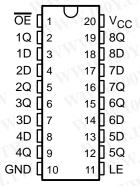
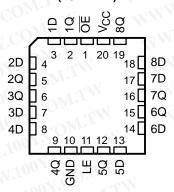
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SN54HCT373, SN74HCT373 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCLS009C - MARCH 1984 - REVISED DECEMBER 2002


- Operating Voltage Range of 4.5 V to 5.5 V
- High-Current 3-State True Outputs Can Drive Up To 15 LSTTL Loads
- Low Power Consumption, 80-μA Max I_{CC}
- Typical t_{pd} = 21 ns
- ±6-mA Output Drive at 5 V
- Low Input Current of 1 μA Max
- Inputs Are TTL-Voltage Compatible
- Eight High-Current Latches in a Single Package
- Full Parallel Access for Loading

description/ordering information


These 8-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the 'HCT373 devices are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels that were set up at the D inputs.

SN54HCT373 . . . J OR W PACKAGE SN74HCT373 . . .DB, DW, N, NS, OR PW PACKAGE (TOP VIEW)

SN54HCT373 . . .FK PACKAGE (TOP VIEW)

An output-enable (\overline{OE}) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

ORDERING INFORMATION

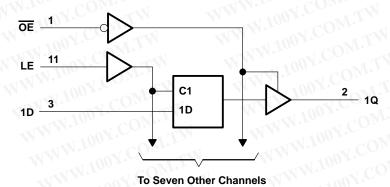
TA	PACKA	GET CONTRACT	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N Tube SN74HCT373N		SN74HCT373N	
	2010 - 1011	Tube	SN74HCT373DW	M. S. COM
4000 / 0500	SOIC - DW	Tape and reel	SN74HCT373DWR	HCT373
–40°C to 85°C	SOP - NS	Tape and reel	SN74HCT373NSR	HCT373
	SSOP - DB	Tape and reel	SN74HCT373DBR	HT373
	TSSOP - PW	Tape and reel	SN74HCT373PWR	HT373
	CDIP – J	Tube	SNJ54HCT373J	SNJ54HCT373J
–55°C to 125°C	CFP – W	Tube	SNJ54HCT373W	SNJ54HCT373W
	LCCC – FK	Tube	SNJ54HCT373FK	SNJ54HCT373FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCLS009C - MARCH 1984 - REVISED DECEMBER 2002

description/ordering information (continued)


OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

FUNCTION TABLE (each latch)

	V .	4.11	
	INPUTS	OUTPUT	
OE	LE	D.	Q
L	Н	Н	Н
√ L	H	L	TOOK.CC
L	L	X	Q_0
Н	Χ	X	Z

力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www. 100y. com. tw

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	.0N	0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see	ee Note 1)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CO}$	c) (see Note 1)	±20 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	ON	±35 mA
Continuous current through V _{CC} or GND		±70 mA
Package thermal impedance, θ _{JA} (see Note 2)	: DB package	70°C/W
TANN. IO	DW package	58°C/W
	N package	69°C/W
	NS package	60°C/W
	PW package	83°C/W
Storage temperature range, T _{sto}	.100?:	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS009C - MARCH 1984 - REVISED DECEMBER 2002

recommended operating conditions (see Note 3)

	VIA MAN TOOK COM		54HCT3	73	SN	74HCT3	73	
			MIN NOM		MIN	NOM	MAX	UNIT
Supply voltage	MAN. TO COM	4.5	5	5.5	4.5	5	5.5	V
High-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2	KT	×1	2	.00	CO_{M_I}	V
Low-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	MIL		0.8	Wir	700	0.8	V
Input voltage	MM TOOY.Co	0		Vcc	0	1100	Vcc	V
Output voltage	NWW.LOV.C	0	TW	Vcc	0	4	Vcc	V
Input transition rise/fall time	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OM.	- 1	500	-111	M.In.	500	ns
Operating free-air temperature	W 100x	-55		125	-40	W.11	85	°C
	High-level input voltage Low-level input voltage Input voltage Output voltage Input transition rise/fall time	High-level input voltage Low-level input voltage VCC = 4.5 V to 5.5 V Input voltage Output voltage Input transition rise/fall time	Supply voltage 4.5 High-level input voltage VCC = 4.5 V to 5.5 V 2 Low-level input voltage VCC = 4.5 V to 5.5 V Input voltage 0 Output voltage 0 Input transition rise/fall time	MIN NOM Supply voltage 4.5 5 High-level input voltage VCC = 4.5 V to 5.5 V 2 Low-level input voltage VCC = 4.5 V to 5.5 V 0 Input voltage 0 0 Output voltage 0 Input transition rise/fall time	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MIN NOM MAX MIN Supply voltage 4.5 5 5.5 4.5 High-level input voltage VCC = 4.5 V to 5.5 V 2 2 2 Low-level input voltage VCC = 4.5 V to 5.5 V 0.8 0 VCC 0 Input voltage 0 VCC 0 Output voltage 0 VCC 0 Input transition rise/fall time 500	MIN NOM MAX MIN NOM Supply voltage 4.5 5 5.5 4.5 5 High-level input voltage VCC = 4.5 V to 5.5 V 2 2 2 Low-level input voltage VCC = 4.5 V to 5.5 V 0.8 0 VCC 0 Input voltage 0 VCC 0 VCC 0 Output voltage 0 VCC 0 VCC 0 Input transition rise/fall time 500 VCC 0 VCC 0	MIN NOM MAX MIN NOM MAX Supply voltage 4.5 5 5.5 4.5 5 5.5 High-level input voltage VCC = 4.5 V to 5.5 V 2 2 2 2 Low-level input voltage VCC = 4.5 V to 5.5 V 0.8 0.8 0.8 Input voltage 0 VCC 0 VCC Output voltage 0 VCC 0 VCC Input transition rise/fall time 500 500 500

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS			T _A = 25°C		-OM	SN54HCT373		SN74HCT373		
PARAMETER			VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	VIV	I _{OH} = -20 μA	457	4.4	4.499		4.4		4.4	441	1007
VOH	$V_I = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -6 \text{ mA}$	4.5 V	3.98	4.3	N.CU	3.7	N	3.84	11/1/11	V
	VI = VIH or VIL	$I_{OL} = 20 \mu A$	4.5.1	TXN	0.001	0.1	DMr.	0.1		0.1	1.10
V_{OL}		$I_{OL} = 6 \text{ mA}$	4.5 V	14.	0.17	0.26	Mo	0.4		0.33	V.VO
l _l	$V_I = V_{CC}$ or 0	1007.Co	5.5 V	41/	±0.1	±100		±1000		±1000	nA
loz	$V_O = V_{CC}$ or 0	· row COM	5.5 V	1/1	±0.01	±0.5	Co_{i}	±10		±5	μΑ
ICC	$V_I = V_{CC}$ or 0,	I _O = 0	5.5 V		TWW	8	1 CO $_{I}$	160	V	80	μΑ
ΔI _{CC} †	One input at 0.5 \\ Other inputs at 0		5.5 V		1.4	2.4	N.CC	3	W	2.9	mA
Ci	W	MM.To.	4.5 V to 5.5 V		3	10	00 Y.C	10	LM	10	pF

[†] This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or VCC.

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

	MM M. ON CO.	v _{cc}	T _A = 2	25°C	SN54H	CT373	SN74H	CT373	· · · · · · ·
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
	N 100 3	4.5 V	20	V 1	30	00.	25	- 1	
t _W	Pulse duration, LE high	5.5 V	17	M	27	700,7	23	IJA	ns
	MAN CONT.C	4.5 V	10		15	100	13	TI	
t _{su}	Setup time, data before LE↓	5.5 V	9		14	1.5	12	I.	ns
th Hold time, data after LE	Hold time where often I E I	4.5 V	10		10	$M.j_{B}$	10	DMr.	
	Hold time, data after LE↓	5.5 V	10		10	- N.1	10		ns

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

SN54HCT373, SN74HCT373 OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCLS009C - MARCH 1984 - REVISED DECEMBER 2002

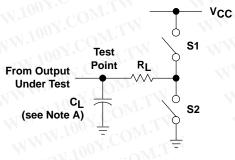
switching characteristics over recommended operating free-air temperature range, $C_L = 50$ pF (unless otherwise noted) (see Figure 1)

	FROM	N TO WIN		CT,	λ = 25°C	W	SN54H	CT373	SN74H	CT373	
PARAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
M.A.	100 Y. O. O.Y.	, , , , , , , , , , , , , , , , , , ,	4.5 V	90 r.	25	35		53	M.100	44	OM.
WW	DCOM	TW Q	5.5 V	100 X.	21	32		48	XI 1(40	Mo
^t pd	W.10LE CON	Any Q	4.5 V	You.	28	35		53	N 41-	44	ns
			Any Q 5.5 V	Ally Q 5.	5.5 V	Too	25	32	XI	48	MM.
. 11	ŌĒ Any C	M.T.W	4.5 V	N.100	26	35		53	WIX	44	7 CC
^t en		Any Q	5.5 V	10	23	32	111	48	M.	40	ns
	OE Any Q) IV.	4.5 V	14	23	35	TW	53	MM	44	NY.C
^t dis		Any Q	5.5 V	MW.I	22	32	- N	48	WW	40	ns
4.	W. 100x.	TOM:TW	4.5 V	-TIN	10	12	1.1.	18	-11	15	00
t _t	Any Q	5.5 V	A.A.	9	11	VITV	16	W	14	ns	

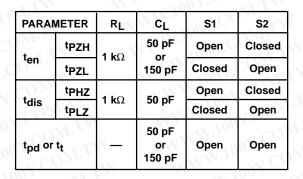
switching characteristics over recommended operating free-air temperature range, $C_L = 150 \text{ pF}$ (unless otherwise noted) (see Figure 1)

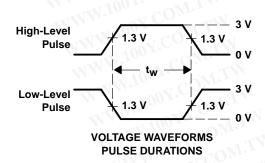
PARAMETER	FROM	то	W	TA	= 25°C	100 χ .	SN54H	CT373	SN74H	CT373	-xxi.1	
	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
	NWW	TOO COMP.	4.5 V	1	32	52	$^{\Lambda}$. $\mathbf{C}_{\mathbf{O}_{I}}$	79	N	65	11/1/4	
	D	1,100 x Q	5.5 V		27	47	-1 CC	71	- 1	59		
t _{pd}	LE	Any Q	4.5 V		38	52	01.0	79		65	ns	
			5.5 V		36	47	ON.C	71	TW	59		
	ŌE W	W. Loop CC	4.5 V		33	52	any.	79	W.	65		
t _{en}		Any Q	5.5 V	T	28	47	Inc.	71	1	59	ns	
4		Anyo	4.5 V	AA	18	42	1700	63	M_{*IIA}	53		
^τ t	t _t		Any Q 5	5.5 V	W	16	38	100	57	TIL	48	ns

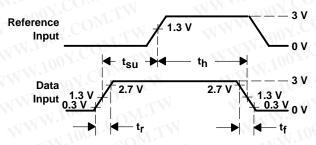
operating characteristics, T_A = 25°C

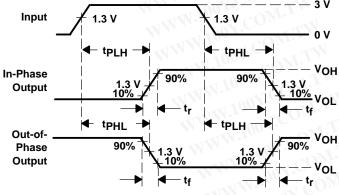

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per latch	No load	50	pF

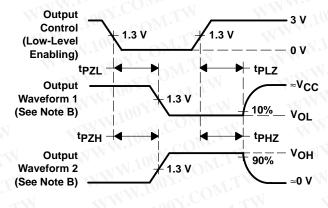
勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw




SCLS009C - MARCH 1984 - REVISED DECEMBER 2002


PARAMETER MEASUREMENT INFORMATION





VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

勝 特 力 材 料 886-3-5753170 胜特力电子(上海) 86-21-54151736 胜特力电子(深圳) 86-755-83298787 Http://www.100y.com.tw

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated