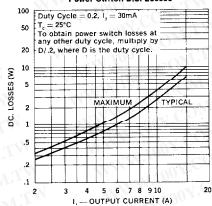
The D.C. losses curve presents data for a duty cycle of .2. To find D.C. losses at any other duty cycle. multiply by D/.2 for the power switch and by (1-D)/.8 for the

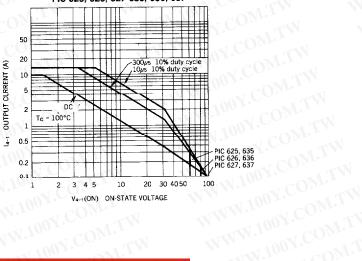

WWW.100Y.COM.TW At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invalid and a detailed transient thermal analysis must be performed

> 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw


W.100X.COM.TW


Diode D.C. Losses


Switching Losses


To determine switching losses at any other frequency, multiply by f/20KHz where f is the frequency at which the losses are to be

Power Switch D.C. Losses

Maximum Safe Operating Area PIC 625, 626, 627-635, 636, 637

特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787

Http://www. 100y. com. tw

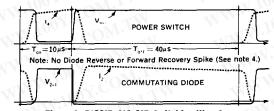
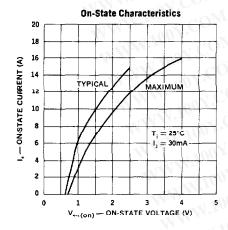
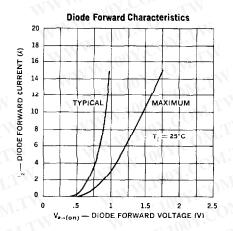
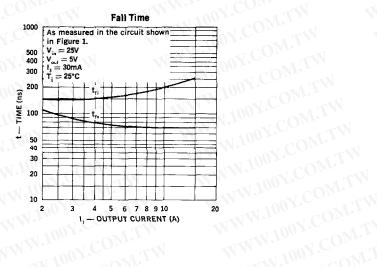




Figure 1. PIC625, 626, 627 Switching Speed Circuit


Figure 2. PIC625, 626, 627 Switching Waveforms

Note: PIC635, PIC637 Circuit and waveforms are identical but of opposite polarity ($V_{in} = -25V$, $V_{out} = -5V$, $I_{DRIVE} = +30mA$.)

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw WWW.100X.COM.TW