Data Sheet January 2000 File Number 3399.3 ### 30A, 1200V Ultrafast Diode The RURG30120 is an ultrafast diode with soft recovery characteristic (t_{rr} < 110ns). It has low forward voltage drop and is silicon nitride passivated ion-implanted epitaxial planar construction. This device is intended for use as a freewheeling/clamping diode and rectifier in a variety of switching power supplies and other power switching applications. Its low stored charge and ultrafast recovery with soft recovery characteristics minimize ringing and electrical noise in many power switching circuits, reducing power loss in the switching transistors. Formally developmental type TA49031. ## **Ordering Information** | PART NUMBER | PACKAGE | BRAND | |-------------|---------|-----------| | RURG30120 | TO-247 | RURG30120 | NOTE: When ordering, use the entire part number. ## Symbol #### **Features** | Ultrafast with Soft Recovery | <110ns | |------------------------------|--------| | Operating Temperature | 175°C | | Reverse Voltage | 1200V | | Avalanche Energy Rated | | | Planar Construction | | ### **Applications** - Switching Power Supplies - Power Switching Circuits - · General Purpose ## **Packaging** **JEDEC STYLE 2 LEAD TO-247** # **Absolute Maximum Ratings** $T_C = 25^{\circ}C$, Unless Otherwise Specified | | | RURG30120 | UNITS | |---------------------------------------|---|------------|-------| | Peak Repetitive Reverse Voltage | V _{RRM} | 1200 | V | | Working Peak Reverse Voltage | V _{RWM} | 1200 | V | | DC Blocking Voltage | V _R | 1200 | V | | Average Rectified Forward Current | I _{F(AV)} | 30 NY CO | A | | Repetitive Peak Surge Current | IFRM | 60 | A | | Nonrepetitive Peak Surge Current | I _{FSM} | 300 | Α | | Maximum Power Dissipation | P _D | 125 | W | | Avalanche Energy (See Figure 7 and 8) | E _{AVL} | 30 | mJ | | Operating and Storage Temperature | \dots T _{STG} , T _J | -65 to 175 | οС | 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw **Electrical Specifications** $T_C = 25^{\circ}C$, Unless Otherwise Specified | SYMBOL | TEST CONDITION | MIN | TYP | MAX | UNITS | |--------------------|---|--------|-------|---------|-------| | V _F 100 | I _F = 30A | - | W.10 | 2.1 | V | | | $I_F = 30A, T_C = 150^{\circ}C$ | - | W. | 1.9 | V | | I _R | V _R = 1200V | | TAN W | 250 | μА | | | V _R = 1200V, T _C = 150°C | .TV | | V.101 | mA | | t _{rr} | I _F = 1A, dI _F /dt = 100A/μs | 1.77 | | 110 | ns | | | I _F = 30A, dI _F /dt = 100A/μs | MIT | - 77 | 150 | ns | | t _a | I _F = 30A, dI _F /dt = 100A/μs | OMITY | 90 | WV-100 | ns | | t _b | I _F = 30A, dI _F /dt = 100A/μs | CONTIN | 45 | TWW.100 | ns | | $R_{ heta JC}$ | W.1007. COM.TW WWW.1003 | COMI | 1 | 1.2 | oC/W | #### **DEFINITIONS** V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%). I_R = Instantaneous reverse current. t_{rr} = Reverse recovery time (See Figure 6), summation of t_a + t_b. t_a = Time to reach peak reverse current (See Figure 6). t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 6). $R_{\theta JC}$ = Thermal resistance junction to case pw = Pulse width. D = Duty cycle. ## **Typical Performance Curves** FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw ## Typical Performance Curves (Continued) FIGURE 3. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT **FIGURE 4. CURRENT DERATING CURVE** #### Test Circuits and Waveforms FIGURE 5. t_{rr} TEST CIRCUIT FIGURE 6. t_{rr} WAVEFORMS AND DEFINITIONS FIGURE 7. AVALANCHE ENERGY TEST CIRCUIT FIGURE 8. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com