CMOS SRAM K6R4008V1D

Document Title

512Kx8 Bit High Speed Static RAM(3.3V Operating). Operated at Commercial and Industrial Temperature Ranges.

Revision History

Operate	ed at Commer	ciai and inc	iustriai Tempe	rature Kange	.s. MM M. 100X	
<u>evision</u>	History					
RevNo.	<u>History</u>				Draft Data	Remark
Rev. 0.0	Initial release with	n Preliminary.			Aug. 20. 2001	Preliminary
Rev. 0.1	Add Low Ver.				Sep. 19. 2001	Preliminary
Rev. 0.2	Change Icc, Isb a	and Isb1			Nov. 3. 2001	Preliminary
	Ite	m	Previous	Current		
	1007:0	8ns	110mA	80mA		
	M.100	10ns	90mA	65mA		
	ICC(Commercial)	12ns	80mA	55mA		

Item	Mr.	Previous	Current	
1007.	8ns	110mA	80mA	
N.100	10ns	90mA	65mA	
ICC(Commercial)	12ns	80mA 70mA 130mA 115mA	55mA	
W. T.	15ns	70mA	45mA	
100 3	8ns	130mA	100mA	
1	10ns	115mA	85mA	
ICC(Industrial)	12ns	100mA	75mA	
1000	15ns	85mA	65mA	
ISB	CON	30mA	20mA	
ISB1(L-v	ver.)	0.5mA	1.2mA	

Rev. 0.3

- 1. Correct AC parameters: Read & Write Cycle mA
- 2. Delete Low Ver.
- 3. Delete Data Retention Characteristics

Rev. 1.0

- 1. Delete 12ns,15ns speed bin. Change Icc for Industrial mode.

Iten	1 100 7.	Previous	Current
loog to the	8ns	100mA	90mA
ICC(Industrial)	10ns	85mA	75mA

Rev. 2.0

Add the Lead Free Package type.

WWW.100Y.COM.TW

Preliminary

Nov.23. 2001

Dec.18. 2001

July. 26, 2004

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 WWW.100Y.COM.TW Http://www. 100y. com. tw

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.

WWW.100Y.COM.TW WW.100Y.COM.TW **CMOS SRAM** K6R4008V1D

4Mb Async. Fast SRAM Ordering Information

WWW.100Y.COM.TW

WWW.100Y.COM.T

Org.	Part Number	VDD(V)	Speed (ns)	PKG	Temp. & Power
41441	K6R4004C1D-J(K)C(I) 10	5 Y	10	J : 32-SOJ	N 100Y.CONITY
1M x4	K6R4004V1D-J(K)C(I) 08/10	3.3	8/10	K : 32-SOJ(LF)	
WWW.	K6R4008C1D-J(K,T,U)C(I) 10	5	10	J : 36-SOJ K : 36-SOJ(LF)	,Normal Power Range I: Industrial Temperature ,Normal Power Range L: Commercial Temperature ,Low Power Range P: Industrial Temperature ,Low Power Range
512K x8	K6R4008V1D-J(K,T,U)C(I) 08/10	3.3	8/10	T : 44-TSOP2 U : 44-TSOP2(LF)	
MM	K6R4016C1D-J(K,T,U,E)C(I) 10	5	10	J : 44-SOJ K : 44-SOJ(LF)	P : Industrial Temperature
256K x16	K6R4016V1D-J(K,T,U,E)C(I,L,P) 08/10	3.3	8/10	T : 44-TSOP2 U : 44-TSOP2(LF) E : 48-TBGA	, LOW FOWER Range

WWW.100Y.COM.TW 勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

W.100Y.COM.TW

WWW.100

CMOS SRAM

512K x 8 Bit High-Speed CMOS Static RAM

FEATURES

- Fast Access Time 8,10ns(Max.)
- Low Power Dissipation

Standby (TTL) : 20mA(Max.) (CMOS) : 5mA(Max.)

Operating K6R4008V1D-08:80mA(Max.)

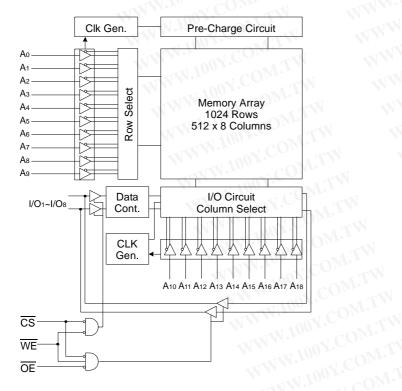
K6R4008V1D-10:65mA(Max.)

- Single 3.3 ±0.3V Power Supply
- TTL Compatible Inputs and Outputs
- Fully Static Operation
 - No Clock or Refresh required
- · Three State Outputs
- Center Power/Ground Pin Configuration
- · Standard Pin Configuration

K6R4008V1D-J: 36-SOJ-400

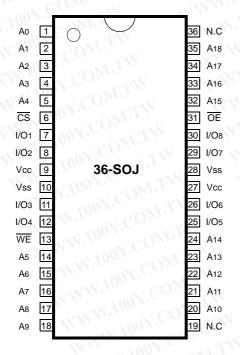
K6R4008V1D-K : 36-SOJ-400(Lead-Free) K6R4008V1D-T : 44-TSOP2-400BF

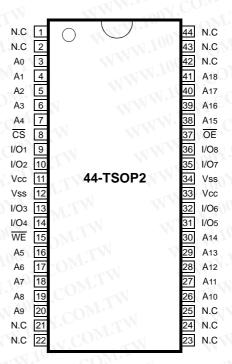
K6R4008V1D-U: 44-TSOP2-400BF(Lead-Free)


· Operating in Commercial and Industrial Temperature range.

GENERAL DESCRIPTION

The K6R4008V1D is a 4,194,304-bit high-speed Static Random Access Memory organized as 524,288 words by 8 bits. The K6R4008V1D uses 8 common input and output lines and has an output enable pin which operates faster than address access time at read cycle. The device is fabricated using SAMSUNG's advanced CMOS process and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The K6R4008V1D is packaged in a 400 mil 36-pin plastic SOJ and 44-pin plastic TSOP type II.


勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION (Top View)

PIN FUNCTION

Pin Name	Pin Function
A0 - A18	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
I/O1 ~ I/O8	Data Inputs/Outputs
Vcc	Power(+3.3V)
Vss	Ground
N.C	No Connection

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

ABSOLUTE MAXIMUM RATINGS*

Param	neter	Symbol	Rating	Unit
Voltage on Any Pin Relative	to Vss	VIN, VOUT	-0.5 to 4.6	V
Voltage on Vcc Supply Rela	tive to Vss	Vcc	-0.5 to 4.6	CV
Power Dissipation	William	PD	1.0	W
Storage Temperature	W	Тѕтс	-65 to 150	°C
Operating Temperature	Commercial	TA	0 to 70	°C
	Industrial	TAC	-40 to 85	°C

^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS*(TA=0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	3.0	3.3	3.6	V
Ground	Vss	0.0	0	0.00	COV
Input High Voltage	VIH	2.0	-	Vcc+0.3***	CO
Input Low Voltage	VIL	-0.3**	W.L.	0.8	V

The above parameters are also guaranteed at industrial temperature range.

DC AND OPERATING CHARACTERISTICS*(TA=0 to 70°C, Vcc=3.3±0.3V, unless otherwise specified)

Parameter	Symbol	Test Condition	ıs		Min	Max	Unit
Input Leakage Current	. Li	Vin=Vss to Vcc	TIME		-2	2	μΑ
Output Leakage Current	ClLO	CS=VIH or OE=VIH or WE=VIL VOUT=VSS to VCC	CON'L	W	-2	2	μА
Operating Current	Icc	Min. Cycle, 100% Duty	Com.	8ns	-	80	mA
MMM		CS=VIL, VIN=VIH or VIL, IOUT=0mA	M.Co.	10ns	- 1	65	
WWW.		MI.	Ind.	8ns	-	90	
WW		OM:1	S CO	10ns	-	75	
Standby Current	ISB	Min. Cycle, CS=Vін				20	mA
WW	ISB1	f=0MHz, CS≥Vcc-0.2V, Vin≥Vcc-0.2V or Vin≤0.2V	1.100 X.C	OM.TV	-	5	
Output Low Voltage Level	Vol	IoL=8mA	W.100	co_{M}	- XXI	0.4	V
Output High Voltage Level	Voн	Iон=-4mA	12N 100 x	COM.	2.4	-	V

^{*} The above parameters are also guaranteed at industrial temperature range.

CAPACITANCE*(TA=25°C, f=1.0MHz)

	Test Conditions	TYP	Max	Unit
Ci/o	VI/O=0V	-1109 Y.C	8	pF
CIN		No.	1172	pF
4	-011W01	011111111111111111111111111111111111111		

^{*} Capacitance is sampled and not 100% tested.

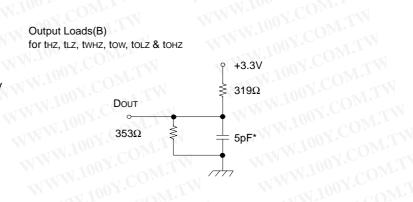
特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw WWW.100Y.COM.TW

 $V_{IL}(Min) = -2.0V \text{ a.c}(Pulse Width } \le 8ns) \text{ for } I \le 20mA.$

ViH(Max) = Vcc + 2.0V a.c (Pulse Width ≤ 8ns) for I ≤ 20mA

WWW.100Y.COM.TW **CMOS SRAM** K6R4008V1D

AC CHARACTERISTICS(TA=0 to 70°C, Vcc=3.3±0.3V, unless otherwise noted.)


TEST CONDITIONS*

Parameter	Value
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	3ns W
Input and Output timing Reference Levels	1.5V
Output Loads	See below

^{*}The above test conditions are also applied at industrial temperature range.

•W--○VL = 1.5V $\mathsf{RL} = 50\Omega$ Dout = 30pF* $Zo = 50\Omega$

Output Loads(B) for thz, tLz, tWHz, tOW, tOLZ & tOHZ

^{*} Capacitive Load consists of all components of the test environment.

READ CYCLE*

	1007	V6D400	8V1D-08	KeB400	8V1D-10	
Parameter	Symbol	Min	Max	Min	Max	Unit
Read Cycle Time	tRC	8	- WW	10	WTIL	ns
Address Access Time	tAA	COMP	8	M. DOV.C	10	ns
Chip Select to Output	tco	COM	8	MM: Jon	10	ns
Output Enable to Valid Output	toE	T.M.T.	4	-100 x	5	ns
Chip Enable to Low-Z Output	tLZ	3	- 1	3 100	· COM.TY	ns
Output Enable to Low-Z Output	toLZ	0.0	TW -	0	Y.CO.	ns
hip Disable to High-Z Output	tHZ	OCOM	4	0	C 5	ns
Output Disable to High-Z Output	tonz	0 0	4	0	50	ns
Output Hold from Address Change	tон	1003	Willy	3	00x. CON	ns
Chip Selection to Power Up Time	tpu	0 7	MITH	0	1001-01	ns
hip Selection to Power DownTime	tPD	N. Z.C	8	1-11/1/N	10	ns

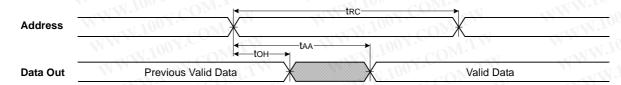
^{*} The above parameters are also guaranteed at industrial temperature range.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

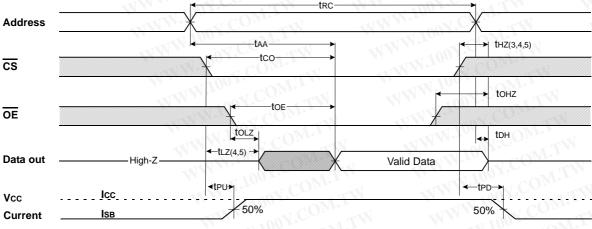
^{*} Including Scope and Jig Capacitance

K6R4008V1D

CMOS SRAM


WRITE CYCLE*

W. Too De COM.	Cumbal	K6R400	8V1D-08	K6R400	K6R4008V1D-10		
Parameter	Symbol	Min	Max	Min	Max	Unit	
Write Cycle Time	twc	8 100	T. O. T. T.	10	W.1001.	ns	
Chip Select to End of Write	tcw	6	Y.CO.	7	1007.0	ns	
Address Set-up Time	tas	0	V.Com	W 0	MM OUT.	ns	
Address Valid to End of Write	taw	6	ON.	7	MINN . TO	ns	
Write Pulse Width(OE High)	twp	6	1003 OM	7	W.100	ns	
Write Pulse Width(OE Low)	tWP1	8	1007:	10	W 1. 100	ns	
Write Recovery Time	twR	0	1007.00	0	MW-110	ns	
Write to Output High-Z	twnz	0	4 C	0	5	ns	
Data to Write Time Overlap	tow	4	M.In.	5	WW.	ns	
Data Hold from Write Time	tDH	0	11.100 r.	0	- WW	ns	
End of Write to Output Low-Z	tow	3	A . 100 X .	3	N. A.	ns	


^{*} The above parameters are also guaranteed at industrial temperature range.

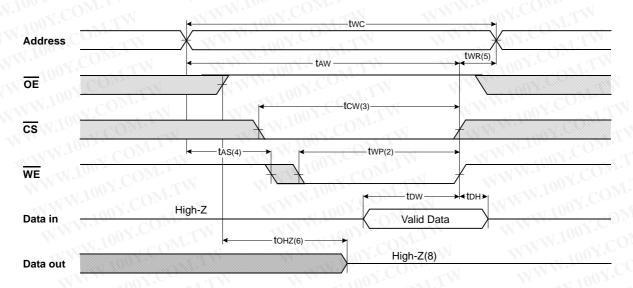
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS} = \overline{OE} = VIL, \overline{WE} = VIH)$

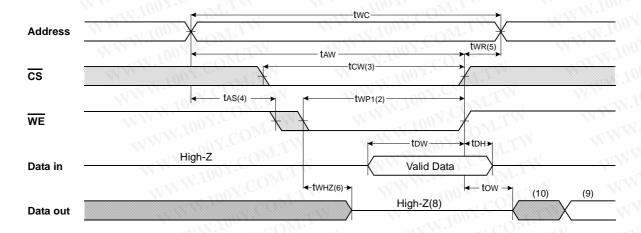
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

NOTES(WRITE CYCLE)

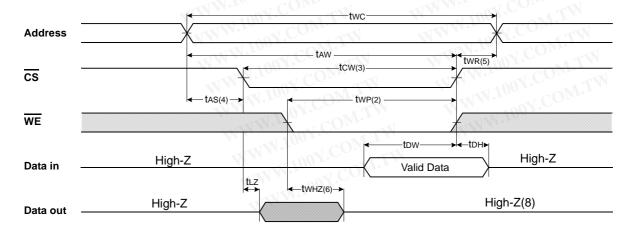
- 1. WE is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. tHz and toHz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VoH or
- 4. At any given temperature and voltage condition, tHz(Max.) is less than tLz(Min.) both for a given device and from device to device.
- $5. \ Transition \ is \ measured \ \pm 200 mV \ from \underline{ste} ady \ state \ voltage \ with \ Load(B). \ This \ parameter \ is \ sampled \ and \ not \ 100\% \ tested.$
- 6. Device is continuously selected with $\overline{\text{CS}}=\text{V}_{\text{IL}}$.
- 7. Address valid prior to coincident with $\overline{\text{CS}}$ transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.



勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


K6R4008V1D

CMOS SRAM


TIMING WAVEFORM OF WRITE CYCLE(1) (OE= Clock)

TIMING WAVEFORM OF WRITE CYCLE(2) (OE=Low Fixed)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS = Controlled)

NOTES(WRITE CYCLE)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.

 2. A write occurs during the overlap of a low CS and WE. A write begins at the latest transition CS going low and WE going low; A write ends at the earliest transition $\overline{\text{CS}}$ going high or $\overline{\text{WE}}$ going high. twp is measured from the beginning of write to the end of write.
- 3. tcw is measured from the later of CS going low to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. twe is measured from the end of write to the address change. twe applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
- 6. If $\overline{\text{OE}}$, $\overline{\text{CS}}$ and $\overline{\text{WE}}$ are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If CS goes low simultaneously with WE going or after WE going low, the outputs remain high impedance state.
 9. Dout is the read data of the new address.
- 10. When \overline{CS} is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

FUNCTIONAL DESCRIPTION

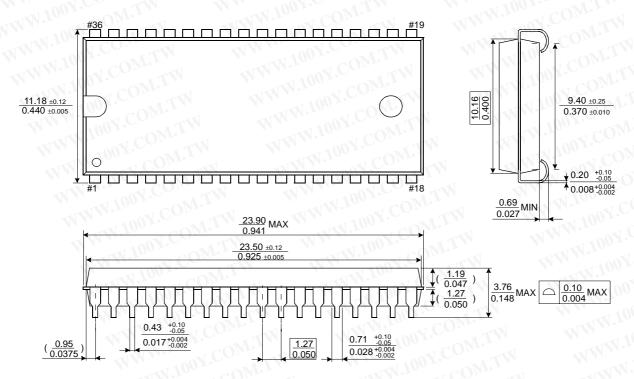
S	WE	OE	Mode	I/O Pin	Supply Current
1	X100	X*	Not Select	High-Z	ISB, ISB1
_	H 100	Н	Output Disable	High-Z	lcc \
_	Н	OY. C	Read	Dout	Icc
_	W. L.	X	Write	DIN	Icc

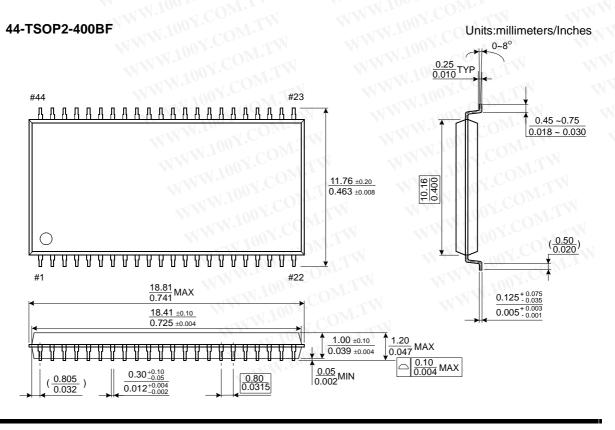
WWW.100Y.COM.TW

WWW.100Y.COM.TW 特力材料886-3-5753170 胜特力电子(上海) 86-21-54151736 WWW.100Y.COM.TW 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

^{*} X means Don't Care.

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw


K6R4008V1D


CMOS SRAM

PACKAGE DIMENSIONS

Units:millimeters/Inches

36-SOJ-400

